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Abstract. This paper presents a study for modelling concrete in mesoscopic level by dif-
ferent discretization methods with in-house program CaeFem. Mesoscopic level has been
chosen which let us to model different component of concrete like mortar and aggregate
separately.

Discretization method will play significant role in analysis since we assumed concrete
as a composite material. Finite element method (FEM) has been used as common dis-
cretization methods. However, usual FEM will bring dependency of the discretization on
geometry of each component in model. This is only possible with irregular meshes with
basically degraded accuracy. Furthermore, excessively fine discretizations occur to picture
the random mesoscopic geometry. Such drawbacks are already evident in 2D but tighten
in 3D. Thus, the paper aims at decoupling of mesoscopic geometry and discretization.

New discretization methods have been developed which are quite new with high po-
tential of flexibility. Three methods, regardless of geometry and topology of inclusions,
which are FEM method with regular mesh, Element Free Galerkin (EFG) method and
Isogeometric (IGA) method are studied in this paper. These methods have new phi-
losophy of solving problems with fast algorithms and help of different approaches. The
resultant behaviours are compared and verified versus obtained results from a commercial
FEM-program DIANA.

1 INTRODUCTION

The Finite Element Method has prevailed upon other numerical methods in calculation
of mechanical behaviour of components and structural mechanics for many years [1, 2, 3],
about applications in reinforced concrete structure see [4]. However, dependency on ge-
ometry of materials will bring lots of limitations specially when there are aggregates in
the model in different range of sizes and locations which will need unstructured irregular
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mesh to cover all the edges properly. To overcome this difficulties, several discretization
methods, regardless of geometry and topology of inclusions have been introduced. As an
alternative to FEM new functions have been formulated which are no longer restricted to
finite elements, e.g. EFG [5, 6, 7, 8, 9]. The omission of elements allows great flexibility
in arrangement of nodes which facilitates adaptive mesh refinement and large deforma-
tion will appear further. Another method which allows high geometric adaptability with
advantages for solving problems of structural mechanics is IGA. IGA used ”Non-Uniform
Rational B-Spilines”(NURBS) approach. NURBS are standard approaches in CAD for
description of freeform surfaces, see [10, 11, 12, 13, 14].

2 DISCRETIZATION APPROACHES

Discretization methods are classified in two different categories. First approach is
irregular mesh which follows geometry of different materials and properties are presented
by whole element. FEM is the most common method among numerical approaches which
is used by most commercial software and using irregular mesh approach as discretization
method, see Figure 1(a), shows irregular mesh model used for analysis with DIANA.

Another approach is regular mesh methods, whereby material properties are consid-
ered at integration point level, see Figure 1(b) which shows regular mesh model used with
in-house program CaeFem. In this paper, models are analyzed with three different regular
mesh methods which mentioned before and contains: Finite element methods with reg-
ular mesh, Element Free Galerkin method and Isogeometry method and compared with
irregular mesh method result from two programs.

(a) Irregular mesh - DIANA model (b) Regular mesh -CaeFem model

Figure 1: Discretized models
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3 NUMERICAL SIMULATION

3.1 3D random mesoscopic model

A 3D random mesoscopic model has been generated by a program written in Matlab
software. This model consists of aggregates and mortar while coarse aggregates are pre-
sented as spheres with randomly distributed size and location. Random distribution of
aggregate is based on Fuller’s curve. This curve can be described by a simple equation
given below and presented in Figure 2.

P (d) = (
di
D

)n (1)

Where as: P (d) is Cumulative percentage passing a sieve with the diameter di. di is
Diameter of aggregate, D is Maximum aggregate grain size and n is Exponent with a
typical value between 0.45 and 0.70 (assumed as 0.5). In this study, the minimum and
the maximum size of aggregate’s diameter are considered to be 2 and 16 mm respectively
and n as 0.5 with 19 sieves. Figure 3(a) shows aggregate distribution in a 3D mesoscopic
model which is calculated with Equation 1 and based on Fuller’s curve shown in Figure
2. In this model each of three dimensions of the model is equal to 60 mm.
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Figure 2: Grading of aggregate based on Fuller’s curve gradation

3.2 2D Sections random mesoscopic model

As mentioned earlier, 2D simulation will provide reliable results with less complications
in modeling. An example for 2D section out of 3D random mesoscopic model is shown in
Figure 3(b).
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(a) (b)

Figure 3: (a) 3D random mesoscopic model generated with matlab code written by Tino Kühn [15] and
(b) 2D section - random mesoscopic model consist of mortar and aggregates

4 IN-HOUSE PROGRAM CAEFEM

CaeFem has been developed in Python to solve numerical problems. It is under devel-
opment to include different discretization approaches as well as various nonlinear material
models. In this paper, three 2D sections have been selected in order to investigate the
effect of different discretization methods on the final results. Figure 4 shows these 2D
sections.

(a) Model 1 - z=0 mm (b) Model 2 - z=15 mm (c) Model 3 - z=30 mm

Figure 4: 2D sections generated from 3D-Random mesoscopic model

5 MODEL SPECIFICATION

These three models, are subjected to the same type of loading, boundary conditions
and material properties. Table 1 shows the reference material properties and Figure 5 (a)
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and (b) show loading and boundary condition assigned to the 2D models. Plane stress
material model is used and all materials are assumed to behave linearly. Model is fixed
on bottom edge and tension load is applied on top edge as prescribed deformation equal
to 0.01 mm in vertical direction.

Table 1: Material properties

Aggregates Mortar

Young’s modulus 60000 MPa 20000 MPa

Poisson ratio 0.15 0.2

(a) Loading (b) Boundary condition

Figure 5: Schematic representation of 2D model, subjected to the prescribed displacement and static
boundary conditions

6 ANALYSIS RESULTS AND PARAMETER STUDY

For parameter study and for each section, three different range of mesh sizes are
checked, Figure 6 shows nine models used in sensitivity analysis. DIANA is a well-known
commercial FEM software and used for validation of results [16]. Tables 2, 3 and 4 show
results of each analysis in detail. Figures 7, 8 and 9 show comparison results for models
with different numerical discretization approaches and with different number of degree
of freedom. Total reaction force is the parameter used for results comparison in vertical
direction. It is observed that there is a good agreement in the results obtained from
different discretization methods.
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(a) Model 1 - Coarse mesh (b) Model 1 - Medium mesh (c) Model 1 - Fine mesh

(d) Model 2 - Coarse mesh (e) Model 2 - Medium mesh (f) Model 2 - Fine mesh

(g) Model 3 - Coarse mesh (h) Model 3 - Medium mesh (i) Model 3 - Fine mesh

Figure 6: 2D section models used for sensitivity analysis

From Figures 7, 8 and 9 it is observed that IGA is most conservative method among
different discretization methods. The area ratio of aggregates in 2D models are 0.32 , 0.28
and 0.26 for model 1 , model 2 and model 3 respectively. By using elastic material models
in these three reference cases, it is observed that the total reaction forces are decreasing
as the area ratio of aggregates is decreasing.
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Table 2: Results comparison / Model 1 - z = 0 mm

Model 1 Number Total reactions Total reactions Erorr

Z = 0 mm of Dof Fx[N ] Fy[N ] Percentage

C
o
ar
se

m
es
h

DIANA(Irregular mesh/FEM) 3660 -0.81 -380.89 -

CaeFem(Irregular mesh/FEM) 3660 -0.84 -381.44 0.14%

CaeFem(Regular mesh/FEM) 3872 -0.59 -397.93 4.47%

CaeFem(Regular mesh/EFG method) 3872 -0.60 -397.95 4.48%

CaeFem(Regular mesh/IGA method) 3872 -0.72 -432.47 13.54%

M
ed

iu
m

m
es
h DIANA(Irregular mesh/FEM) 7774 -0.88 -383.22 -

CaeFem(Irregular mesh/FEM) 7774 -0.87 -383.51 0.08%

CaeFem(Regular mesh/FEM) 7442 -1.06 -395.19 3.13%

CaeFem(Regular mesh/EFG method) 7442 -1.06 -395.18 3.12%

CaeFem(Regular mesh/IGA method) 7442 -1.00 -431.01 12.47%

F
in
e
m
es
h

DIANA(Irregular mesh/FEM) 14692 -0.85 -384.17 -

CaeFem(Irregular mesh/FEM) 14692 -0.85 -384.34 0.04%

CaeFem(Regular mesh/FEM) 15138 -0.65 -392.00 2.04%

CaeFem(Regular mesh/EFG method) 15138 -0.74 -392.47 2.16%

CaeFem(Regular mesh/IGA method) 15138 -0.83 -427.99 11.41%
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Figure 7: Results comparison / Model 1 - z = 0 mm
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Table 3: Results comparison / Model 2 - z = 15 mm

Model 2 Number Total reactions Total reactions Erorr

Z = 15 mm of Dof Fx[N ] Fy[N ] Percentage

C
o
ar
se

m
es
h

DIANA(Irregular mesh/FEM) 4310 -4.37 -369.52 -

CaeFem(Irregular mesh/FEM) 4310 -4.41 -370.02 0.13%

CaeFem(Regular mesh/FEM) 3872 -5.82 -385.18 4.24%

CaeFem(Regular mesh/EFG method) 3872 -5.84 -385.25 4.26%

CaeFem(Regular mesh/IGA method) 3872 -6.03 -419.04 13.40%

M
ed

iu
m

m
es
h DIANA(Irregular mesh/FEM) 6776 -4.54 -368.92 -

CaeFem(Irregular mesh/FEM) 6776 -4.56 -369.34 0.11%

CaeFem(Regular mesh/FEM) 7442 -5.36 -381.63 3.45%

CaeFem(Regular mesh/EFG method) 7442 -5.36 -381.62 3.44%

CaeFem(Regular mesh/IGA method) 7442 -5.42 -415.89 12.73%

F
in
e
m
es
h

DIANA(Irregular mesh/FEM) 15922 -4.80 -372.08 -

CaeFem(Irregular mesh/FEM) 15922 -4.80 -372.24 0.04%

CaeFem(Regular mesh/FEM) 15138 -5.03 -378.70 1.78%

CaeFem(Regular mesh/EFG method) 15138 -5.03 -378.72 1.78%

CaeFem(Regular mesh/IGA method) 15138 -5.53 -414.32 11.35%

4000 8000 12000 16000

−430

−400

−370

Number of degree of freedom

T
ot
a
l
re
a
ct
io
n
fo
rc
e
-
F
y

in
N

DIANA(Irregular mesh/FEM) CaeFem(Irregular mesh/FEM)

CaeFem(Regular mesh/FEM) CaeFem(Regular mesh/EFG method)

CaeFem(Regular mesh/IGA method)

Figure 8: Results comparison / Model 2 - z = 15 mm
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Table 4: Results comparison / Model 3 - z = 30 mm

Model 3 Number Total reactions Total reactions Erorr

Z = 30 mm of Dof Fx[N ] Fy[N ] Percentage

C
o
ar
se

m
es
h

DIANA(Irregular mesh/FEM) 4348 -1.98 -367.49 -

CaeFem(Irregular mesh/FEM) 4348 -1.97 -368.00 0.14%

CaeFem(Regular mesh/FEM) 3872 -2.21 -380.91 3.65%

CaeFem(Regular mesh/EFG method) 3872 -2.23 -380.96 3.66%

CaeFem(Regular mesh/IGA method) 3872 -2.64 -414.98 12.92%

M
ed

iu
m

m
es
h DIANA(Irregular mesh/FEM) 6918 -1.99 -368.74 -

CaeFem(Irregular mesh/FEM) 6918 -1.99 -369.03 0.08%

CaeFem(Regular mesh/FEM) 7442 -1.93 -378.46 2.64%

CaeFem(Regular mesh/EFG method) 7442 -1.93 -378.45 2.64%

CaeFem(Regular mesh/IGA method) 7442 -2.36 -413.35 12.10%

F
in
e
m
es
h

DIANA(Irregular mesh/FEM) 15576 -2.02 -369.96 -

CaeFem(Irregular mesh/FEM) 15576 -2.02 -370.10 0.04%

CaeFem(Regular mesh/FEM) 15138 -2.25 -376.73 1.83%

CaeFem(Regular mesh/EFG method) 15138 -2.25 -376.75 1.84%

CaeFem(Regular mesh/IGA method) 15138 -2.29 -411.43 11.21%
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Figure 9: Results comparison / Model 3 - z = 30 mm
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7 CONCLUSIONS

DIANA and CaeFem provide same result with FEM-Irregular mesh dicretization method
which proves the accuracy of the program. EFG method has almost the same result as
FEM with regular mesh, however, EFG needs more time to perform the analysis. While
mesh becomes finer, results are converging and less error percentage in large NDOF.
These 2D models are cross sections out of 3D mesoscopic model, total reaction forces in
horizontal direction is small since deformation is applied in vertical direction and does not
follow special pattern with respect to discretization methods and mesh sizes. In the next
phase of this research, our focus will be towards introducing fiber elements in 2D models
and upgrading our reference 2D sections to 3D models. Moreover, we will consider the
effect of bonding between fiber elements and cementitious materials.
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