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Abstract. A study of particle reinforced metal matrix composite (PRMMCs) by means
of periodic multi-particle unit cells is presented. The inhomogeneous particle spatial
distribution, as well as the effect of matrix/particles interface, strongly influences the
heterogeneous material behaviour. The effect of both particle spatial distribution and
particle size effect on the uniaxial elastic response of PRMMCs is addressed. The uni-
axial tensile loading on cubicshaped cells with a different number of spherical particles
(up to 50) and different fraction volumes (up to 25%) is studied by using Abaqus FEA
[1], Matlab Global Optimisation Toolbox and the R Sequential Parameter Optimisation
Toolbox SPOT [2]. Three different optimisation processes are used i.e. high-fidelity op-
timisation, low-fidelity optimisation and surrogate assisted optimisation that takes into
account the uncertainty in particle spatial distribution. Accurate finite element analy-
ses (FEA) on different representative volume elements (RVEs) have been conducted by
means of Abaqus-optimizer coupling and computational homogenization. Numerical up-
per bound (UB) and lower bound (LB) of the homogenized uniaxial Young’s modulus
Ex, based on high fidelity model based optimisation techniques (HFMBO), are reported.
A memetic algorithm with adaptive parameter control optimisation process based on a
model derived by sensitivities analysis is proposed. The results are compared to the ones
using a surrogate assisted optimisation with Kriging. In the latter case, uncertainty in
particle spatial distribution has been considered in regards to the current limited control
in manufacturing techniques. The results show that the analytical upper bounds’ models
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overestimate predictions especially in configurations with a low number of particles per
RVE. The results of the different optimisation processes have been compared and, the
importance of the critical parameters on Ex has been addressed.

1 INTRODUTION

Metal Matrix Composites (MMCs) are strong candidates for the design of components
into the applications where the property profile of conventional materials either does
not reach the increased standard of specific demands or is the solution of the problem.
The aim of using MMCs is in reducing the weight and improving the thermomechanical
properties of components and performance at elevated temperatures while maintaining
the maximum ductility [3]. Among the aforementioned MMCs, particulate reinforced
composites can have costs comparable to unreinforced metals with significantly better
hardness and somewhat better stiffness and strength. The response of PRMMCs on the
basis of computational simulations aimed at searching the optimal design has been un-
der the attention of designer and researchers over the last two decades [4, 5, 6, 7, 8].
The most important analytical models for investigating the thermomechanical behaviour
of PRMMCs comprises variational methods, mean field approaches based on Eshelby’s
inclusion [9], and statistically based descriptions [10]. In search of different modelling
strategy, a large number of studies of MMCs have been reported in which unit cells are
employed. Microfield approaches based on finite element method (FEM) are capable of
providing the complex stress and strain fields generated in periodic composite’s phases
upon deformation. However, realistic unit cell models for describing the elastoplastic re-
sponse of PRMMCs are computationally expensive and therefore, most of such studies
have been limited to planar or highly regular three-dimensional RVEs [11] as well as mod-
ifications thereof [12]. For PRMMCs, three-dimensional unit cells appear to be the latest
development in modelling the monotonic and the cyclic behaviour of PRMMCs with dif-
ferent shapes of the reinforcement [13, 14, 15, 16, 17]. Various studies have demonstrated
the capabilities of this method to predict with high fidelity the effective properties of
particle-reinforced composites subjected to elastic [18, 19] and elasto-plastic deformation
[4, 20, 21]. Based on the same modelling technique, the effect of damage initiation and
evolution has been addressed as reported in [5, 7, 22].

The present work concentrates on investigating the particle spatial distribution and
particle size effect on the homogenized elastic behaviour of particle reinforced metal ma-
trix composites by means of optimisation techniques. Among them, the memetic opti-
misation process used for this work has been employed due to the robustness guaranteed
by stochastic search. Moreover, multilevel approaches by means of local optimisation,
monotonic basin hopping and adaptive control parameter pledged efficient convergence
rate even in high dimensional optimisation. We propose an approach that tackles the
problem of optimizing the characteristics of PRMMCs subject to uniaxial load taking
also into account the uncertain particle’s placement. The optimisation problem is split
into a bilevel problem i.e. the upper-level optimisation aims to find the particle dis-
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Figure 1: Idealized three-dimensional periodic unit cells: a) Vf=10% and Npart =4 UB,
b) Vf =20% and Npart =4 UB, c) Vf=10% and Npart =4 LB, d) Vf=20% and Npart =8
UB.

tribution parameters which maximize the PRMMC uniaxial Young’s Modulus and the
lower-level problem that attempts to create a particle placement that reflects the speci-
fications of an upper-level candidate solution due to potentially infeasible distributions.
We employed a Surrogate Model Based Optimisation (SMBO) approach that combines
Kriging, Sequential Parameter Optimisation and a Genetic Algorithm.

2 Problem description

Idealized three-dimensional periodic unit cells, which consist of elastic reinforcing
spherical particles embedded in an elastoplastic matrix (Fig.1), are considered to op-
timize the homogenized Young’s modulus along the x direction, hereinafter referred to
as Ex. Genetic algorithm, bilevel SMBO and computational homogenization [23] have
been employed for the aforementioned purpose. The former two have been coupled with
Abaqus FEA to investigate the effect of particle spatial distribution aimed at optimizing
Ex for a given fraction volume and number of particles. The latter is used to average the
local behaviour of the composites’ constituents within the RVE in order to compute Ex.

The study starts with a high-fidelity model based optimisation (HFMBO). This is
employed to evaluate the inclusion’s arrangement that maximizes (Upper Bound) and
minimize (Lower Bound) Ex. All geometries are meshed by Abaqus C3D10 tetrahedral
elements and a typical model is comprised of about 60000 elements. Constituent mate-
rial properties were chosen to correspond to elastic SiC particles perfectly bonded to an
Aluminium 6061-T6 matrix that follows the data reported in Table 1 [24, 25]. Periodic
boundary conditions (PBC) are applied to the unit cells faces as reported in [6]. The
generation of the multi-inclusion unit cells starts by choosing the number of particles,
hereinafter referred to as Npart, (from 1 to 8) and the particles fraction volume, here-
inafter referred to as Vf, (10%, 15%, 20%) so that the particle size can be selected. Next,
upon applying PBC, the elastic behaviour is investigated by means of uniaxial tensile
load. Afterwards, a sensitivity analysis has been performed and, in light of the results,
a low fidelity based model optimisation (LFMBO) is conducted over a wider range of
number of particles per RVE (from 1 to 20) and Vf (from 10% to 25%). Finally, an
additional SMBO is used proposed to extend the research on arrays characterized by a
higher number of particles per RVE (1-50) and Vf=10%. Adopting this approach the
uncertainty on particle distribution due to manufactory process is considered.
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Table 1: Material properties: Uniaxial stiffness, Poisson’s number, Yield stress, Ultimate
tensile stress.

E [GPa] ε σp0 [GPa] UTS [GPa]
Al6061-T6 68.9 0.3 276 310
SiC 380 0.19 - 1500

2.1 HFMBO and LFMBO methods

A generic optimisation problem can be formulated as described in Eq. 1:

Optimisation


Maximizef(x)
xi ∈ [xlbi , r

ub
i ], i = 1, ..., n

gj ≤ 0, j, ..., J

hk(x) = 0, k = 1, ..., K

, (1)

where gj represent the inequality constraints, hk the equality constraints and xubi and
xlbi are the highest and lowest values that the n variables (each describing one particle
position along one axis) xi can assume (box constraints). In this research two different
constraints are imposed:

xix, x
i
y, x

i
z ≥ lb + r + ∆, i = 1, ..., Npart

xix, x
i
y, x

i
z ≤ ub − r −∆, i = 1, ..., Npart

Cij = ∆−
√

(xix − x
j
x)2 + (xiy − x

j
y)2 + (xiz − x

j
z)2 ≤ 0,

i, j = 1, ..., Npart, j 6= i

(2)

Particles fully embedded in the matrix imposed trough box constraints and inclusions
separation imposed through inequality constraints: wherec are the particles centre coor-
dinates along the x, y and z axes, lb = 0,ub = 10 represent the coordinates of the matrix
bounds, r is the particles radius and ∆ = 0.2 is the minimum distance between matrix
and particles surface.

2.2 High-Fidelity Model Based Optimisation

HFBO is based on the integrated approach which relies upon the coupling between
Matlab Global Optimisation Toolbox, Python [26] and Abaqus FEA. In HFMBO f(x)
in Eq.1 consists in Ex. The black-box nature of the objective function, the consequent
infeasibility of providing additional information such as the objective function gradient
and the ambition of finding the global optimum, led to the development of a genetic
algorithm (GA) based optimisation process. A Latin hypercube design of experiments
that generates only feasible candidates, employing a local dummy optimisation, has been
adopted to generate the first population of candidates. The objective function Ex is
evaluated by coupling different software modules e.g. Matlab Objective function Code
and a set of Python scripts for Abaqus FEA which is comprised of RVE generator, PBC
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adaptive code, pre-processing code and homogenization code. Whenever a candidate is
feasible i.e. both the box constraints and nonlinear constraints are satisfied (Eq.2), the
objective function works as wrapper function to interface GA to the RVE Generator code.
The latter generates the FE models according to the optimisation variables values while
the pre-processing code automatically assigning materials properties, generates the mesh,
applies the concentrated force on the dummy node, runs the PBC code and submits the
simulations. The PBC Adaptive Code is used to guarantee that the simulations results
generated would represent a macro structure consisting of periodically-repeated cells.
Upon defining three node groups on the boundary faces i.e. inner face nodes, inner edge
nodes and corner nodes, we impose a set of equations as reported in [27] which will be
applied between the relative node pairs.

Upon completing a FE simulation, from the Abaqus output database (ODB), the
homogenization code calculates the uniaxial Young’s modulus, Ex, by computing the ratio
between the homogenized stress σ̃x and the homogenized strain ε̃ along the x direction
[23] as follows:

Ex =
σ̃x
ε̃x

=

∑Nip

i=1 σiVi
Vtot

/

∑Nip

i=1 εiVi
Vtot

, (3)

where Nip is the number of integration points, Vi is the volume of each integration point,
Vtot is the total array volume and σi and εi are the stress and strain measured at each
integration point. Afterwards, Ex is returned to the optimisation process as objective
function value. In case of infeasible candidates, the process involving Abaqus is skipped
and Ex is assigned making use of a penalty function as follows:

Ex = Em −
∑
i

Cns (4)

where Em is the matrix Young’s modulus and Cns are all the ns constraints not satis-
fied. When the ”Evaluation” step is completed, the candidates are ranked and selected
generating the mating pool on which the classical GA operators will generate the new
candidate’s population. However, to reduce the number of infeasible candidates, on the
infeasible children resulting from the operators, an additional local dummy optimisation
is performed. If the stopping criteria are not satisfied, the optimisation loop is restarted
from the proposed new population.

2.3 Low-Fidelity Model Based Optimisation

Afterwards the HFMBO, a sensitivity analysis has been conducted in order to iden-
tify the variables correlation that mostly affects Ex. The results pointed out that two
parameters strongly influence Ex:

• Particles overlap in the plane normal to the applied stress defined as:

OverlapArea =
∑
k

(
Npart

1

)
2πri arctan(yk, xk) + r2jatan(yk, d(i, j)− xk)− d(i, j)yk (5)
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Figure 2: Overlap Area and distance on x axis for the RVE with 2 particles.

where xk =
(r2i−r2j+d(i,j)2)

sd(i,j)
and yk =

√
(r2i − r2k)

• Distance between particles in the direction of the applied stress defied as:∑
k

(
Npart

1

)
|xi − xk| (6)

where xk =
(r2i−r2j+d(i,j)2)

s∗d(i,j) and yk =
√

(r2i − r2k) Unlike the parameter Overlap Area, that
has a strong influence on Ex independently to its value, the parameter representing the
distance on the x axis influences the configurations with low Ex value (Fig.2). As a
consequence, if the assumption that the search space is restricted to a region in which
Ex ∝ OverlapArea holds, the optimisation of OverlapArea and Ex have a one-to-one
correspondence. Hence, the optimisation process has been modified considering the
Overlap Area as the objective function. This means that, referring Eq.1, in LFMBO
f(x) = OverlapArea. Switching the objective function from the FEA result to an ana-
lytical parameter entails a considerable reduction of computational cost (from about 20s
to about 1 ms) that made advantageous the use of a more effective optimisation process.
In LFMBO a memetic algorithm, in which the local exploitation has been performed
through a Monotonic Basin Hopping (MBH) algorithm [28] has been adopted. Moreover,
looking for a more performing exploration phase, adaptive selection settings and adaptive
stopping criteria control parameters have been used [29]. The optimisation process starts
with a Latin Hypercube design of experiment and the most promising candidates are
selected to constitute the first-generation population. Then, for each candidate the ana-
lytical value (objective function) defined in Eq.5, is calculated and, taking into account
the constraints violation, a fitness value is assigned. Next, a ranking of the candidates is
performed and, in line of current parameter controls, the most promising ones are selected
and used by the GA operators to generate the next-generation population. Afterwards,
with a probability of 5%, an MBH based local optimisation is performed starting from
the actual best candidate and the population is drugged by the resultant solution that
replaces the one used as MBH starting point. In order to have non-static control param-
eters, the mutation and crossover fraction are determined by the number of generations
gone by the one with the best fitness value of 95% of the actual one. When the mutation
and crossover fraction assume respectively the values of 0.8 and 0.2, the stopping crite-
ria’s count starts. The stopping criterion counts the number of past generations from the
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last control parameters change and it is satisfied if the count arrives at 100. However,
an additional stopping criterion that limits the number of generation to 10E4 is imposed.
The optimisation process continues restarting the loop from the proposed next population
until the stopping criteria are satisfied. Once the optimisation is reputed terminated, to
evaluate the Ex value, a FEA is performed by means of the ”Evaluation” process used in
the HFMBO.

3 Surrogate Model Based Optimisation with uncertainty

A PRMMCs optimisation that takes into account particle placement uncertainty has
been developed and applied on the RVEs with Vf=10%. Particles are not deterministically
placed but are assumed to be normally distributed along the three axes [30] . The number
of particles (2-50) in the RVEs and the characteristics of the normal distribution are to
be optimized. The problem has been formulated as a bilevel, nonlinear, constrained
optimisation problem. The upper-level specifies the spatial distribution characteristics,
specified by the number of particles and standard deviations in each dimension that
maximizes Ex. The lower-level consists of determining a feasible spatial distribution
holding the properties specified by the upper-level candidate solutions. To solve the upper-
level optimisation problem, we require a method that accounts for the stochastic and
expensive nature of the problem. Hence, we used the Sequential Parameter Optimisation
Toolbox (SPOT), which is an implementation of the SPO in the programming language R.
Among the surrogate models available in SPOT, we used Kriging. The main assumption
of Kriging is that the data follows a multi-variate Gaussian distribution, where errors are
spatially correlated. More details about Kriging model implementation adopted can be
found in [31]. The problem formulation, that coincides with the upper-level optimisation,
is the follows:

Find max f(Npart, σx, σy, σz) = Ex (7)

subject to

{
2 < Npart < 50

0.7 < σx, σy, σz < 3
, (8)

where Npart is the number of particles per RVE, σx, σy, σz are respectively the standard
deviations of the particle placements along the x, y, and z axes. A L-BFGS-B algorithm
has been employed to perform the optimisation on the metamodel.

The goal of the lower-level optimisation is to specify the exact positions of all parti-
cles, that respects the statistical properties specified by an upper-level candidate solution.
Therefore, the objective function to be minimized is defined as the deviation between ac-
tual sample statistics and the desired distribution. Formally, the lower-level optimisation
problem can be defined as:

Find min g(xix, x
i
y, x

i
z, i = 1, ..., Npart) =

∣∣∣std(x1x, ..., x
Npart
x )− σx

∣∣∣+∣∣∣std(x1y, ..., x
Npart
y )− σy

∣∣∣+
∣∣∣std(x1z, ..., x

Npart
z )− σz

∣∣∣ , (9)
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(a) Comparison between upper and lower
bounds of Ex related to HFMBO.

(b) Results related to LFMBO’s UB for a wider
range of Npart and Vf.

Figure 3: Deterministic optimisations results.

subject to the constraints illustrated in Eq. 2. The interest in a globally optimal solution,
the lack of preliminary information about the objective function features and the necessity
of a robust optimizer lead us to adopt an evolutionary algorithm for this task. Particularly,
the Genetic Algorithm (GA) available in the R package GA [32] because of its robustness
and ease of use has been employed.

The feasibility of all the upper-level proposed candidate solution is not guaranteed.
Therefore, the lower-level optimisation may result into particle placements that follow a
distribution that is different from the desired one. To overcome this problem, SPO was
modified to allow for updating proposed candidate solutions after they were evaluated.

3.1 High-fidelity Model Based Optimisation results

The upper and lower bounds of Ex at different number of particles per RVE (1,2,3,4,5,6,8)
and different fraction volumes of the reinforcement (10%, 15%, 20%) have been evaluated.
The results are shown in Fig.3-a. The obtained results highlight that the reinforcement
fraction volume, the number of particles and the particles’ arrangement influence the
value of Ex. Indeed, taking into account the RVEs Npart=4 with Vf=10% (Fig.1-a) and
Npart=4 with Vf=20% (Fig.1-b), both related to the UB, it is possible to explain the in-
crease of Ex because of the augment of Vf while the RVEs Npart=4 with Vf=10% (Figure
1-a) related to the UB, and Npart=4 with Vf=10% (Fig.1-c) related to the LB, clarify
the variation of Ex with the particles’ arrangement. In addition, by comparing the RVEs
Npart=4 with Vf=20% (Fig.1-b) and Npart=8 with Vf=20% (Fig.1-d), the variation of
Ex with the number of particles is addressed.

3.2 Low-fidelity Model Based Optimisation Results

LFMBO has been used to optimize a wider range of RVEs with different Vf (10% to
25%) and Npart (1 to 20) and the results are shown in Fig.3-b. In order to validate the
results of Ex computed by LFMBO, a comparison with the HFMBO has been made and
the accuracy of the LFMBO’s prediction has been confirmed by the results that differ
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(a) Comparison between HFMBO and LFMBO
upper bounds.

(b) Comparison between the LFMBO’s results
and upper and lower bounds predicted by
Hashin and Shtrikman method.

Figure 4: Results comparison.

of less than 5% (Fig.4-a). A further comparison has been made between the analytical
upper bound prediction of Hashin and Shtrikman method [18], where the particle spatial
distribution is not considered and the values of Ex computed by LFMBO. It is evident
from Fig.4-b that the analytical prediction overestimates the Young’s modulus for all the
Vf and Npart investigated and the higher the fraction volume the higher the percentage
error between the analytical and numerical results (Fig.4-b).

3.3 SMBO with uncertainty results

The results obtained by the upper-level optimisation agree with the ones obtained with
the HFMBO and by LFMBO. The optimum design, found after 226 real function evalu-
ation, is xopt = (2.96, 1.61, 0.8, 5). The reader can see that in the optimum configuration,
particles will tend to assume a rather narrow distribution with respect to the x-plane
and spread in the x-axis. This means that the arrangement tends to align the particles
increasing the Overlap Area, supporting the theory proposed in the LFMBO. With this
optimal configuration, a value of Ex = 8.34E4 MPa has been determined. One can see
that this value is below the optimum find adopting the LFMBO. This result is not sur-
prising because taking in account the uncertainty and hence having a limited control on
the particle positions results less performing materials. However, adopting this method,
we were able to examine configurations with a high number of particles per RVE.

4 Conclusions

A study on the elastic behaviour of particle reinforced metal matrix composites (PRMMCs)
has been presented in this article. The effect of the particle’s arrangement, number of
particles and particle volume fraction on the upper and lower bounds of the uniaxial
Young’s modulus Ex has been investigated by means of 3D multi-particle unit cells and
optimisation techniques. A first study has been conducted with a high-fidelity model
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based optimisation (HFMBO) framework which is based on the coupling between Matlab
Global Optimisation Toolbox, Abaqus and Python . The importance of two parameters
i.e. Overlap Area and distance on x axis, which influence in a different way the value
of Ex has been addressed through a sensitivity analysis of the HFMBO’s results. By
exploring the effect of these two parameters, a more effective low-fidelity model based
optimisation (LFMBO) , characterized by adaptive control parameter, stopping criteria
and exploration through MBH based optimisation, has been proposed and the upper
bound of Ex has been extended to a wider range of particles per RVE (from 1 to 20) and
Vf (from 10% to 25%). The findings clearly indicate that the influence of the particle
fraction volume Vf is predominant i.e. the higher the Vf the higher the Ex, instead the
influence of Npart and the particle distribution has a complex behaviour their interaction.
A proposed method expresses this interaction trough an intuitive analytical parameter,
the Overlap Area. Also, the extended results show that a strong influence of particle
spatial distribution on Ex is seen in configuration with a low Npart per RVE i.e. from 1
to 5 for all the Vf investigated, while for a higher Npart the value of Ex is more stable.
The results obtained, have been compared with the theoretical upper bound predicted by
the analytical model of Hashin and Shtrikman, and the comparison has identified that
the analytical upper bound overestimates the results especially for high fraction volumes.
A sophisticated approach that relies on surrogate models have been employed to extend
the research on a wider range of configurations (Vf 10%, Npart 2-50). Employing this
method has been optimized the particle spatial distribution considering the current level
of control in manufactory processes. The use of the R package SPOT adopting Kriging as
metamodel allowed to obtain a near-optimum configuration with a limited computation
effort. This research has shown an effective methodology based on optimisation tech-
niques and FEA simulations which can be extended to a wider range of applications in
the composites field.
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