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Abstract. Understanding the failure mechanisms of highly heterogeneous materials re-
quires a detailed knowledge of the micro-structure and the underlying material proper-
ties. For bone, this level of information can be obtained from high-resolution computed
tomography (CT). In finite element analysis (FEA), the amount of structural information
combined with nonlinear material models, calls for highly efficient and parallel software
tools. In order to provide such a solver, ParOSol, an existing high-performance linear
solver, was extended to incorporate a simple damaged based material model. The FEA
solution is found by iteratively applying the linear solver. The new solver was tested on
several structures: A simple cuboid for numerical verification, a trabecular bone cube for
optimizing the solver parameters and a radius segment (688 million degrees of freedom)
for performance evaluation.

1 INTRODUCTION

The global behaviour of heterogeneous materials strongly depends on its micro struc-
ture. Therefore, simulations are based on detailed knowledge of the underlying architec-
ture. Especially in case of a nonlinear material behaviour, immense computational power
and efficient numerical tools are required.

One field of application for such studies is bone biomechanics. Trabecular bone is a
highly hierarchical material. It consists of fine substructers (∼ 0.1mm diameter) which
can be resolved by high-resolution µCT imaging devices. Simulations of macro-sized bone
segments are necessary to better understand failure mechanisms. This leads to two dif-
ferent approaches for investigating such problems: homogeneous FE models using spatial
averaging or µFE models using the full resolution µCT scan. The first approach requires
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only low computational resources. However, the material model needs to account for the
loss of structural information to provide meaningful results. The second approach requires
much less assumptions and simpler material models. However, typical meshes have mul-
tiple hundred million to a couple of billion degrees of freedom (dof). Thus, simulations
are computationally much more demanding and require efficient parallel solvers.

Many different implementations exist which solve FE problems. However, most of
them account for linear material behaviour only or are limited to a couple of million
(mio) elements [1, 2, 3]. To our knowledge, three solvers are able to simulate such large
models with reasonable computational effort: ParFE [4], FEAP [5] and ParOSol [6, 7].
Originally only for linear problems, ParFE has already been adapted for nonlinear con-
stitutive models by Christen et al. [8]. It scales well with the number of CPUs but shows
convergence problems above about 100 mio elements. Adams et al. [9] have extended the
serial code FEAP using a parallelisation layer. However, the full version is not publicly
available. A similar version is also used by Nawathe et al. [10] for large scale simulations.
Later on, ParOSol was developed by Flaig et al. [6]. It is a highly efficient code for linear
elastic FE simulations with a low memory footprint. ParOSol is freely available under an
open-source licence and can use thousands of CPU cores in parallel. Furthermore, it uses
µCT images directly to generate the FE mesh.

To gain a deeper understanding of the structural behaviour of bone with little struc-
tural averaging, a highly-parallel and efficient finite element analysis (FEA) software with
a nonlinear material model is needed. In this work, ParOSol is extended to the nonlin-
ear range by adding a simple damage based material model. The new implementation,
ParOSolNL, will make nonlinear simulations of large digitized structures (e.g. bones) at
micro scale feasible, while keeping its numerical efficiency.

2 METHODS

2.1 Theoretical background

The starting point of a CT based FEA simulation is a micro structure which is divided
into small elements – the finite elements. Since ParOSol uses direct voxel to element
conversion, eight-noded hexahedrons are generated. Assuming small displacements and
strains, this implies that the following linear system of equations is solved for the unknown
nodal displacements Uj:

Fi = KijUj. (1)

The stiffness matrix Kij is a measure of the structural stiffness and depends on the micro-
structure and tissue properties (e.g. Young’s modulus). The nodal forces Fi represent
the force boundary conditions and are equal to zero for all internal nodes. In this work,
geometric nonlinearities are neglected.

The global force is obtained as the sum of all nodal forces on the boundary planes. In a
nonlinear damage based material simulation, the load is applied incrementally (i.e. ∆Fi)
to obtain the load–displacement curves as well as the ultimate load which characterizes
the global strength of the geometry. Additionally, stress, strain and other quantities can
be computed for each element.
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2.2 Material model

A simple material model is used which allows damage and fracture of elements. It
consists of three regions: a linear-elastic, a damaged and a fractured region (Figure 1,
left). The material is linear-elastic until the stress exceeds a critical value. This leads to
a reduced Young’s modulus E by introducing a scalar damage variable D:

E = (1−D)E0, (2)

where E0 is the initial tissue Young’s modulus. If D is higher than the critical damage
Dc, the material fails and E is set to zero. No plasticity is involved.

In one dimension, the critical tensile (σ+
0 ) and compressive stress (σ−

0 ) are scalars. In
three dimensions, the critical stress is represented by a damage surface (Figure 1, right).
A quadric damage surface as proposed in [11] is used. The shape of the surface is defined
by the parameter ζ0. If a stress state lies outside of the damage surface, D is determined
by projecting the stress back onto the damage surface.
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Figure 1: Left: Sketch of the one dimensional material model showing the linear-elastic (1), damaged
(2) and fractured (3) region. Right: In three dimensions, the critical stress σ±

0
is replaced by a damage

surface.

The following bone tissue material parameters are used: initial isotropic Young’s mod-
ulus E0 = 10GPa [12, 13], Poisson’s ratio ν = 0.3. The damage surface is given by the
tissue yield stress in tension σ+

0 = 41MPa and compression σ−
0 = 83MPa [14] and the

shape parameter ζ0 = 0.3. The critical Damage is Dc = 0.6 [15].

2.3 Implementation

Since ParOSol can only solve linear-elastic problems, it is extended to nonlinear ma-
terial behaviour by applying an incremental procedure (Figure 2). The solution of each
load increment is found by repeatedly applying the linear solver of the original ParOSol
(line 4). During each iteration, the Young’s moduli of the structure are kept constant and
the stress state of each element is obtained. Due to the applied local damage approach,
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the damage state of an element depends only on the local stress. Thus, for each element,
the distance to the damage surface Y (σT ) is calculated (line 6) and D is adapted (lines
8). In case of material failure, E is set to a small fraction of E0 (line 9). This leads
to a better better convergence compared to setting E = 0. After E of each element is
changed according to its current stress state, the new linear problem is solved to ensure
equilibrium. A converged solution for the increment is found when a global and local
steady state is reached (line 12).

Data: Model
Result: Ultimate load

1 while maximum load not reached do

2 Apply increment of load;
3 while not converged do

4 Solve linear problem F = KU , get σT;
5 foreach element do
6 Evaluate Y (〈e〉σT);

7 if Y (〈e〉σT) > 0 then

8 Increase Damage (back projection);
9 Reduce Young’s modulus;

10 end

11 end

12 Check convergence;

13 end

14 end

Figure 2: Nonlinear solving procedure.

The local damage approach helps to minimize the interdependence of the parallel com-
puting processes since the adaptation of E can be done independently. Communication
between processes is only needed during the application of the linear solver and to check
if a converged state is found.

Two convergence criteria are applied: The local change in damage of each element,
〈e〉R1, from iteration (i− 1) to iteration (i),

〈e〉R1 =
〈e〉D(i)

n −
〈e〉D(i−1)

n ≤ 100δ (3)

and the average change in damage per element, R2,

R2 =

∑
all elements

〈e〉R1

N
< δ. (4)

δ is the convergence tolerance. Here,
∑

all elements denotes the sum over all elements and
N is the number of elements for which the damage has changed in the current iteration.
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2.4 FEA model

ParOSolNL is based on unstructured grids, initial tissue material properties and exter-
nal displacement boundary conditions. Three different model types are investigated: (M1)
a homogeneous cuboid for quantitative verification, (M2) a trabecular (virtual) biopsy for
parameter optimization and (M3) a section of a human radius for performance measure-
ments. Model 1 is a homogeneous truss with uniform displacement boundary conditions
to mimic a one dimensional stress state. A loading–unloading cycle is applied. Model 2
and 3 are created from a µCT scan of a radius with a resolution of 16.4 µm. For model
2, a cuboid of 150 voxels side length was cropped from the centre of the radius. The
resulting specimen consists only of trabecular bone, has approx. 0.6 mio elements (2.24
mio dof) and a bone volume density of 19%. For model 3, a slice of 416 voxels height
was cropped from the centre of the radius resulting in approx. 213 mio elements (688 mio
dof). Compression boundary conditions were applied: The bottom plane was fixed in all
directions. On the top plane, displacements in the negative z-direction were applied while
x- and y-directions were fixed.

2.5 Performance measurements

The reported results were obtained using two different compute servers: (S1) a small
shared memory system for testing and parameter study using models M1 and M2 (2× 12
cores Intel Xeon E5-2697 @2.70GHz, 384 GB RAM) and (S2) Vienna Scientific Clus-
ter (VSC) for performance evaluation on model M3 (2 × 8 cores Intel Xeon E5-2650v2
@2.6GHz, 64 GB RAM per node, Intel QDR-80 dual-link high-speed InfiniBand).

When comparing two simulation results, the relative error δFrel is defined via the
maximum force of a reference force–displacement curve:

δFrel =
F (Uref)− Fmax

Fmax

, (5)

where Uref and Fmax are the displacement and force at the maximum point of the reference
curve.

3 RESULTS

The results for model M1, the quasi-one dimensional structure, show excellent agree-
ment with the analytical solution (Figure 3, left). The stress–strain path correctly follows
the loading and unloading cycle from tension over unloading to failure in compression.
The material shows a homogeneous stress and damage distribution.
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Figure 3: Left: σ–ε for a homogeneous truss (M1) in loading–unloading cycle: Simulation with
ParOSolNL (dots), analytic results (solid line). Right: Global force–displacement curve of a trabecu-
lar bone sample (M2) for different increment sizes. The colours in the models indicate the damage.

Model M2 was compressed until ultimate load. The resulting damage distribution
shows a realistic pattern (Figure (3), right). The performance of the nonlinear solver
depends strongly on the solver control parameters. Using model M2, three solver control
parameters were identified that have a major impact on the run time of the nonlinear
simulation: (1) Lowering the linear convergence tolerance from 10−8 to 10−5 leads to a
more than 4 times shorter run time (Table 1). Until the ultimate stress, the relative error
in the global stress is still acceptable using a linear convergence of 10−5 (≤ 0.07%). (2)
The size of the load increments has no large effect on the ultimate load (Figure 3, right)
but on the post-yield behaviour. The run times for different increment sizes differ by less
than 10%. (3) The ratio (Efracture/E0) between failed and initial tissue Young’s modulus
greatly affects the convergence rate (Table 2). The run times can be decreased by a factor
of two by increasing Efracture from 0 to 10−3E0. To reduce computational requirements
(Efracture/E0) = 10−3 is chosen for performance tests, this comes with an error of up to
7% in the ultimate load.

Table 1: Total run time (using 24 processes on compute server S1) and relative error in the ultimate
load, δFrel, for different combinations of linear and nonlinear convergence tolerances. The grey row was
chosen for Model M3.

linear tolerance nonlinear tolerance run time[s] δFrel[%]
10−8 10−7 4930 reference
10−7 10−6 2744 −0.02
10−6 10−5 1562 −0.03
10−5 10−4 1043 −0.07
10−4 10−3 891 −0.26
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Table 2: Total run time (using 24 processes on compute server S1) and relative error in the ultimate
load, δFrel, for different (Efracture/E0). Due to limited computational resources, the grey row was chosen
for model M3.

Efracture/E0 run time[s] δFrel[%]
0 5521 reference

10−5 4190 −4.2
10−4 4431 −4.7
10−3 2744 −6.9
10−2 1525 −15.1

The performance of the nonlinear solver was investigated using model M3, a radius
section with approx. 213 mio elements (Figure 4). The nonlinear simulation used 5650
single-core hours and approx. 76 GB of total memory on 256 cores. The reported memory
is computed as the average resident set size (RSS) per process times the number of cores.

Figure 4: Simulation result for the radius segment (M3) at the ultimate stress point. Left: 3-dimensional
image (colours indicate von Mises stress). Right: Damage distribution for small segment (3-dimensional
view at top, central layer at bottom).

A detailed investigation of the total run time shows that over 94% of the total time
was spend in the linear solver (Figure 5, left). The nonlinear overhead, i.e. the loop over
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all elements and the application of the constitutive model, takes less than 5% of the total
time. In addition, strong scaling of one increment where no damage is accumulated, shows
that the linear solver scales very good (Figure 5, right). Preprocessing and I/O do not
scale, but are only done once per simulation or increment, respectively. The completion of
a nonlinear analysis takes more than one order of magnitude more time than one linear-
elastic analysis. This is due to the high number of iterations needed until a converged
state is found.

Figure 5: Left: Run time per increment for the radius section (M3, 688 mio dof) using 256 cores. Right:
Strong scaling of one linear increment.

4 DISCUSSION

A simple nonlinear material model has been implemented into the existing framework
ParOSol and successfully tested. The correct implementation of the material model was
verified using a quasi single–element test with a homogeneous cuboid under uniform uni-
axial compression. Nonlinear analysis of a small trabecular biopsy and a radius section
showed qualitatively plausible results. Damage occured primarily at thin parts of the
structure and at imperfections, e.g. holes in the cortex.

Using a radius section with 213 mio elements (688 mio dof), it has been proven that
large simulations are feasible using the new implementation. The linear solver scales very
well up to the tested 1024 CPU cores, comparable to the original ParOSol [6]. Although
only little overhead is added in each iteration by the application of the nonlinear material
model, a large number of iterations is needed until convergence is reached.

The performance of the new solver strongly depends on the solver control parameters.
By carefully choosing the convergence tolerance and Efracture, the run time can be consid-
erably reduced. For Efracture this is due to the preconditioner of the linear solver: ParOSol
uses a geometric multigrid algorithm to precondition the system. The larger the modulus
differences, the worse is the preconditioned system and thus the solving time increases.
Due to very limited computational resources, we chose solver parameters that lead to an
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error of approx. 10%. This dependence needs to be taken into account when comparing
to literature.

Only two comparably large simulations are known to the authors: One simulation
of femura [10] and one of vertebra samples [16]. The reported run times and memory
requirements per sample are listed in Table 3. A direct comparison of the performance
is not possible since [10] and [16] use a geometrically and material nonlinear framework,
while we incorporated only material nonlinearity. Furthermore, the implemented material
models differ and the solver control parameters are not known.

Taking all this into account, the new ParOSolNL has at least a comparable perfor-
mance. One major advantage is the low memory requirements. ParOSolNL needs approx.
76 GB for the simulation of a model containing 213 mio elements which is more than 3
orders of magnitude less than reported in [10]. This low memory footprint is due to the
completely matrix-free implementation. It allows the simulation of models with 55 mio
elements on an average shared memory server comparable to S1.

Table 3: Performance of large material (m) and / or geometric (g) nonlinear simulations in literature.

Reference Model size CPU hours # cores memory nonlinearity
[mio elements]

Nawathe et al.[10] 120 (dof: 400) 44.000 4096 120 TB m, g
Fields et al.[16] 485 30.000 2000 unknown m, g
ParOSolNL 213 (dof: 688) 5650 256 76 GB m 1

1 The reported performance strongly depends on the value of the solver control parameters.

This study has a number of limitations: First, the reported run times and memory
requirements were measured only once due to limited resources. Although the compute
nodes on server S2 were reserved for the jobs, the storage servers are shared resources.
Furthermore, the run time depends on the layout of the used compute nodes, which were
allocated automatically to the jobs. Second, we use a simple algorithm which iteratively
applies the linear solver of ParOSol. A large number of iterations is needed to reach a
converged state. A reduction of the number of iterations could possibly be achieved by
implementing a Newton–Raphson based algorithm. However, it is likely that the abrupt
change of the Young’s modulus, when fracture occurs, would lead to convergence problems.
Third, no geometric nonlinearity was considered in this study. Large deformations occur
mainly when elements fracture and parts of the structure fail. Although we are mainly
interested in the results until the ultimate yield point, there were already about 1% of the
elements fractured. Thus, the linear approximation of strains and displacements can lead
to a perceptible error. Fourth, we use a simple material model which does not include
hardening, plasticity and anisotropy. The material parameters are taken directly from
literature for comparable material models without direct validation based on experiments.
Thus, the next step will be to test the validity of our approach in direct comparison with
experimental data.

The implementation of a simple nonlinear material model in an efficient linear-elastic
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FEA framework enables simulations of large digitized structures, e.g. bones. The new
implementation shows a good parallel performance, comparable to existing codes, and a
lower memory footprint . Detailed insight into the local failure pattern will be helpful for
a better understanding of the complex failure behaviour of bone.
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