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Abstract. In the present work a NURBS-based framework for shape and topology opti-
mization is presented. The methodology uses fixed grids with immersed boundaries based
on a Brinkman penalization method. Compared to other available approaches for topology
optimization the number of design variables is reduced and a mathematical description
of the solid boundaries is given by NURBS. Two test cases are used to investigate the
presented method. The first one compares the proposed method with a traditional shape
optimization approach using body-fitted grids. The second one proves the capability of
the method for topological changes of the flow domain during the optimization process.

1 INTRODUCTION
Shape and topology optimization are important engineering tools for generating op-

timal fluid flow domains during a development process. For shape optimization usually
body-fitted grids are used. However, for complex geometries or large deformations of the
grid during the optimization process the grid generation is a challenging problem. This
becomes even more difficult for topology optimization problems where the topology of
the flow domain may change. To overcome these issues a variety of methods have been
developed which use a fixed grid. For a general overview of these methods the reader is
referred to [1, 2]. Some of the issues all these methods have in common is a high number
of design variables and a slow convergence of the optimization process [3]. To reduce the
number of design variables and to ensure smooth, mathematically described interfaces
the present work utilizes non-uniform rational basis splines (NURBS) for the solid-fluid
interface representation. The control points of the NURBS are used as design variables
and by that it is possible to generate complex shapes with a small number of design
variables. To model the solid part of the flow domain a Brinkman penalization method
[4] is used. An additional advantage of using NURBS is that they are commonly used in
computer-aided design (CAD) what makes it is easy to transfer the design of the optimal
solution to a CAD system for further post-processing.
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2 BRINKMAN PENALIZATION METHOD
For the computations in this paper the penalized incompressible Navier-Stokes equa-

tions

∇ · v = 0, (1)

ρ

(
∂v

∂t
+ (v · ∇)v

)
= −∇p+ µ∆v + f − αv (2)

are used, where v is the flow velocity vector, p is the pressure, t is the time, ρ is the
density, µ is the dynamic viscosity and f are external body forces. The term αv is the so
called Brinkman penalization term with the Brinkman penalization parameter α. In fluid
regions, this parameter is set to zero and the Brinkman term vanishes which leads to the
original Navier-Stokes equations. To ensure the zero-velocity condition in the solid parts,
a high value of α is chosen which causes the velocity to tend towards zero. Referring to
[5] where a value of αmax > 104 is considered as sufficient, the maximum value of α is set
to αmax = 105 in the present paper.

3 NURBS-BASED FRAMEWORK
The proposed methodology uses non-uniform rational basis splines (NURBS) for the

geometric representation of the immersed solid boundaries. For the sake of simplicity this
paper only considers the two-dimensional case. However, the extension of the proposed
method for three-dimensional problems is straight forward. A two-dimensional NURBS
curve is defined as

C(u) =
n∑

i=0

Ri,p(u)Pi (3)

with the independent variable u ∈ [a, b], n+1 control points Pi and the rational basis
functions

Ri,p(u) =
Ni,p(u)wi∑n
j=0Nj,p(u)wj

, (4)

where wi are the weights and Ni,p are the B-spline basis functions of degree p defined on
a knot vector U . This vector can be defined in several ways depending of the desired type
of the NURBS curve. In the present paper two types are considered. In case of open
curves a clamped, uniform knot vector

U = {a, . . . , a︸ ︷︷ ︸
p+1

, up+1, . . . , un−p, b, . . . , b︸ ︷︷ ︸
p+1

} (5)

is used. For this kind of vector the first and last knot values are repeated p+1 times. In
case of closed curves unclamped, uniform knot vectors

U = {0, . . . , n+ 1} (6)

are used. For the definition of the basis functions and more details about NURBS in
general the reader is referred to [6, 7]. In order to use the NURBS for the optimization
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process several parameters can be defined as variable and therefore can be used as design
variables. However, in this paper only the coordinates of the control points Pi are used
for this. The weights are always set to one and the knot vector will be defined depending
on the respective test case.

In the following, each step of the optimization process is explained briefly. First, the
optimization boundaries have to be described by NURBS curves. In simple cases, this
can be done manually by positioning the control points, setting the weights and defining
the knot vectors. For more complex geometries immersed into the flow domain this
could also be done by common CAD systems which mostly are using NURBS for their
geometry description. The coordinates of the control points of these NURBS then have to
be coupled to the design variables of the optimization problem. As mentioned before, also
other parameters of the NURBS curve could be coupled to design variables which would
give even more control over the shape of the curves. However, to keep the number of design
variables small only the control points are considered in the present paper. In the next
step, the values of the Brinkman penalization parameters α have to be determined. For
this purpose, the proportion of fluid to solid has to be calculated in each control volume
which can be done by means of a polygon clipping algorithm. In the present paper the
Sutherland-Hodgman algorithm [8] is used. This algorithm clips any convex polygon
against any other convex or concave polygon. For the methodology proposed the NURBS
curve is clipped against each control volume. In order to do this, the NURBS curve first
has to be discretized to create a polygon which then can be clipped by the Sutherland-
Hodgman algorithm. Figure 1 shows the procedure for a concave polygon clipped against
a quadrilateral control volume where the polygon is clipped successively against all four
sides of the control volume starting with the left side. The area of the clipped polygon is

Figure 1: Procedure of the Sutherland-Hodgman polygon clipping algorithm

then set in ratio to the total area of the control volume. The resulting volume fraction
is used to calculate the corresponding Brinkman penalization parameter. For all control
volumes outside the area enclosed by the polygon respectively the NURBS curve the
Brinkman penalization parameter is set to α = 0 and for all control volumes inside this
area the parameter is set to α = 105. For the control volumes getting cut by the NURBS
curve the Brinkman penalization parameter is set to 0 < α < 105 depending on the
volume fraction. By this the immersed boundary gets slightly blurred which is necessary
to have a continuous objective function respectively being able to compute a gradient.
The last step is solving the fluid flow problem to determine the objective function and all
constraints of the optimization problem. For the present paper the block-structured finite
volume based solver FASTEST-3D [9] is used for all computations. If the value of the
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objective function satisfies the stopping criteria of the optimization method the process
is stopped. Otherwise the design variables are adjusted and the process starts over again.

What should be mentioned at this point is that the calculation of the volume fractions
by using the Sutherland-Hodgman algorithm can take a not negligible amount of time
if the number of control volumes increases since every section of the polygon is checked
for intersection with every control volume side. Therefore, the number of sections of the
discretized NURBS curve should be as small as possible while still being able to repre-
sent the desired immersed boundary. It should also be mentioned that for the proposed
methodology no new boundaries can emerge anywhere in the flow domain. Only exisiting
boundaries can merge or vanish. This kind of topology optimization is often referred to
in the literature as generalized shape optimization.

4 NUMERICAL EXAMPLES
To investigate the presented methodology it is first compared to a NURBS-based shape

optimization method which uses body-fitted grids. Then, the capability for topological
changes during the optimization process is shown with a second test case. For both test
cases the globally convergent version of the method of moving asymptotes (GCMMA) [10]
is used, which is a common optimization method in the field of topology optimization.
The gradient of the objective function and the constraints required for this algorithm is
approximated by forward difference. The tolerance for the stopping criteria is set to 10−5

for the relative change of the objective function and the design variables as well as the
constraint violation.

4.1 Shape optimization of a diffuser
In this test case a shape optimization of a diffuser is performed to reach a specific value

of the pressure at its outlet. The results of the proposed methodology are compared with
the results of a shape optimization method using a body-fitted grid as shown in [11]. The
geometry of the diffuser is depicted in Figure 2. The optimization boundary is described
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x

Figure 2: Flow domain of the diffuser test case with inlet and outlet boundary conditions and position
of the design variable

by an open NURBS curve represented by the dashed line. It is defined by the control
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points

P1 =

(
0.5
1.0

)
, P2 =

(
1.5
0.5

)
, P3 =

(
2.5
0.0

)
(7)

and the knot vector U = {0, 0, 0, 1, 1, 1}. All weights are set to one. Every control volume
below this curve is treated as solid. According to [11] the inflow is described by a parabolic
velocity profile with a Reynolds number of Re = 1 based on the inlet channel height. The
pressure reference point is placed so that the pressure at the inlet is zero and by that
the pressure at pout corresponds to the pressure loss in the diffuser. The objective is to
achieve a static pressure of −13.5Pa at the point pout by deforming the geometry of the
diffuser. To achieve the desired value the optimization problem is defined as

min
a

J = (pout + 13.5Pa)2 ,

s. t. −0.2 ≤ a ≤ 0.5.
(8)

The design variable a will move the control point P2 and by that deform the NURBS
curve with

P2 =

(
1.5
0.5

)
− a ·

(
1
1

)
. (9)

The initial value of the design variable is set to a = −0.2, which means that the control
point is moved upwards. The results for the optimizations are shown in Figure 3. It can be
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Figure 3: Comparison of the resulting NURBS curves for the body-fitted grid and the Brinkman penal-
ization method including the initial curve

seen that the final NURBS curves for the body-fitted grid and the Brinkman penalization
method are almost identical. The value of the design variable for the body-fitted grid
is a = 0.343 and the value of the Brinkman penalization method is a = 0.355. For
both approaches the pressure at the outlet matches the desired value of pout = −13.5Pa.
Thus, the proposed methodology is a reasonable alternative to classical shape optimization
approaches. However, it has to be mentioned that an advantage of body-fitted shape
optimization is the simple consideration of turbulent flows. The requirement to have
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a very fine grid resolution at the boundaries can be easily fulfilled in any optimization
iteration since the grid moves with the boundaries. For approaches with a fixed grid like
the Brinkman penalization method the grid doesn’t move with the boundary and therefore
a prior grid refinement isn’t possible. However, to overcome this problem several methods
for an adaptive mesh refinement exist which can be used for immersed boundary methods
like the one proposed.

4.2 Topology optimization of a pipe bend
In the second test case the pressure drop in a pipe bend is minimized. This problem

is a commonly used test case for the investigation of topology optimization methods and
was first introduced by Borrvall and Petersson [12]. The geometry of the flow domain is
depicted in Figure 4. The grid for this test case consists of 100×100 control volumes. For

p0

u0.2

0.7

0.1

0.20.7 0.1

y

x

Figure 4: Flow domain of the pipe bend test case with inlet and outlet boundary conditions

the inflow a parabolic velocity profile is used and the Reynolds number is set to Re = 10
based on the inlet height. The objective is to minimize the pressure drop between the
inlet and the outlet. Thus, the optimization problem is defined as

min
a

J = pin − pout,

s. t. g =
Afluid

Atotal

− 0.25 ≤ 0,

(10)

where pin is the mean pressure at the inlet and pout is the mean pressure at the outlet. The
constraint g allows only 25% of the flow domain to be fluid. The test case is optimized
with three different initial designs. For the first design two NURBS curves are used which
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are shown in Figure 5 and are defined by the control points

P1
1 =

(
0.0
0.7

)
, P1

2 =

(
0.0
0.0

)
, P1

3 =

(
0.7
0.0

)
(11)

and
P2

1 =

(
0.0
0.9

)
, P2

2 =

(
0.9
0.9

)
, P2

3 =

(
0.9
0.0

)
(12)

and the knot vector U = {0, 0, 0, 1, 1, 1} for each NURBS. Again all weights are set to
one. Four design variables a1, . . . , a4 are used to move the control points P1

2 and P2
2 with

P1
2 =

(
0.0
0.0

)
+

(
a1
a2

)
, P2

2 =

(
0.9
0.9

)
+

(
a3
a4

)
(13)

while the other control points stay fixed. Thus, this case is comparable to the diffuser test
case in terms of the NURBS description and can be referred to as a shape optimization.

For the other two initial designs of the test case closed NURBS curves are used. Each
of them is defined by six control points as shown in Figure 6. To ensure a smooth closed

P1
1

P1
2 P1

3

P2
1 P2

2

P2
3

Figure 5: Open NURBS curves each defined
by three control points

P1 = P5 P2 = P6

P3P4

Figure 6: Closed NURBS curve defined by six
control points

curve the first two control points are repeated according to the degree of the curves. All
of these curves are defined relative to their center by

P1 = P5 =

(
−0.1
−0.1

)
, P2 = P6 =

(
0.1
−0.1

)
, P3 =

(
0.1
0.1

)
, P4 =

(
−0.1
0.1

)
(14)

with the unclamped, uniform knot vector U = {0, . . . , 8}. Again all weights are set to
one and each coordinate is controlled by a seperate design variable. At first two of these
closed curves are used with the centers (0.3, 0.3) and (0.7, 0.7). The last case uses four
curves with the centers (0.25, 0.50), (0.50, 0.75), (0.75, 0.50) and (0.50, 0.25).

The results are shown in Figure 7 including the streamlines for the initial and the
optimized design. All of the three initial designs lead to very similar results as well for
the value of the objective function as for the immersed boundaries. To reach the final
design a topological change of the flow domain had to happen for the second and the third
variant which proves the capability of the proposed method for topology optimization.
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4 DV, J = 277.6 16 DV, J = 280.6 32 DV, J = 276.1

Figure 7: Results for the pipe bend test case with different initial designs and different number of design
variables (DV), showing the corresponding NURBS curves and the streamlines

The third variant also shows the possibility of overlapping NURBS curves, which is a
necessary feature to achieve topological changes during the optimization process. The
optimized designs shown in Figure 8 are comparable to results from other authors like
[12, 13]. The optimization process shows a robust behavior for all test cases and a fast
convergence as shown in Figure 9. The peak at the beginning of each optimization results
from the fact that the volume constraint is violated at start. Therefore, the optimization
algorithm first tries to satisfy the constraint before minimizing the pressure drop. For 4
design variables the stopping criteria is already reached after 11 iterations. For 16 and 32
design variables the optimum is reached after 175 and 94 iterations, respectively. However,
it can be seen that a value near the optimum is already reached much earlier. For 16 and
32 design variables the objective function drops below 300 after about 30 iterations. Also
no oscillations of the objective function value during the optimization process could be
observed as reported by other authors [3].

5 CONCLUSION
A NURBS-based framework for shape and topology optimization was presented. The

Brinkman penalization method was used to account for solid areas in the flow domain.
The solid boundaries were mathematically described by NURBS curves. To determine
the Brinkman penalization parameter in each control volume the Sutherland-Hodgman
algorithm was used. The proposed method was investigated with two test cases to prove
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Figure 8: Final immersed boundaries for the dif-
ferent initial designs of the pipe bend test case
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Figure 9: Convergence for the different initial de-
signs of the pipe bend test case

the capability for shape and topology optimization. The results show a high potential in
both disciplines. The method showed a fast and robust convergence for the optimization
process and can lead to complex designs with a small number of design variables compared
to traditional topology optimization approaches. The next steps will be the extension of
the framework to three-dimensional problems as well as the calculation of the gradient
with a direct approach.
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