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Abstract. In this work the use of a p-multigrid preconditioned flexible GMRES solver
to deal with the solution of stiff linear systems arising from high order time discretization
is explored in the context of two high-order spatial discretizations. The first one is a
standard modal discontinuous Galerkin method, while the second one is an hybridizable
discontinuous Galerkin method, which for high order has fewer globally-coupled degrees of
freedom compared to DG. The efficiency of the proposed solution strategy is assessed on
low-Mach, two-dimensional, compressible flow problems. The numerical results highlight
that a considerable reduction in the number of GMRES iterations can be achieved for
both space discretizations, but that only with DG is this gain reflected in the CPU time.
Moreover, a comparison of the performance shed light on the convenience of using the
former or the latter space discretization.

1 INTRODUCTION

In recent years, high-order discontinuous Galerkin (DG) methods have become increas-
ingly popular in the field of Computational Fluid Dynamics. This fact is certainly ascribed
to their convenient dispersion and diffusion properties, the ease of parallelization thanks
to their compact stencil, and their accuracy in arbitrary complex geometries. However,
the implementation of an efficient solution strategy is still a subject of active research,
especially for unsteady flow problems [1] involving the solution of the Navier–Stokes (NS)
equations.

Several previous studies demonstrated that implicit schemes in the context of high-
order space discretizations are one of the most viable ways to overcome the strict stability
limits of explicit time integration schemes [2]. Such strategies require the solution of a
large system of linear/non-linear equations, which is typically performed with iterative
solvers such as the generalised minimial residual method (GMRES). The choice of the
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preconditioner is a key aspect of the strategy and it has been explored extensively in
the literature, see for example [3, 4]. Among those, the use of multilevel algorithms to
precondition a flexible GMRES solver has been demonstrated to be an appealing choice
for both compressible [3] and incompressible flow problems [5].

More recently, hybridizable discontinuous Galerkin (HDG) methods have been consid-
ered as an alternative to the standard discontinous Galerkin discretization [6, 7]. HDG
methods, which introduce an additional trace variable defined on the mesh element faces,
can reduce the globally coupled degrees of freedom if compared to DG when a high order
of polynomial approximation is employed. In fact, exploiting the block-structured na-
ture of the matrix, the system size can be reduced using static condensation. Moreover,
HDG methods exhibit superconvergence properties of the gradient variable in diffusion-
dominated regimes. On the other hand, they increase the amount of operations local to
each element and the workload between and after the linear system solution. While several
works aimed to compare the accuracy of HDG both versus CG and DG, a comparison of
the iterative solvers is missing in this context. Additionally, the use of multilevel solution
strategies in HDG contexts has been introduced only partially by [8], in the context of
an h-multigrid strategy with trace variable projections on an underlying continuous finite
element space.

The present work focuses on the linear solution process. In particular, the use of a
p-multigrid preconditioned flexible GMRES algorithm to deal with the solution of stiff
linear systems arising from a high-order time discretization is explored in the context
of DG and HDG high-order spatial discretizations. The scalability of the algorithm is
also considered and compared to standard single-grid preconditioners like ILU(0). The
efficiency of the different solution strategies is assessed on two-dimensional laminar com-
pressible flow problems. The results of such cases suggest that (i) similar error levels can
be obtained by the two solvers, (ii) the use of a multilevel strategy reduces considerably
the number of linear iterations, and (iii) only for the DG discretizations this advantage is
reflected in the CPU time.

2 DISCRETIZATION

The set of compressible Navier–Stokes (NS) equations can be written in compact form
as

∂u

∂t
+ ∇ · F(u,∇u) = 0, (1)

where u ∈ RM is the state vector and F ∈ RM×N is the sum of the inviscid and viscous
fluxes, with M being the number of conservative variables and N the number of space di-
mensions. For HDG, (1) is written as a system of first-order partial differential equations,
by introducing q ∈ RM×N such that

q−∇u = 0,

∂u

∂t
+ ∇ · F(u,q) = 0.

(2)

The space and time discretization is outlined in the following sections.
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2.1 Spatial

This work considers two implementations of the discontinuous Galerkin finite element
method. The first one is a modal-based DG solver operating on a triangulation Th of the
domain Ω. The state vector is approximated by a polynomial expansion with no continuity
constraints imposed between adjacent elements: uh ∈ [Vh]M where Vh = {u ∈ L2(Ω) :
u|K ∈ Pk, ∀K ∈ Th} and k is the order of polynomial approximation. The weak-form
of (1) follows from multiplying the PDE by test functions in the same approximation
space, integrating by parts, and coupling elements via consistent and stable numerical
fluxes. By following this procedure a system of ordinary differential equations for the
degrees of freedom (DoFs) of the problem can be written in the form

M
dU

dt
+ R = 0, (3)

where M is the mass matrix, U the vector of DoFs and R the residuals vector.
The second spatial discretization is the HDG method [7]. The HDG discretization

approximates the variables uh,qh with uh ∈ [Vh]M and qh ∈ [V ]M×N . Moreover, an
additional variable λh ∈ [Mh]

M is defined in the space Mh = {λ ∈ L2(Fh) : λ|σf ∈
Pk,∀σf ∈ Fh}, where Fh is the set of interior faces σf , and Pk is the space of polynomials of
order k on face σf . The weak form is obtained in this case by weighting the equations in (2)
with appropriate test functions, integrating by parts, and using the interface variable λh
for the face state. A consistent and stable flux function is introduced at the mesh element
interfaces, where continuity of the flux is ensured by additional equations required to close
the system. See [7] for further details. Defining RQ, RU and RΛ the residuals vectors
arising from the gradient equation, NS equations and flux-consistency equations, the ODE
system of equations can be written as

RQ = 0,

MU dU

dt
+ RU = 0,

RΛ = 0.

(4)

where MU is the elemental mass matrix. Defining the solution vector of the discrete
unkown of the approximation as W = [Q; U; Λ], and the vector of agglomerated residuals
R = [RQ; RU ; RΛ], the compact form of (4) becomes

M
dW

dt
+ R = 0, (5)

where the matrix M and the vector W follow directly from equation (4). It is worth
noticing that, for a DG discretization, W = U and M = MU .
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2.2 Temporal

The temporal discretization is an explicit-single-diagonal-implicit Runge–Kutta (ES-
DIRK) scheme. The general formulation of the scheme for equation (5) is

MWi = MWn −∆t
i∑

j=1

aijR(Wj),

Wn+1 = Wn +
s∑
i=1

βi∆tW
i,

(6)

for i = 1, ..., s where s is the number of stages, aij and bi are the coefficients of the
scheme, and n is the time index. Within each stage, the solution of a non-linear system
is required; to this end, the Newton-Krylov method is used and the kth Newton–Krylov
iteration assumes the form(

M

aii∆t
+
∂R

∂W

)
(Wi

k+1 −Wi
k) = − M

aii∆t
(Wi

k −Wn)−
i−1∑
j=1

aij
aii

R(Wj)−R(Wi
k), (7)

with i = 1, ..., s. In this work the order-three ESDIRK3 scheme [9] will be employed.

3 LINEAR SOLVER

For a DG discretization, system (7) is solved iteratively without any additional opera-
tions, and assumes the form

Ax + b = 0, (8)

with A = (M/(aii∆t)+∂R/∂W) the iteration matrix, x = ∆W the vector of the degrees
of freedom update and b the right-hand side.

On the other hand, the HDG discretization exploits the introduction of face unknowns
in order to reduce the size of the matrix to be allocated, see [7] for further details. In
fact, system (7) can be conveninetly arranged using the definition of gradients residuals,
state residuals and trace variables residuals as AQQ AQU BQΛ

AUQ AUU BUΛ

CΛQ CΛU D

 ∆Q
∆U
∆Λ

+

 bQ

bU

bΛ

 = 0, (9)

where the block-structure of the iteration matrix and the right-hand side can be easily
derived from (4).

The solution of the system is obtained by statically condensing out the element-interior
variables, resulting in the following problem(

D−
[

CΛQCΛU
] [ AQQ AQU

AUQ AUU

]−1 [
BQΛ

BUΛ

])
∆Λ+(

bΛ −
[

CΛQCΛU
] [ AQQ AQU

AUQ AUU

]−1 [
bQ

bU

])
= 0,

(10)
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which assumes the same form as system (8). It is worth noticing that in HDG the memory
allocation and the time spent on global solve are lower than that of a DG solver due to the
smaller amount of globally coupled degrees of freedom. On the other hand, the number of
elemental operations is higher. In fact, the inversion of the Aij block-structured matrix
of equation (10), although being local to each element is still not a trivial cost. Note
that the element-interior states have to be recovered after the linear solve to evaluate the
residuals vector in the successive iteration using a back-solve strategy. See [7] for further
details.

The linear system of ODEs can be solved numerically using iterative solvers. To this
end, we employ the generalized minimal residual method (GMRES). Three preconditioner
matrices are considered in the remaining of the paper to speed-up the iterative process.
The first one is element-wise block-Jacobi (BJ), which extracts the block-diagonal part
of the iteration matrix and takes the LU factorization in a local-to-each element fashion.
The second one [10] is line-Jacobi (LJ), which creates within the mesh lines of elements
of maximum coupling and solves implicitly the degrees of freedom for each line. The last
one is the incomplete lower-upper factorization with zero-fill, ILU0(A), and minimum
discarded fill reordering [11]. When applied in parallel, the ILU0(A) is performed on each
square, partition-wise block of the iteration matrix.

An important characteristics of GMRES is that any iterative linear solver, such as
multigrid, can be used as a preconditioner. In such case, the flexible implementation of
GMRES will be employed.

4 P-MULTIGRID PRECONDITIONING

In this work, the use of a p-multigrid strategy is explored in the context of the space
discretizations presented. Coarser linear systems Aixi = bi are built using lower-order
polynomial spaces. Subspace inheritance [5] is used to generate coarse grid operators, i.e.
the matrices Ai, both for the DG and HDG discretizations. This choice involves projec-
tion of the iteration matrix, which is computed only once on the finest level. Compared
to subspace non-inheritance, which requires the recomputation of the Jacobian in proper
coarser-space discretizations of the problem, inheritate is cheaper in processing and mem-
ory. Although previous work has shown lower convergence rates when using such cheaper
operators [12], especially in the context of elliptic problems and incompressible flows, we
found these operators efficient enough for our target problems involving the compressible
NS equations.

The multigrid strategy requires the definition of both restriction and prolongation op-
erators to project the vectors of degrees of freedom between the polynomial spaces. To
do so, a distinction between the DG and HDG space discretization has to be performed.
In fact, while in the former case the linear solver works with element-wise unknowns, in
the latter the element-interior coefficients are statically condensed out, and the system is
solved for the face unknowns only. As regards DG, let us define a sequence of approx-
imation spaces V` ⊇ Vh on the same triangulation Th, ` being a multigrid level, with
Vh = V1 ⊂ V2 ⊂ ... ⊂ VNLV L

and NLV L the total number of levels. Note that VNLV L

denotes the coarsest space. In this context, the prolongation operator can be defined as
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I``+1 : V`+1 → V` such that∑
K∈Th

∫
K

(
I``+1u`+1 − u`+1

)
= 0, ∀u`+1 ∈ V`+1. (11)

Similarly, the restriction operator can be defined as the L2 projection I`+1
` : V` → V`+1

such that ∑
K∈Th

∫
K

(
I`+1
` u` − u`

)
v`+1 = 0, ∀(u`, v`+1) ∈ V` × V`+1. (12)

Such definitions can be easily extended to build discrete matrix operators Iji that project
the vectors and matrices in the coarser levels.

Similar considerations can be done for the face unknowns of the HDG discretization.
In this case the sequence of approximation spaces M` ⊇ Mh is properly defined on
the interior mesh element faces Fh, being ` a multigrid level. To this end, let us define
Mh =M1 ⊂M2 ⊂ ... ⊂MNLV L

. The prolongation operator is now I``+1 :M`+1 →M`

such that ∑
F∈Fh

∫
F

(
I``+1λ`+1 − λ`+1

)
= 0, ∀λ`+1 ∈M`+1. (13)

On the other hand, the restriction is defined as I`+1
` :M` →M`+1 such that∑

F∈Fh

∫
F

(
I`+1
` λ` − λ`

)
µ`+1 = 0, ∀(λ`, µ`+1) ∈M` ×M`+1. (14)

These definitions can also be extended to build matrix operators Iji that transform the
vectors, residuals, and block matrices shown in equation (10). Note that the projection of
the fine-space condensed matrix and the right hand side differs from performing a static
condensation of the projected matrices and vectors in coarse space. Despite this discrep-
ancy, the results show that a considerably large reduction of the number of iterations is
achieved.

We employ a full multigrid (FMG) V-Cycle solver, outlined in Algorithm 1. The FMG
cycle constructs a good initial guess for a V-Cycle iteration which starts on the fine grid.
To do so, the solution is initially solved on the coarsest level (NLV L), and then prolongated
to the next refined one (NLV L− 1). At this point, a standard V-Cycle is called, such that
an improved approximation of the solution can be used for the V-Cycle at level NLV L−2.
This procedure is repeated until the V-Cycle on the finest level is completed. The single V-
Cycle is outlined in Algorithm 2. Starting from a level `, the solution is initially smoothed
using an iterative solver (SMOOTH). The residual of the solution r` is then computed
and projected in the coarser level ` + 1, where another V-Cycle is recursively called to
obtain a coarse-grid correction e`+1. The quantity is then prolongated on to level ` and
used to correct the solution to be smoothed again. When the coarsest level is reached,
the problem is solved with a higher number of iterations to decrease as much as possible
the solution error.
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Algorithm 1 FMG

1: for ` = NLV L, 1,−1 do
2: if ` = NLV L then
3: b` = I`1b1

4: SOLVE A`x
FMG
` = b`

5: else
6: b` = I`1b1

7: x0
` = I``+1x

FMG
`+1

8: xFMG
` = MGV (`,b`,x

0
`)

9: end if
10: end for
11: return xFMG

`

Algorithm 2 MGV (`,b`,x`)

1: if ` = NLV L then
2: SOLVE A`x` = b`
3: else
4: x`=SMOOTH(x`,A`,b`)
5: r` = b` −A`x`
6: r`+1 = I`+1

` r`
7: e`+1=MGV (`+ 1, r`+1,0)
8: x̂` = x` + I``+1e`+1

9: x`=SMOOTH(x̂`,A`,b`)
10: end if
11: return x`

5 NUMERICAL RESULTS

We present numerical experiments to assess the behaviour of the p-multigrid precon-
ditioner for the DG and HDG discretizations. First, NS solutions of a vortex transported
by uniform flow at M = 0.05 and Re = 100 are reported to show the convergence rates in
space and time. The second test case deals with the solution of a two-dimensional circular
cylinder at Re = 100 and M = 0.2, and it is used to evaluate parallel efficiency.

5.1 Convected vortex

The test case is a modified version of the VI1 case studied in the 5th International
Workshop on High Order CFD Methods [13], and consists of a two-dimensional mesh on
the domain (x, y) ∈ [0, 0.1]×[0, 0.1] with periodic boundary conditions on each side. See
the online web page for information about the flow initialization. Here the set of NS
equations are solved instead of the Euler equations. Numerical experiments have been
performed to assess the output error, both in space and time. The meshes were obtained in
a structured-like manner using regular quadrilaterals, starting from 2×2 up to 32×32. The
polynomial spaces employed were P4, P5 and P6. The L2 state error was computed relative
to the solution on a 128×128, P6 space discretization, after one convective period T . The
contour plot of the solutions at the initial and final states are shown in Figure 1. Table 1
reports space discretization errors. The tests were performed using a very small time step
size, T/∆t = 4000, and the ESDIRK3 scheme to ensure a negligible time discretization
error. An absolute tolerance on the non-linear system of 10−10, and a relative tolerance
of 10−5 on the GMRES, were employed to ensure a low time discretization error, Even
though DG suffers less than HDG of pre-asympthotic behaviour on such a smooth solution,
both the implementations show comparable error levels and converge with the theoretical
convergence rates for every polynomial approximation shown. As a consequence of such
analysis, and considering that both the DG and HDG implementations share the same
code base, we will consider only the CPU time as a measure of the time-to-solution
efficiency.
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Figure 1: Convected vortex at Re = 100, M = 0.05. Mach number contours. Solution at t = 0 (left)
and t = T (right).

DG HDG
order grid ‖err‖L2 k ‖err‖L2 k

P4

2×2 1.12E-07 1.18E-07
4×4 5.25E-09 4.42 5.42E-09 4.45
8×8 1.18E-10 5.48 1.99E-10 4.77
16×16 6.56E-12 4.17 7.31E-12 4.77
32×32 4.98E-12 0.40 5.22E-12 0.49

P5

2×2 4.27E-08 4.50E-08
4×4 6.65E-10 6.00 7.82E-10 5.85
8×8 1.15E-11 5.85 9.60E-11 3.03
16×16 5.07E-12 1.18 4.85E-12 4.31
32×32 4.99E-12 0.03 5.46E-12 -0.17

P6

2×2 1.42E-08 1.35E-08
4×4 9.71E-11 7.19 3.44E-10 5.30
8×8 5.12E-12 4.24 2.46E-11 3.80
16×16 5.08E-12 0.01 5.10E-12 2.27
32×32 5.03E-12 0.02 5.31E-12 -0.06

Table 1: L2 solution error. Laminar vortex test case at Re = 100, M = 0.05. Convergence rates for the
DG and HDG discretizations.

The convergence rates of the ESDIRK3 time integration scheme are also reported in
Table 2, and have been obtained using the 16×16, P6 space discretization. A large
non-dimensional time step of ∆t = 0.1, was selected to assess the efficiency of the pre-
conditioning strategies (BJ, LJ, ILU(0) and p-MG). A three-level Full multigrid V-Cycle
was employed, with parameters determined empirically for best convergence. The coarser
space discretizations were built using P1 and P3, while GMRES smoothers were used in
each level. 10 iterations of BJ-preconditioned GMRES smoothers have been employed for
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DG HDG
T/∆t ‖err‖L2 k ‖err‖L2 k

4 5.39E-07 5.39E-07
10 1.37E-07 1.50 1.37E-07 1.50
20 2.58E-08 2.40 2.58E-08 2.40
40 3.77E-09 2.78 3.77E-09 2.77
100 2.62E-10 2.91 2.60E-10 2.92
200 2.48E-10 0.08 2.55E-10 0.03

Table 2: Laminar vortex test case at Re = 100, M = 0.05. Time convergence rates for the DG and
HDG discretizations and ESDIRK3 scheme.

DG HDG
Prec. CPU time ITa ρa CPU time ITa ρa

ILU 6.67E+03 24.87 0.59277 6.04E+03 19.40 0.53163
LJ 4.12E+03 84.88 0.8453 6.15E+03 124.59 0.85552
BJ 3.63E+03 129.25 0.88282 6.10E+03 109.09 0.86254
p-MG 2.66E+03 2.01 0.00243 6.06E+03 1.40 0.00017

Table 3: Performance of the preconditioners using DG and HDG discretizations. Laminar vortex test
case at Re = 100, M = 0.05, discretized on a 16×16 mesh with P6 polynomials, T/∆t = 10, ESDIRK3
scheme. ITa stands for the average number of GMRES iterations while ρa the average convergece rate.

all the levels except from the coarsest, where 30 ILU0-preconditioned GMRES iterations
were performed. Such a setting was found adequate for all of the tests presented in this
work, and for both space discretizations. The numerical experiments are reported in Ta-
ble 3, which gives the CPU time, the average and maximum number of GMRES iterations
though the time integration, as well as the average convergence rate (CR). The CR is de-
fined as ρ = (rIT/r0)1/IT with IT the number of iteratons, r0 and rIT the residuals at the
first and IT th iteration respectively. We see that the use of a p-multigrid preconditioner
reduces considerably the number of outer GMRES iterations both for the DG and the
HDG space discretizations, but only in the DG case is this gain reflected on the CPU time.
In fact, the costs of condensing-out the element-interior variables before the solution of
the system, as well as the back-solve for their evaluation using the face unknowns after
the linear solve, increase the amount of local operations and hide the benefits of having a
faster global solver in HDG.

5.2 Circular cylinder

The laminar flow around a circular cylinder at Mach number M = 0.2 and Reynolds
number Re = 100 has been solved on a grid made by Ne = 960 mesh elements using a P6

space discretization. The time scheme employed is ESDIRK3. Figure 2 shows a snapshot
of the Mach number contours. The solution accuracy was assessed in comparison with
literature data [14]. To this end, Table 4 shows the averaged drag, lift coefficients and
Strouhal number (Cd, Cl, St) for several temporal refinements on the same grid. The
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Figure 2: Laminar flow around a circular cylinder at Re = 100, M = 0.2. Mach number contours.

(U/L)∆t Cd Cl St

0.5 1.3468 3.383e-03 0.16327
0.25 1.3519 -1.441e-03 0.16410
0.125 1.3527 -1.400e-04 0.16410
0.05 1.3528 -1.718e-04 0.16410
0.025 1.3528 -6.353e-06 0.16410

Table 4: Laminar vortex test case at Re = 100, M = 0.05. Time convergence rates for the DG and
HDG discretizations and ESDIRK3 scheme.

coefficients were obtained by averaging a fully developed solution over ten shedding peri-
ods. An overall good agreement has been found, and temporal convergence can be seen
by using a non-dimensional time step of ∆t ≤ 0.25. The numerical experiments are thus
performed using ∆t = 0.25 to maximize the advantage of using an implicit scheme for
such type of problem.

The parallel performance of the p-multigrid preconditioner strategy introduced in the
previous section is assessed by considering the effects of domain decomposition. To eval-
uate the CPU time, a fully-developed solution is advanced in time for 10 time steps to
compute the average number of GMRES iterations and the convergence rates during the
non-linear solution. The computations are performed using 1 to 48 cores (NP) on a plat-
form based on Intel Xeon X5650 processors aranged in a two-processor (12 cores) per-node
fashion. A fixed relative tolerance of 10−6 to stop the GMRES solver is used, as well as
an absolute tolerance of 10−5 for the Newton-Raphson method.

Tables 5 and 6 report the results of the computations. For the ILU0 preconditioner, an
increase in the number of GMRES iterations is observed for both the DG and HDG space
discretizations with an increasing number of cores. This behavior is attributed to the
incomplete lower-upper factorization, which is performed on the squared, partition-wise
block of the iteration matrix. In this case, the preconditioner effectiveness naturally
decreases as NP grows, as the amount of off-diagonal blocks neglected increases with NP.
On the other hand, by tuning the parameters of the multigrid preconditioner it is possible
to achieve an ideal algorithmic scalability, i.e. the number of iterations required to solve

10
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DG HDG
NP CPU time ITa ρa CPU time ITa ρa

1 2.59E+04 20.507 0.47417 2.59E+04 17.807 0.43142
12 2.86E+03 76.767 0.80356 3.03E+03 38.08 0.67155
24 1.48E+03 83.867 0.81811 1.66E+03 43.827 0.70301
36 1.03E+03 94.68 0.83113 1.20E+03 46.713 0.71824
48 8.27E+02 112.567 0.85091 1.00E+03 50.913 0.7337

Table 5: Performance of the ILU0 preconditioner using DG and HDG discretizations.

DG HDG
NP CPU time ITa ρa CPU time ITa ρa

1 1.24E+04 3.68 0.01961 2.61E+04 2.52 0.00195
12 1.32E+03 3.69 0.01962 3.04E+03 2.59 0.00222
24 6.99E+02 3.69 0.01958 1.68E+03 2.58 0.00227
36 4.84E+02 3.69 0.01961 1.21E+03 2.60 0.00234
48 3.72E+02 3.69 0.01948 1.01E+03 2.60 0.00234

Table 6: Performance of the p-MG preconditioner using DG and HDG discretizations.

the system doesn’t grow by partitioning the domain. This consideration holds true for
both the DG and HDG discretizations. In terms of CPU time, in all the runs the p-MG
preconditioned DG solver outperforms both the ILU0-preconditioned DG solver as well
as HDG. In particular, the computational time of HDG is still higher despite fewer linear
iterations required on average to reach the same levels of accuracy.

6 CONCLUSIONS

An inherited p-multigrid strategy has been proposed and assessed in the context of DG
and HDG discretizations. The algorithm has been employed as a preconditioner for an
FGMRES solver. Compared to standard single-grid preconditioners, the approach is able
to reduce significantly the number of iterations required for the linear system solution.
This reduction is reflected in the overall CPU time only in the case of DG. For HDG, the
static condensation and back-solve operations are expensive and hide the benefits of using
such a strategy. Future works will be devoted to assess the influence of different multigrid
settings, as well as to extend the current work by considering stiff three-dimensional cases.
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