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Abstract

The motion of a single rising bubble is simulated under the effect of electric forces using the ISPH method.
In order to model interfacial forces on bubble surface, a diffusive interface with a finite thickness is employed.
Using the leaky dielectric model, the electric forces act on the bubble interface and change the topology of
the rising bubble, in competence with other interfacial and volumetric forces. The influence of the applied
electric field on a rising bubble is investigated for an oil-water system with realistic density and viscosity
ratios. Then, the effect of interfacial forces on the bubble shape and flow behaviour will be illustrated in
variations of Electro-capillary (Ec) and Bond (Bo) numbers.

Keywords: Smoothed Particle Hydrodynamics, Multiphase flows, Bubble dynamics,
Electrohydrodynamics (EHD)

1. Introduction

Bubble/droplet rising is one of the branches of multiphase flows that considers the rising motion of a
lighter dispersed phase (droplet phase) in a heavier continuous phase of another liquid mainly due to the
buoyancy force. Bubble rising has been observed in numerous natural phenomena and industrial applications.
Nucleate pool boiling [1], oil in water (o/w) and water in oil (w/o) emulsions used in manufacturing of
products in the food, pharmaceutical, cosmetic, and paint industries [2, 3] and separation of oil-water
emulsions in petroleum refineries and waste-water treatment industry [4, 5], as well as chemical reactions
[6] are among industrial practices where droplet rising is frequently observed.

To investigate droplet rising, studies have been carried out to determine the droplet regimes for different
sets of hydrodynamic properties. Clift et al. [7] reviewed the phenomenon and illustrated that the droplet
regimes can be categorized by three dimensionless numbers, namely the Reynolds, Morton, and Eotvos
numbers. Nonetheless, other parameters may also influence the droplet rising regime. In order to control
the droplet rising conditions and maintain the preferable flow regime and rising characteristics, various
techniques have been examined in the literature. Investigated both numerically [8, 9] and experimentally
[10, 11], adding surfactants to the multi-phase system can adjust the surface tension to a desired value,
resulting in proper control of the droplet rising regimes. However, limitations such as their serious impacts
on human-being and animal lives [12, 13] restricts their usage in multi-phase flow systems. Alternatively,
the utilization of electric forces is another feasible solution for controlling the droplet rising phenomenon.
Yet, the electrohydrodynamic effects on the rising droplet have not been fully discovered.
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The influence of electrohydrodynamic (EHD) forces is successfully implemented to some of the droplet
dynamic problems such as droplet deformation. In order to implement the EHD forces, the leaky dielectric
model was introduced [14] which presumes a finite electrical conductivity for fluids resulting in accumulation
of electric charges on the interface. The electric charges induce tangential forces leading to both prolate
and oblate deformations depending on electric permittivity and conductivity ratios. Mahlmann et al. [15]
carried out a two-dimensional simulation of a gas droplet rising in a viscous fluid under the perfect dielectric
assumption. They investigated the deformation of a rising droplet for variations of electric field strength,
surface tension and viscosity. They revealed that the droplet initially deforms into a prolate shape and later
flattens into an oblate one thereby experiencing ”wobbly-like” oscillations. Finally, Yang et al. [16] studied
the droplet rising under horizontal and vertical electric fields using a perfect dielectric model, numerically.
They showed that vertical electric field enhance the rising motion of the droplet while the horizontal electric
field hinders the rising motion.

The Smoothed Particle Hydrodynamics (SPH) method is chosen to simulate the problem. The method
was initially developed by Gingold and Monaghan [17] for astrophysical purposes. However, the method is
employed for the simulation of a broad range of physical applications, namely, free-surface flows [18, 19],
multi-phase flows [20–22], and fluid-solid interactions [23, 24], among others. In the SPH method, the
domain is discretized with fluid particles having physical properties such as density and viscosity. The
physical values are averaged and smoothed over fluid particles by means of a kernel function based on the
distance between the particle of interest and its neighboring particles. The interface between fluid phases
is determined by means of a color function being averaged over particles. Here, it is shown that the SPH
method is capable of modeling multiphase problems such as droplet rising under the influence of external
electric field.

In this paper, the rising of a liquid droplet in another liquid is numerically investigated under the
influence of EHD forces for various dimensionless numbers. In §2, the governing equations for a two-phase
incompressible system are introduced along with the relevant dimensionless parameters and ratios. The effect
of the electric field on the flow is implemented using the leaky dielectric model. In §3, the SPH method
and the numerical scheme are concisely presented. In §4, the problem setup and boundary conditions for
the computational domain are given, and the in-house code is validated with the available data in literature
and the particle resolution study is performed. In §5, the results are presented and detailed discussions are
provided for variations of electrical Capillary and Bond numbers. Finally, concluding remarks are drawn in
§6.

2. Governing equations

Equations governing an incompressible flow may be written as

∇ · u = 0, (1)

ρ
Du

Dt
= −∇p+

1

Re
∇ · τ +

1

Bo
f(s) +

1

Eg
f(e), (2)

where u is the velocity vector, p is pressure, ρ is density, t is time and D/Dt = ∂/∂t+ u ·∇ represents the
material time derivative. Here, τ is the viscous stress tensor,

τ = µ
[
∇u + (∇u)†

]
, (3)

where µ denotes viscosity and superscript �† represents the transpose operation. Local surface tension force
is expressed as an equivalent volumetric force according to the continuum surface (CSF) method [25],

f(s) = γκn̂δ. (4)

Here, surface tension coefficient, γ, is taken to be constant while κ represents interface curvature, −∇ · n̂,
where n̂ is unit surface normal vector. f(e) is the electric force vector defined as [26]

f(e) = −1

2
E ·E∇ε+ qvE. (5)
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In the above equation, ε denotes electric permittivity, qv is the volume charge density near the interface
while E is the electric field vector. Assuming small dynamic currents and neglecting magnetic induction
effects, the electric field is irrotational [27] and may be represented by gradient of an electric potential φ,
E = −∇φ. Further assumption of fast electric relaxation time compared to viscous relaxation time leads to
the following relations for electric potential and charge density

∇ · (σ∇φ) = 0, (6)

qv = ∇ · (ε∇φ) , (7)

where σ is the electrical conductivity.
Dimensionless values are formed using the following scales

x = x+/r, ρ = ρ+/ρf , µ = µ+/µf u = u+/
√
gr,

t = t+
√
g/r, E = E+/E∞, p =

(
p+ − ρg · x+

)
/ρfgr,

D = ρd/ρf , V = µd/µf , P = εd/εf , C = σd/σf , (8)

leading to Reynolds, Bond, Electro-gravitational and electrical Capillary numbers defined as

Re =
ρf
√
gr3

µf
, Bo =

ρfgr
2

γ
, Eg =

ρfgr

εfE2
∞
, Ec =

Bo

Eg
. (9)

Here r is the droplet radius, E∞ is the undisturbed electric field intensity and g is the gravitational accelera-
tion. A plus sign marks dimensional variables whereas subscripts �d and �f denote droplet and background
fluid phases, respectively.

3. Numerical method

To distinguish between different phases, a color function ĉ is defined such that it assumes a value of zero
for one phase and unity for the other. The color function is then smoothed out across the phase boundaries
as

ci =

Jn∑
j=1

ĉjWij

ψi
, (10)

to ensure smooth transition between the properties of each phase when used for their interpolation. Here,
ψi =

∑Jn
j=1Wij, is the number density of SPH particle i, calculated as the sum of the interpolation kernel of

neighboring particles i and j over all neighbors of particle i, Jn. The interpolation kernel W (rij, h), concisely
noted as Wij, is a function of the magnitude of distance vector, rij = ri − rj, between particle of interest
i and its neighboring particles j and h, the smoothing length [28, 29]. Interpolation of phase properties is
carried out using Weighted Arithmetic Mean (WAM),

χi = ciχd + (1− ci)χf , (11)

where χmay denote density, viscosity, permittivity or conductivity of the fluids. The smoothed color function
is also utilized to evaluate δ ' |∇c|, κ = −∇ · n̂ and n̂ = ∇c/ |∇c| in equation (4). In this formulation, a
constraint has to be enforced to avoid possible erroneous normals [30]. In this study, only gradient values
exceeding a certain threshold, |∇ci| ' α/h, are used in surface tension force calculations. A α value of 0.08
has been found to provide accurate results without removing too much detail [31].

A predictor-correcter scheme is employed to advance the governing equations of flow in time using a first-
order Euler approach with variable timestep according to Courant-Friedrichs-Lewy condition, ∆t = ζh/umax,
where umax is the largest particle velocity magnitude and ζ is taken to be equal to 0.25 [31]. In predictor
step all the variables are advanced to their intermediate form using following relations,

r∗i = r
(n)
i + u

(n)
i ∆t+ δr

(n)
i , (12)
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u∗i = u
(n)
i +

1

ρ
(n)
i

(
1

Re
∇ · τ i +

1

Bo
f(s)i +

1

Eg
f(e)i

)(n)

∆t, (13)

ψ∗i =

Jn∑
j=1

W ∗ij , (14)

where starred variables represent intermediate values and superscript (n) denotes values at the nth time

step. Artificial particle displacement vector in (12) is implemented through δr
(n)
i as

δr
(n)
i = β

umax

Jn∑
j=1

(
rij
r3ij
r2avg,i

)(n)

∆t, (15)

which ensures orderly particle distribution. Average particle spacing is found via ravg,i =
∑Jn

j=1 rij/Jn while
a value of β = 0.06 is employed throughout this study [32].

Using intermediate values, pressure at the next time step is found by solving the Poisson equation which
is then followed by corrections in position and velocity of the particles, completing the temporal transition.

∇ ·
(

1

ρ∗i
∇p

(n+1)
i

)
=

∇ · u∗i
∆t

, (16)

u
(n+1)
i = u∗i −

1

ρ∗i
∇p

(n+1)
i ∆t, (17)

r
(n+1)
i = r

(n)
i +

1

2

(
u
(n)
i + u

(n+1)
i

)
∆t+ δr

(n)
i . (18)

Boundary conditions are enforced through multiple boundary tangent (MBT) method described in [33]
while first derivative and Laplace operator of vector functions are approximated through following expres-
sions

∂fmi
∂xki

akli =
∑
j

1

ψj

(
fmj − fmi

) ∂Wij

∂xli
, (19)

∂2fmi
∂xki ∂x

k
i

amli = 8
∑
j

1

ψj

(
fmi − fmj

) rmij
r2ij

∂Wij

∂xli
. (20)

Here, akli =
∑

j

rkij
ψj

∂Wij

∂xl
i

is a corrective second rank tensor that eliminates particle inconsistencies. Left hand

side of (16) is discretized as

∂2fmi
∂xki ∂x

k
i

(
2 + akki

)
= 8

∑
j

1

ψj

(
fmi − fmj

) rkij
r2ij

∂Wij

∂xki
. (21)

4. Problem setup and validation

The bubble is placed at a height of h = 2r above the bottom wall in a rectangular computational domain
with a height and a width of H = 10r and W = 6r, respectively. No-slip boundary condition along with
a potential difference of ∆φ = E∞/H is applied to top and bottom walls while the periodicity condition is
implemented on the side boundaries. In the absence of the bubble in the computational domain, the periodic
boundary condition for the electric potential produces a uniform downward electric field parallel to the side
boundaries. Particles discretizing the bubble are positioned along concentric circles around the bubble’s
center. The radii of consecutive circles differ by one particle spacing and the outermost circle’s radius is
equal to r. The number of particles along each of these circles vary to keep the overall inter-particle spacing
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Figure 1: The comparison of the bubble shape and centroid velocities for non-electrified (a,c) and electrified (b,d) cases of the
present study with Mahlmann et al. [15] where the solid line corresponds to the results of the current study.

uniform. Fluid particles are arranged on a uniformly spaced Cartesian grid where particles coinciding with
the bubble are removed.

In our previous study [32], the in-house code and the numerical algorithm used in this study were
extensively validated via comparing the results of bubble rising simulations with those from Hysing et al.
[34] and Susmann et al. [35]. However, to present a self-contained study here, we have performed further
validations through numerically simulating a bubble rising problem with and without electric field, included
in the study of Mahlmann et al. [15]. The dimensions of the computational domain are set to those given
in [15], namely, W = 7r, H = 14r and h = 2r, and all boundaries are treated as solid walls with no-
slip boundary condition while as for the boundary conditions for the electric potential, the Dirichlet and
Neumann boundary conditions are imposed on horizontal and vertical walls, respectively. Both cases have
Re = 250 and Bo = 1, while the electrified case has the electrical Capillary number of Ec = 1. Figure
1 compares the bubble shapes and centroid vertical velocities of non-electrified and electrified cases with
those of Mahlmann et al. [15]. The results for the non-electric test case have a clear match both in terms of
the bubble shape and its vertical velocity. In the electrified case, both shape and the motion of the bubble
are in a satisfactory agreement with those of Mahlmann except at a stage where the bubble is close to the
boundary.

In this section of the present work, the dependency of the numerical results to the particle resolution is
tested. The resolution of the particles is scaled with respect to the bubble diameter; the number of particles
for a unit diameter of bubble (x/d). In order to perform the test, a case with dimensionless numbers equal
to Re = 400, Bo = 12 and Ec = 5 is simulated for different particle resolutions. The resolution is varied from
30 x/d to 80 x/d with a unit increment of 10. Figure 2 shows the bubble centroid positions and velocities
for these particle resolutions where one can observe the convergence of the solution as the particle resolution
increases. The centroid position of 70 x/d and 80 x/d adequately matches, and their velocities at both the
accelerating and terminal stages have negligible difference. Thus, in this study, the particle resolution of 70
x/d is used to simulate the validation and forthcoming test cases.

5. Results

The rising of a single droplet in a quiescent fluid can be modeled using four dimensionless numbers,
namely the density ratio D, the viscosity ratio V, the Reynolds number Re and the Bond number Bo. The
introduction of electric forces to the droplet rising problem adds three new dimensionless parameters to the
numerical model. These parameters are electrical permittivity P and conductivity ratios C, and electrical
Capillary number Ec. In order to simulate the droplet rising for an oil-water system, some of these physical
dimensionless parameters - density, viscosity, electrical permittivity and conductivity ratios - are set to
physically proper values of D = 1.25, V = 0.01, P = 20 and C = 100. Other dimensionless parameters
- Reynolds, Bond and electrical Capillary numbers - are employed to consider the various conditions of
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Figure 2: The temporal evolution of centroid positions and velocities of the validation test case with dimensionless parameters
of Re = 400, Bo = 12 and Ec = 5 for six different particle resolutions.

Table 1: The dimensionless parameters and their corresponding magnitudes, which have been used to investigate the effect of
electrical Capillary number.

Case Re Bo Ec D V P C
E0 400 12 0 1.25 0.01 20 100
E1 400 12 1 1.25 0.01 20 100
E2 400 12 2 1.25 0.01 20 100
E3 400 12 3 1.25 0.01 20 100
E4 400 12 4 1.25 0.01 20 100

ERB 400 12 5 1.25 0.01 20 100

droplet rising of an oil-water system. According to the leaky dielectric model and based on the permittivity
and conductivity ratios used in this paper [36], the droplet deforms prolately if the gravitational force is
absent. However, the deformation of the droplet rising in the presence of gravitational and electric forces
needs further investigation which is the premise of this study.

Figure 3 represents the normalized magnitudes for various force components effecting the rise of a droplet
at different elevations of the simulation domain for the test case with Re = 400, Bo = 12, Ec = 5. These
forces are the electric, surface tension, viscous, buoyancy, pressure and total forces illustrated by their
initial letters. In order to identify the location of droplet positions shown in sub-figure (a), there are some
symbols indicating the position of their center of mass that can be correlated with sub-figures (b-e). These
competition of these force components will be used in the following sections to justify physical behaviour of
the droplet under different conditions during its rise which will be discussed wherever appropriate.

5.1. Variations of Ec

In this section, the variation of electrical Capillary number and its impact on the droplet rising is
studied. The electrical Capillary number is varied by changing the external electric field strength by means
of adjusting the applied electric potential on the horizontal domain boundaries. The droplet is subjected
to six different electric field strengths tabulated in table 1, and the dimensionless parameters and their
magnitudes are presented therein as well. The electrical Capillary number yields the relative significance of
electric and surface tension forces. In this part, the Reynolds and Bond numbers are kept constant for all
test cases. Thus, the increase in the electrical Capillary number might be interpreted as the enhancement
of the electric forces compared to inertia, surface tension and viscous forces.

In order to show the impact of electric forces on the droplet rising, figure 4 presents droplet shape and
velocity streamlines in the half computational domain at five early instants, sorted from left to right, for
E0 and ERB cases of table 1 shown at the top and bottom part of the figure, respectively. As can be
observed from the figure, in the absence of the electric forces, the droplet rises forming an oblate shape
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Figure 3: Comparison of various force components (fy in sub figure b, d and fx in sub figure c, e) for the test-case with
Re = 400, Bo = 12, Ec = 5 shown in (a), at the top point (b and c) and side point of the droplet (d and e) for electric force
fe, surface tension force fs, viscous force fv , buoyancy force fb, pressure gradient force fp and total force ft.
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Figure 4: droplet shapes and velocity streamlines for non-electrified and electrified cases at five early instants of the rising; The
upper row shows the non-electrified case E0 at (a) t = 0.4, (b) t = 10, (c) t = 5, (d) t = 9 and (e) t = 13 while the bottom one
represents the electrified case ERB, at (f) t = 0.4, (g) t = 1, (h) t = 2, (i) t = 2.4 and (j) t = 4.

due to the hydrodynamic drag at the droplet front. However, the application of a sufficiently large electric
force elongates the droplet prolately. Considering the vortex formation for the E0 case, a single vortex is
generated at the sides of the droplet at the early instances of the rising, but the vortex gradually moves
towards the region behind the droplet. This induces an upward jet current of the surrounding fluid beneath
the droplet, which promotes the formation of an oblate shape. As for the case of ERB, a pair of vortices
is generated due to the electric forces [37]. The flow direction for these vortices can be determined by
the comparison of conductivity and permittivity ratios. Based on the parameter setup of this study, these
vortices encourage the droplet to elongate into the prolate shape at the early rising moments where the
buoyancy effects are not significant. As the droplet ascends, the bottom vortex loses its strength due the
magnification of hydrodynamic forces and finally disappears. Simultaneously, the upper vortex grows and
develops at the sides of the droplet.

To quantify the deformation of a droplet, we here introduce a dimensionless parameter, referred to as the
Aspect ratio, Ar = Dy/Dx, where Dy and Dx are droplet diameters in the vertical and horizontal directions
passing the droplet centroid, respectively. Figure 5-a shows the temporal evolution of the Aspect ratio for
all test cases listed in table 1. The general trend of all test cases excluding the non-electric case of E0
demonstrates that the Aspect ratio of the droplet increases linearly, indicating that the droplet acquires a
prolate shape due to the electric force. As the droplet gets slender, the pressure drag decreases while the
friction drag increases, and the surface tension force becomes augmented at the poles of the droplet due to the
increase in the curvature therein. After reaching a maximum value, the Aspect ratio starts decreasing non
linearly and reaches a plateau. At the peak point of the aspect ratio, the pressure and viscous drags acquire
closer values to each other (refer to figure 3), and then begin to increase and decrease, respectively. Stating
explicitly, surface tension tends to preserve the initial circular shape of the droplet and the hydrodynamic
forces try to decrease the prolate elongation through the hydrodynamic drag forces at the droplet front, and
the jet current in its wake. The Aspect ratio levels off when electrical and hydrodynamics forces balance
each other. The rise in the electrical Capillary number increases the Aspect ratio of the droplet at both
initial and final stages of the droplet deformation.

The temporal evolution of centroid velocity of the droplet for different electrical Capillary numbers is
shown in figure 5-b. It is observed that the centroid velocity of the droplet increases with the rise of Ec.
Comparing the resultant forces applied to droplet due to pressure, viscous stress and electric stresses, it
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Figure 5: Temporal variations of (a) Aspect ratio Ar and (b) the centroid velocity for six different electrical Capillary number
Ec in table 1.

Table 2: The dimensionless parameters and their corresponding magnitudes, which have been used to investigate the effect of
Bond number.

Case Re Bo Ec D V P C
B1 400 2 5 1.25 0.01 20 100
B2 400 4 5 1.25 0.01 20 100
B3 400 6 5 1.25 0.01 20 100
B4 400 8 5 1.25 0.01 20 100
B5 400 10 5 1.25 0.01 20 100

ERB 400 12 5 1.25 0.01 20 100

is seen that the electric component is one order of magnitude smaller than viscous and pressure compo-
nents. However, the electric forces implicitly affect the rising velocity by changing the droplet shape (figure
4). Applying the electric field makes the droplet more slender/prolate, reducing the pressure drag while
increasing the friction drag. Comparing the two drag components of cases E0 and ERB, it is seen that
applying electric field in ERB reduces the pressure drag to approximately one third of that of E0 while
about doubling the friction drag. The resultant drag is much less than when no electric field is applied,
increasing the rise velocity of the droplet.

5.2. Variations of Bo

In this section, the influence of Bond number on the evolution of the droplet under electric field is studied
in order to investigate the significance of interfacial tension forces acting on the droplet. Table 2 shows the
dimensionless parameters and their magnitudes used in this section. Studying the variation of Bond number
may enable one to address the role of surfactants if relevant on the droplet rising in the presence of electric
field.

Figure 6-a shows the variation of Aspect ratio versus time for six cases presented in table 2. One may
intuitively expect that the higher the Bond number, the droplet should become more prolate since the less
surface tension force (opposing to electric force) acts on the droplet interface. However, it is observed that
the Aspect ratio decreases as the Bond number increases. Remember that for all test cases of this section,
both Re and Ec numbers are kept constant. Therefore, the reduction in the Bond number will correlate with
the increase in the surface tension. To maintain constant Ec, electric force need to be augmented, increasing
the elongation of the droplet.

The temporal evolution of the centroid velocity of the droplet are presented in figure 6-b. For all the
cases except for B1, the centroid velocities increase monotonically in time. The initial notable decrease in
the centroid velocity of B1 is owing to the electrical interaction between the droplet and bottom boundary.
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Figure 6: Temporal variations of (a) Aspect ratio Ar and (b) the centroid velocity for six different Bond numbers, namely, B1
- ERB; the dimensionless parameters of these cases are given in table 2.

It is observed here that the bottom boundary pulls the droplet towards itself due to the asymmetric electric
force balance at the interface right after the droplet is released.

6. Conclusion

In this paper, the bubble rising is numerically investigated for an oil-water system in presence of an
externally applied electric field. The leaky dielectric model is used to implement the electric forces on the
system and the Continuum Surface Force (CSF) method is employed for surface tension force. The rising
of a single bubble is investigated for possible influences of different electric field strengths, and changes in
surface tension coefficient through the variations of electrical Capillary and Bond numbers, respectively.
Afterwards, the interactions of a bubble pair are simulated for different orientations and initial center to
center distances.

The general trend of bubble Aspect ratio is a linear increase to a maximum value which follows by
a non-linear fashion reaching a plateau where the electric and hydrodynamic forces balance each other.
Moreover, it is found that the bubble Aspect ratio increases by incrementing electrical Capillary number,
and decrementing the Bond number. Decrementing the Bond number, the surface tension force is stronger
on bubble interface which attempts to preserve the circular bubble shape. Since the electrical Capillary
number is kept constant for variations of Bond number, the electric forces are augmented as well, resulting
in an increase in Aspect ratio by decrementing the Bond number.

The study of centroid velocity of bubble for variations of electrical Capillary and Bond numbers reveals
that the centroid velocities increase with increments of electric Capillary and Reynolds number. Increase in
the Bond number yields in the increase of the centroid velocities in the transient stage, in contrast to the
terminal stage.
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