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Abstract. In this paper, we present the hydroelastic assessment of high-speed flat plate
slamming events. The complex water entry problem involves the interaction of the struc-
ture with a dense fluid and time-dependent wetness. While the majority of the studies of
this problem have been focused on the pure vertical motion, in this study, we primarily
focus on the effects of large forward speed on the hydroelastic response of the plate.

The fluid-structure interaction (FSI) methodology used in this work is based on a
tightly coupled approach between computational fluid dynamics (CFD) and finite ele-
ment method (FEM). For the fluid domain, CFD with the volume-of-fluid (VoF) method
is applied to solve the air-water interface. For the structure simulation, the commercial
software Abaqus is used to discretize the structure with linear dynamic finite elements,
and modal decomposition is applied to the FEM model to decoupled and truncated the
structural system.

The study examines the hydrodynamic performance and global response of two flat-
plate structural arrangements and investigates the importance of three-dimensional flow
effects. Rigid body and two-way coupled simulations are presented to investigate and
assess the hydroelastic effects of hydrodynamic loading during slamming events.

1 Introduction

The analysis of water entry problems is complex since they involve high localized
pressure, complex free surface topology and fluid-structure interaction. In this work, we
focus on three interdependent aspects of this slamming problem: the importance of three-
dimensional effects on the jet root evolution, the time-dependent wetness that is part of
the slamming event, and lastly, the deformation of the structure due to the hydrodynamic
loading.
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The numerical results for one of the structural arrangements are compared to a the-
oretical two-dimensional self-similar solution developed by [1]. This theoretical solution
is based on a potential flow approach of an ideal incompressible fluid, assuming constant
vertical and horizontal velocities during the impact case. The numerical results are fur-
ther validated using experimental data presented in [2]. The experimental campaign was
conducted on CNR-INSEAN for aircraft ditching applications, but the velocity ratio and
impact conditions are also suitable for high-speed marine vessels.

2 Numerical Method

The numerical method is based on a coupling between computational fluid dynam-
ics (CFD) and finite element method (FEM). The algorithm allows for either loosely or
tightly coupled simulations, depending on the user application. The FSI solver is based
on the work presented in [3]. The FSI method is capable of coupling OpenFOAM for the
fluid domain and Nastran, Abaqus or an in-house developed FEA solver for the structural
domain.

The fluid domain solution is determined using CFD with the volume of fluid approach
(VoF). VoF allows for the tracking of the complex non-linear free surface accurately for
complex geometries. VoF is used with the Navier-Stokes equations to combine the prop-
erties of fluids (air and water) into a single continuous fluid using the volume fraction
variable α, as shown in equations 1 through 5.

∇ · ~u = 0 (1)

∂ρ~u

∂t
+∇ · ρ~u~u = −∇p̄+∇ ·

[
µ
(
∇~u+∇~uT

)]
− ρ~g (2)

Where ~u is the fluid velocity, ρ is the fluid density, µ fluid viscosity, p̄ fluid pressure and
~g gravitational acceleration.

ρ(~x, t) = ρwaterα(~x, t) + ρair(1− α(~x, t)) (3)

µ(~x, t) = µwaterα(~x, t) + µair(1− α(~x, t)) (4)

∂α

∂t
+∇ · (α~u) +∇ · (α(1− α) ~ur) = 0 (5)

The structural domain is solved using the modal decomposition method within the finite-
element approach. The structure is simulated using the commercial software Abaqus.
The modal decomposition allows for modal truncation, reducing the complexity of the
structure. This selection of modes is based on their energy participation factor in the
response. Furthermore, due to the orthogonality of the mode shapes, the system can be
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truncated and simplified to a decoupled system of structural equations of motion shown
in Equation 6.

[I]{q̈}+ [2ξωn]{q̇}+ [ω2
n]{q} = {f} (6)

Both the structural and fluid domains are solved sequentially in an iterative manner
by the tightly-coupled solver. The rigid-body fluid stress is averaged at the structural
Gauss points; then the velocity is provided at the fluid grid points from the structure-
shape functions. Due to the FSI segregated nature, an inertial under-relaxation factor γ
introduced in [4] is applied to ensure the stability of the method.

3 Test Case and Numerical Setup

The experimental condition simulated in this study is an aluminum alloy AL2024-T3
plate, 1 m long, 0.5 m wide and 15 mm thick. The outer perimeter of the plate was
clamped to a thicker frame on the edges, reducing the elastic impact area to 0.850 m
by 0.350 m. The impact setup is pitch angle θ= 10◦, vertical velocity V=10 m/s and
horizontal velocity U=40 m/s. The test case is labeled condition 1132 in [2]. Velocities
in numerical simulation are held constant during the impact. This constraint follows the
theoretical solution from [1] and provides an opportunity to more clearly highlight the
three-dimensional effects during the slamming event.

The fluid domain discretization is shown in Figure 1. The domain spatial discretization
is constant in a region that extends from the leading edge of the plate up to the end of
the domain. This region allows for more accurate resolution of the free-surface. A grid
refinement study is conducted for the coarse, medium, and fine grids. A summary of the
grid resolutions is shown in Table 1.

(a) Profile view of CFD mesh (b) Body plan view of CFD mesh

Figure 1: Fluid domain discritization for coarse grid (L = 1 m and ∆x = 4 mm).

The structural domain is discretized using Abaqus SR4 shell elements. Figure 2 dis-
plays the final spatial discretization used for the hydroelastic plate response. To ensure
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Table 1: CFD grid resolution

Grid Cells Plate Faces Resolution
Coarse 3,091,567 32,629 4 mm

Medium 5,990,979 57,084 3 mm
Fine 15,496,386 128,651 2 mm

Figure 2: Abaqus structure mesh with symmetry boundary condition on the negative Y
direction. Mesh resolution of 5280 SR4 shell elements.

structural domain convergence, two approaches were employed: a modal element fre-
quency convergence and a mode participation factor determined based on modal energy
response. Modal element convergence is shown in Figure 3. It can be observed that the
first ten modes converge after the FEM mesh reaches 5,280 shell elements. This mesh
resolution is selected for the hydroelastic simulations and modal energy response analysis.

The modal energy response of the plate slamming is determined by the modal force
generated from a rigid-plate impact. The rigid modal force is obtained in the one-way
coupled simulation for the first 25 plate modes. These forces are combined with the
transfer function of a damped single degree-of-freedom system to determine the mode
participation energy. The first ten modes are sufficient to capture 99.9933% of the total
system energy.

4 Rigid-Plate Slamming

The numerical FSI method is used to study the water entry problem of a flat plate
with high horizontal speed. Validation and convergence of the fluid domain are performed
for the quantities of force components acting on the plate, transverse water surface el-
evation, local pressure and jet root propagation velocity. Figure 4 shows a comparison
of the x and z force components acting on the plate for numerical simulations and ex-
periments. As illustrated in Figure 4 numerical grid convergence on force components
acting on the plate is achieved. Excellent agreement between experimental and numerical
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Figure 3: Finite element mesh modal convergence study.

slope and magnitude for the z component of the force is observed. The magnitude and
slope of the x component of force is in agreement for all numerical grids and experimental
data up to t=0.0042 s. Experimental x force data displays a rapid force fluctuation from
t=0.0042-0.0408 s, whereas the numerical simulations maintain a constant negative force
during this period. After this period, the experimental force maintains almost a constant
negative value until the jet leaves the plate, where a positive slope on the force can be
observed. All numerical simulations exhibit a similar trend. The time difference between
the change in slope for numerical and experimental results is due to the constant impact
velocity constraint that is implemented for the numerical simulations. The absolute jet
root propagation velocity is maintained in the simulations, whereas the experiments ob-
served a small velocity reduction during the impact time of approximately 2 m/s.
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Figure 4: Time history of force components in x (top) and z (bottom) for coarse (C),
medium (M), fine (F) grids and experiment (E) for condition 1132.
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Figure 5 displays the local pressure time history comparison between the experimental
pressure probes and the coarse, medium and fine grids. The reference time used in Fig-
ure 5 corresponds to the time where the peak pressure rise occurs at 0.125 m. Excellent
agreement between experimental and numerical pressure coefficient is observed. The time
difference between numerical values and experimental observations is due to the decel-
eration of the plate during the impact phase. The numerical method underpredicts the
maximum peak pressure observed near the trailing edge of the plate. The experimental
value for the pressure coefficient observed at 0.125 m is 1.8, whereas the fine grid estimated
a value of 1.43. This underprediction is due to insufficient grid resolution for the pressure
integration near the trailing edge. Further grid refinement is necessary for solving high
local pressure in this region. Experimental pressure probes exhibit a significant reduction
in maximum peak pressure between probes located at 0.125 and 0.400 m and an almost
constant peak pressure for following locations. A similar pattern is observed in numerical
pressure time history.

Figure 5: Time history of pressure coefficient cp recorded at 0.125, 0.400, 0.600 and
0.800 m along the centerline of the plate from the trailing edge for coarse (C), medium
(M), fine (F) and experiment (Cp-E) for condition 1132.

Figure 6 shows good agreement between numerical and experimental results on the
pressure distribution along plate centerline at the time when the peak arrives at 0.800 m
from the trailing edge. Numerical and experimental observations agree on the pressure
ratio values with the theoretical solution near the trailing edge of the plate. The pressure
ratio values diverge from the theoretical solution as the peak pressure moves along the
plate, highlighting the role of possible three-dimensional effects.

Lastly, a transverse water surface elevation comparison among the numerical grids is
performed. Figure 7 displays transverse view of the water surface elevation η, located at
the plate trailing edge for the full model plate on the right and half model plate on the
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Figure 6: Pressures of probes along the plate centerline at the instant of peak pressure
located at 0.800 m from the trailing edge. The horizontal and vertical axes are scaled
by the location and pressure of corresponding probe. The solid black line shows the
theoretical solution. Error bars represent the experimental dispersion during the test
repeats.

left. The horizontal axis is the dimensionless transverse coordinate defined as ξ = y/B.
Close agreement is observed for the free surface between the medium and fine grids for
both the full and half plate models.

5 Jet Root Curvature

Rigid tests with different plate widths are performed to analyze three-dimensional ef-
fects. The two plate geometries considered for the three-dimensional effect investigation
are 0.5 m and 0.25 m plate widths. The pressure field acting on the plate for six instances
in time are analyzed, corresponding to maximum peak pressure arriving at 0.125, 0.250,
0.400, 0.600 and 0.800 m from the trailing edge and when the peak pressure arrives to the
leading edge. The maximum peak pressure is extracted and interpolated onto a finer mesh
resolution for analysis. A parabolic equation is fit using the least-squares method on the
data points to obtain the equation coefficients. The formulation of the problem follows a
similar analysis performed by [5], but instead of using the wetted length of the plate the
maximum peak pressure location is used. Li denotes the distance from the trailing edge
of the to the geometric intersection between the undisturbed waterplane and the plate.
Lp is the x coordinated of where the line of the peak pressure intersects the outer edge of
the plate and d(y) defines the curvature of the maximum peak pressure.

The maximum peak pressure location is defined by:

xp(y) = Lp + d(y) (7)

d(y) = a0 + a2y
2 (8)
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Figure 7: Transverse water surface elevation view at the time when peak pressure arrives
at 0.800 m. Full-plate model grids are denoted as CF, MF, and FF for the corse, medium,
and fine grids. Half-plate model is denotated as CH, MH, and FH for the coarse, medium
and fine respectively.

λi =
Li

B
(9)

λp =
Lp

B
(10)

ξ =
y

B
(11)

δ =
d(y)

B
(12)

Substituting the dimensionless variables defined on equations 9-12, we can express the
equation for the curvature of the peak pressure as:

δ(ξ) = α0 + α2ξ
2 (13)

Where the dimensionless equation coefficients are defined as:

α0 =
a0
B

(14)

α2 = a2B (15)

Figures 8 and 9 display the results of the least-squares method for the unsteady impact
condition. The calculated average dimensionless coefficient α0 and α2 for all analyzed
instances are 0.070 and -0.244 respectively. Figure 10 displays a comparison between the
unsteady plate slamming peak pressure location and the steady plate jet root propagation
experiments performed by [5]. Figure 10 shows how both the full and half-width plates
maximum peak pressure is in agreement with the experimental jet root defined by a curve
with the form of 1.60λi − 0.30λ2i derived in [5].

Figure 11 shows the time delay of the peak pressure, where excellent agreement is
observed until halfway along the plate. A significant difference in propagation velocity
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Figure 8: (a) shows the fine grid pressure field (top) and unsteady geometric intersection
between free-surface and plate (bottom) for 0.5 m plate width at t=0.075s and (b) shows
the fine grid maximum peak pressure extraction for 0.5 m plate width is denotated by
FF-Peak pressure at the same instance in time. The vertical and horizontal axes are
dimensionalized by the plate width. λi is defined from the trailing edge of the plate until
the geometric intersection and λp is measured from the trailing edge up to the maximum
peak pressure edge point. δ(ξ) defines the maximum peak pressure curvature from λp.

for 0.600 and 0.800 m locations is observed for both numerical and experimental values.
As previously explained these differences are due to the absolute plate velocity reduction
during the impact phase for experimental repeats. A linear trend in the propagation
velocity and a higher value than that of the geometric intersection is observed for all grids
and experimental data. The half plate propagation velocity is closer to the predicted
theoretical solution. The large pitch angle for the model condition and the reduction in
plate width allows for more water to escape from the sides of the plate increasing the
three-dimensional effects. These results confirm the role of three-dimensional effects on
reducing the jet root propagation velocity and the peak pressure intensity.

6 Hydroelastic Slamming

The hydroelastic validation is performed for the quantity of strain in the axial plate
direction. Figure 12 shows the experimental and numerical strain comparison for four dis-
crete points located at the centerline and port edge of the plate. The overall hydroelastic
response is captured by the tightly-coupled FSI method. The centerline strain gages S2
and S5 predict higher deformation compared to edge gages S3 and S6 for both numerical
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Figure 9: Analytical peak pressure curvature analysis for the two flat-plate structural
arrangments. The vertical axis represents the dimensionless geometric intersection for
the unsteady motion. The horizontal axes are the dimensionless coefficients as defined in
Equations 14 and 15 respectively.

and experimental results. Underprediction and high frequency of oscillation in numerical
solution are due to a fully clamped edge boundary condition (BC) assumption. The ex-
perimental set-up can be more accurately modeled using a condition between pinned and
clamped. Further investigation needs to be performed in this regard since strain is highly
sensitive to BC modifications.

7 Conclusions

In this paper, we describe a hydroelastic numerical method used to simulate a flat-
plate slamming event. The method is based on a tightly coupled approach between the
fluid and structure domains and applicable for high forward-vertical speed ratios, large
added mass, and time-dependent wetness problems. The structure is modeled by a lin-
ear dynamic solver within the commercial software Abaqus with the modal decomposition
method. The fluid domain solution is governed by the Navier-Stokes equations and solved
using computational fluid dynamics within OpenFOAM with the volume-of-fluid method.

The CFD method validation is performed for the quantities of local pressure, vertical
and longitudinal force components, peak pressure propagation velocity. The tightly cou-
pled method is validated for strain in the axial plate direction. Comparisons are made
with the theoretical and experimental results presented in [1]. Also, a comparison is per-
formed for the peak-pressure and jet root curvature presented in [5].

The numerical results show excellent agreement with the experimental data for the force
components, local peak pressure, and peak pressure propagation velocity. The numerical
strains captured the overall hydroelastic response and tend to slightly underpredict the
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Figure 10: Analytical peak pressure curvature analysis for the two flat-plate structural
arrangments.

experimental value. This reduction is due to the fully-clamped edge boundary condition
apply to the structure. It is expected that the physical boundary conditions are between
a pinned and clamped condition.

Finally, a detailed analysis of the unsteady maximum peak pressure curvature is per-
formed and compared with [5] steady wave rise curvature. Results agree with [5] water
rise curvature for both full and half plate widths maximum peak pressure curvature.
Three-dimensional effects are highlighted by reducing the jet root propagation speed and
increasing the time required for the jet root to fully developed.
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Figure 11: Time delays of centerline pressure probes. The probe location relative to the
plate trailing edge is represented by Sp.
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Figure 12: Time history of the strain in x direction for condition 1132
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