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Abstract. Meteorological data assimilation is formulated as a large-scale nonlinear op-
timization problem. At each search, the optimization algorithm requires the gradient of
a cost function. The gradient is computed efficiently by the adjoint program. A source
computer program that simulates the atmospheric flow is differentiated in reverse mode
by the automatic differentiation tool TAPENADE, and the adjoint program is generated.
In this paper, we improve the differentiability of the source program in order to gener-
ate the more exact tangent program. The generated tangent and adjoint programs are
validated by dot product test. Preliminary numerical experiments are presented for data
assimilation.

1 INTRODUCTION

Meteorological data assimilation is formulated as a large-scale nonlinear optimization
problem [1, 2]. At each search, the optimization algorithm requires the gradient of a
cost function. We compute the gradient by using the adjoint program generated by the
automatic differentiation tool TAPENADE; it differentiates in reverse mode a source
computer program that simulates the atmospheric flow. In [2], we presented numerical
experiments for a three-dimensional downburst. However, the optimization result was
not satisfactory. This is because the generated tangent and adjoint programs were not
perfect.

In this paper, we identify the problems, and modify the source simulation program to
solve the problems. We validate the tangent and adjoint programs which the AD tool gen-
erates. Then, using the adjoint program, the optimization is done for the meteorological
data assimilation. Preliminary numerical experiments are presented.

2 SOURCE PROGRAM

The source program simulates the atmospheric flow [3]. The governing equations con-
tains prognostic equations for the air velocity, pressure, potential temperature, water



Yasuyoshi Horibata

vapor, rainwater, cloud water, and subgrid-scale kinetic energy. The finite difference
scheme integrate these equations.

In this paper, a downburst is simulated using the source program. A downburst is a
strong downdraft which induces an outburst of damaging winds on or near the ground.

The simulation domain is 20 km in both horizontal directions and 10 km in the vertical.
The origin of the coordinate system is located at the center of the base of the simulation
domain. The initial undisturbed state is isentropic ( θ0 = 300K) and has zero relative
humidity. The initial wind speed is assumed to be zero.

A downburst is initiated by introducing a distribution of rainwater.
Simulation is run to 6 minutes using the grid intervals ∆x = ∆y = 1250m, ∆z = 625m

and the time step ∆t = 5s.
Figure 1 shows the evolution of the flow field, whereas Figure 2 shows the evolution of

the flow and rainwater fields in a vertical plane. Figures 3 ,4, and 5 show the water vapor,
potential temperature, and pressure deviation fields in the vertical plane, respectively.
The latent heat is required from the ambient air while the rainwater is evaporating. As
a result, the air becomes colder and heavier, and yields a downdraft, which achieves its
maximum velocity of 21 m/s 4 minutes after the initiation. Then, the downdraft hits the
ground and diverges horizontally. The horizontal velocity becomes as high as 17 m/s near
the ground 6 minutes after the initiation.

3 VALIDATION

3.1 Differentiability

The source program has the instruction

a = b ** 0.525

For the instruction, in the tangent mode, the AD tool generates the differentiated instruc-
tion:

ad = 0.525 bd/b ** 0.475

This returns NaN if x is zero.
In [1, 2], in order to circumvent this singularity, we used Lagrange interpolation; using

four points

x1 = 0.0, x2 = 0.5 × 10−2, x3 = 1 × 10−2, x4 = 1.5 × 10−2

in the interval 0 ≤ x ≤ 1.5× 10−2, we approximated the function x0.525 by constructing a
polynomial of degree 3 that matches the function at the four points. The maximum value
of x is around 1.5 × 10−2.

On the other hand, in the present paper, we use Hermite interpolation only in the
neighborhood of x = 0. We use onlyt two data points

x1 = 0.0

x2 = 10−4

2
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The value of the function x0.525 is used for the value of the function yi at each data point:

y1 = 0.0

y2 = x0.525
2

The derivative y′
1 at x1 is set to zero, whereas the derivative of the function x0.525 is used

for the derivative y′
2 at x2:

y′
1 = 0.0

y′
2 = 0.525x−0.475

2

We construct a polynomial of degree 3 that matches all the data. Figure 6 shows the
curves of the function x0.525 and the interpolation. The Hermite interpolation hardly
changes the simulation results obtained by the original source program which uses the
function x0.525.

3.2 Differentiated programs

The source program is differentiated by Tapenade. We validate the generated differ-
entiated programs [4].

Given a vector argument X ∈ Rm, a source computer program computes some vector
function Y = F (X) ∈ Rl. The AD tool generates a new source program that, given
the argument X, computes some derivatives of F ; the output of the tangent program is
Ẏ = F ′(X) × Ẋ, whereas the output of the adjoint program is X̄ = F ′∗(X) × Ȳ . Here,
F ′(X) is the Jacobian of F (X).

Introducing a function g of a scalar variable h: g(h) = F (X + h × Ẋ), we obtain

lim
ϵ→0

F (X + ϵ × Ẋ) − F (X)

ϵ
= g′(0) = F ′(X) × Ẋ = Ẏ (1)

Thus, we can approximate Ẏ by running F on X and on X + ϵ × Ẋ.
Taking the output Ẏ of the tangent program as the input Ȳ of the adjoint program,

we obtain

(X̄ · Ẋ) = (F ′∗(X) × Ẏ · Ẋ) = Ẏ ∗ × F ′(X) × Ẋ = Ẏ ∗ × Ẏ = (Ẏ · Ẏ ) (2)

In our source program, X is the initial conditions of the air velocity, pressure, potential
temperature, water vapor, rainwater, cloud water, eddy mixing coefficient, whereas Y is
the corresponding fields after 6 min; m = l = 37632.

For the simulation result shown in 2, we compute three norms. Table 1 compares the
three norms. The tangent norm (Ẏ · Ẏ ) and the adjoint norm (X̄ · Ẋ) match completely
up to the last digit, whereas the norm obtained with Divided Differences (F (X +ϵ×Ẋ)−
F (X))/ϵ matches up to about half the machine accuracy.

3
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Table 1: Comparison of three norms (ϵ = 10−10)

Divided Differences (F (X + ϵ × Ẋ) − F (X))/ϵ norm 0.153194571523625D+21

Tangent norm (Ẏ · Ẏ ) 0.153194435697253D+21

Adjoint norm (X̄ · Ẋ) 0.153194435697253D+21

4 DATA ASSIMILATION

4.1 Cost function

The vector function F (X) is a composition of vector functions:

F = fN ◦ fN−1 ◦ · · · ◦ f2 ◦ f1 (3)

where each fn is the elementary function, and

Xn = fn(Xn−1) (n = 1, 2, · · · , N) (4)

Here, Xn is the fields at time tn = n∆t, and

Y = F (X) (5)

with

X = X0 (6)

Y = XN (7)

The chain rule gives the Jacobian F ′(X):

F ′(X) = f ′
N(XN−1) × f ′

N−1(XN−2) × · · ·× f ′
2(X1) × f ′

1(X0) (8)

The cost function is taken as

J =
N∑

n=0

Hn(Xn) (9)

where Hn(Xn) is a scalar measuring the distance between Xn and its observations available
at time tn = n∆t. The available observations are assumed to be distributed over a limited
time interval [t0, tN ]. For given initial conditions X0 and for the corresponding outputs
Xn of the source program, the cost function is evaluated. Thus, the cost function is a
function of the initial conditions X0, and its gradient with respect to X0 is [5]

∇X0J =
N∑

n=1

f ′∗
1 (X0) × · · ·× f ′∗

n−1(Xn−2) × f ′∗
n (Xn−1) ×∇XnHn(Xn) + ∇X0H0(X0) (10)

In assimilation of meteorological observations, the cost function is minimized. The op-
timization problem has thousands or millions of variables. Modified L-BFGS-B algorithm
[6, 7] is employed in order to solve this problem. At each search, the gradient of the cost
function is computed from (10) using the adjoint program.
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4.2 Preliminary numerical experiments

Numerical experiments are presented for a three-dimensional downburst.
We take Hn(Xn) as

Hn(Xn) = cu

∑

i,j,k

(un
ijk − uob n

ijk )2 + cqr

∑

i,j,k

(qn
r ijk − qob n

r ijk)
2 (11)

where un
ijk and qn

r ijk are the x component of the air velocity and the rainwater, respec-
tively, at the grid point (i, j, k) and time tn, and uob n

ijk and qob n
r ijk are their corresponding

observations, respectively; the coefficients cu and cqr are weights..
Out of the simulation result shown in 2 , the x component of the air velocity and the

rainwater are assumed to be observations from a Doppler radar.
In order to estimate the initial conditions used for the simulation, the modified L-

BFGS-B algorithm solves the large-scale optimization problem. Starting from the initial
guess, the algorithm repeats search until it reaches the optimal point. Figure 7 shows the
rainwater field of the starting point used for the optimization. All the other fields of the
starting point are the same as ones used in the simulation.

Figure 8 shows the convergence history of the optimization. The cost function decreases
by a factor of 10−6 after 300 iterations. On the other hand, in [2] , it decreased only by
a factor of 10−2.

Figures 9, 10, 11, 12, and 13 compare the rainwater, water vapor, potential tempera-
ture, pressure, and flow fields recovered by the optimization and the corresponding ones of
the initial conditions used in the simulation in the x−z cross section at y = 0, respectively.

5 CONCLUSIONS

- The source program is modified, and is differentiated in tangent and reverse modes
by the AD tool TAPENADE. Three norms computed by the programs are roughly
the same; especially, the tangent norm and the adjoint norm are identical. The
modification hardly affects the simulation results.

- In the data assimilation, the gradient of the cost function with respect to the initial
conditions is calculated by using the generated adjoint program. The cost function
decreases by a factor of 10−6.

- The recovered fields agree reasonably with the initial condition used for producing
pseudo observations.
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Figure 1: Evolution of the flow field after the downburst initiation.
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Figure 2: Evolution of the flow and rainwater fields after the downburst initiation in the x − z cross
section at y = 0.
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Figure 3: Evolution of the water vapor field after the downburst initiation in the x − z cross section at
y = 0.
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Figure 4: Evolution of the potential temperature field after the downburst initiation in the x − z cross
section at y = 0.
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Figure 5: Evolution of the pressure deviation field after the downburst initiation in the x − z cross
section at y = 0.
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Figure 6: The function x0.525 and Hermite interpolation
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Figure 7: The rainwater field in the x − z cross section at y = 0 of the starting point used for the
optimization.
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Figure 8: Convergence history of the optimization
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Figure 9: The rainwater field recovered by the optimization (left) and the corresponding one of the
initial conditions used in the simulation (right) in the x − z cross section at y = 0.
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Figure 10: The water vapor field recovered by the optimization (left) and the corresponding one of the
initial conditions used in the simulation (right) in the x − z cross section at y = 0.
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Figure 11: The potential temperature field recovered by the optimization (left) and the corresponding
one of the initial conditions used in the simulation (right) in the x − z cross section at y = 0.
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Figure 12: The pressure deviation field recovered by the optimization (left) and the corresponding one
of the initial conditions used in the simulation (right) in the x − z cross section at y = 0.
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Figure 13: The flow field recovered by the optimization (left) and the corresponding one of the initial
conditions used in the simulation (right) in the x − z cross section at y = 0.
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