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Abstract. Peridynamics is a nonlocal theory that extends the classical continuum theory
by considering collective motion of all the material within a δ-neighborhood of any point of
a peridynamic body. It considers the interaction of material points due to forces acting at a
finite distance smaller than δ, which is called the peridynamic horizon. A relation between
interaction force and relative displacement between particles was proposed in previous
work for an isotropic linear elastic peridynamic material. The relation is derived from a
free energy function that depends quadratically on measures of strain that are analogous
to the measures of strain of the classical linear theory. The energy function contains
four peridynamic material constants; three of which were determined in previous work by
using both convergence results of the peridynamic theory to the classical linear elasticity
theory and a correspondence argument between the proposed free energy function and
the strain energy density function from the classical linear elasticity theory. We have
also shown an expression for the fourth material constant, which was obtained from the
correspondence argument by evaluating both the peridynamic free energy and the strain
energy at a specific point of a beam bent by terminal couples. In this work we show that
this expression is valid regardless of the point chosen inside the beam. Also, we have
considered two additional experiments to verify the validity of the expressions obtained
for all the peridynamic constants, results of which will be presented at the conference.
This work is of interest in all areas of continuum mechanics, such as in fracture mechanics,
where surfaces of discontinuities exist, or, may appear as a result of deformation.

1 INTRODUCTION

In Peridynamics interaction forces between material points acting at a finite distance
smaller than a peridynamic horizon δ are related to relative displacements, and the balance
of linear momentum is formulated as an integral equation that remains valid across a
surface of discontinuity, or, a continuum in which discontinuities may appear as a result
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of deformation. Away from these places, where the deformation is smooth, peridynamics
yields the same governing equations of the classical continuum theory in the limit of
vanishing distances between material points.

A relation between interaction force and relative displacement between particles is
presented by Aguiar and Fosdick in [1] for an isotropic linear elastic peridynamic material.
The relation is derived from a free energy function that depends quadratically on measures
of strain that are analogous to the measures of strain of the classical linear theory. The
free energy function contains four peridynamic material constants. Using homogeneous
deformations and expressions presented by Silling in [4] that relate the elasticity tensor
from the classical linear theory to its counterpart in peridynamics, called the modulus
state, Aguiar and Fosdick in [1] derive two relations between the two Lamé constants and
three peridynamic constants, leaving, therefore, one constant in these two relations as
arbitrary.

To determine the arbitrary constant, Aguiar in [2] introduces a decomposition of the
relative displacement in terms of radial and non-radial components. If the radial com-
ponent is zero, the free energy function reduces to an integral expression that multiplies
the arbitrary constant. This result is then used in a correspondence argument between
the free energy function evaluated at any material point and a weighted average of the
strain energy function of classical linear theory in a δ-neighborhood of this point, yielding
a general expression for the determination of the arbitrary constant. To generate the
zero radial component, this author considers the torsion of a circular shaft in equilibrium
without body force. The resulting expression together with the previous two expressions
yield the three peridynamic constants referred to above.

The procedure described above to determine the third arbitrary constant is used by
Seitenfuss, Aguiar, and Pereira in [3] to determine the fourth peridynamic material con-
stant. For this, the authors consider the experiment of a cylindrical beam bent by terminal
couples and evaluate both the peridynamic free energy function and the weighted average
of the strain energy function at the origin of the coordinate system, which is located at
the center of one end of the beam.

This work consists of verifying the validity of the expressions obtained for the peri-
dynamic material constants. For this, we consider again the experiment of a cylindrical
beam bent by terminal couples, but do not restrict the previous evaluations to the ori-
gin of the coordinate system. We also consider other experiments in mechanics, such as
bending of a beam by terminal load and anti-plane shear of a circular cylinder, which
will be discussed at the conference. Analytical and numerical results indicate that the
expressions for the four peridynamic constants are independent of the experiment chosen.

In summary, in Section 2 we present preliminary results concerning the kinematics of
small deformations, which is used in the presentation of the free energy function of an
isotropic simple elastic material containing four peridynamic coefficients. We then review
the procedure to obtain three of these coefficients in Section 2.3 and the fourth one in
Section 2.4. Recall from above that, for the fourth coefficient, we calculate both the
peridynamic free energy function and the weighted average of the classical strain energy
density at the center of an end of a beam bent by terminal couples. In Section 3 we show
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that the expression for the fourth constant does not depend on the particular choice of a
material point inside this beam. In Section 4 we present concluding remarks.

2 PRELIMINARY RESULTS

2.1 Kinematics of small deformation

Let B ∈ E3 be the undistorted reference configuration of a body and x ∈ B be a
material point of B. Let also N δ(x0) ⊂ B be a neighborhood of any point x0 ∈ B. Here,
Nδ(x0) is a sphere of radius δ centered at x0. For x0 ∈ Nδ(x0), the vector ξξξ := x− x0 is
called a bond of x to x0 and Hδ(x0) is the collection of all bonds to x0.

A peridynamic state at (x0, t) of orderm is a functionA(x0, t)⟨·⟩ : Hδ(x0) → Lm, where
Lm is the set of all tensors of order m. Thus, the image of a bond ξ ∈ Hδ(x0) for the state
A(x0, t)⟨·⟩ is the tensor of order m, A(x0, t)⟨ξξξ⟩. We denote by Am the set of all states
at (x0, t) of order m. The dependency between two states A(x0, t)⟨·⟩ : Hδ(x0) → Lm

and u(x0, t)⟨·⟩ : Hδ(x0) → Lp is denoted by A(x0, t)⟨ξξξ⟩ = Â(x0, t)[u]⟨ξξξ⟩. For notational
convenience, we shall not exhibit the dependence on the time variable t and, when the
meaning is clear, may also omit the dependence on the particle x0.

The difference deformation state χχχ ∈ A1 at x0 ∈ B is defined through

χχχ⟨ξξξ⟩ := (χχχ(x)−χχχ(x0)) |x=x0+ξξξ ,

where χχχ(x) is the motion of particle x at time t. A similar definition holds for the
difference displacement state u ∈ A1 at x0 ∈ B, which is given by

u⟨ξξξ⟩ := (u(x)− u(x0)) |x=x0+ξξξ ,

where u(x) is the displacement of particle x at time t. With x ∈ A1 being the reference
position vector state at x0 ∈ B, so that x⟨ξξξ⟩ ≡ ξξξ = x− x0, we may write ξξξ = u+ x. The
difference deformation and displacement quotient states at x0 ∈ B are then defined by

f :=
χχχ

|x|
= h+ e, h :=

u

|x|
, (1)

respectively, where e := x/ |x| and |A| is the magnitude state of A, defined through
|A| ⟨ξξξ⟩ :=

√
A⟨ξξξ⟩ ·A⟨ξξξ⟩, with “ · ” being the scalar product in E3.

The difference displacement quotient state at x0 ∈ B, defined in (1), can be decomposed
as

h⟨ξξξ⟩ = φ⟨ξξξ⟩e⟨ξξξ⟩+ hd⟨ξξξ⟩, (2)

where φ is a scalar state that yields the radial component of h⟨ξξξ⟩ and hd is a vector state
that satisfies hd⟨ξξξ⟩ · e⟨ξξξ⟩ = 0.

2.2 The peridynamic material

The peridynamic equation of motion is given by ([1])

ρ(x0)ü(x0) =

∫
Nδ

{L(x0)⟨x− x0⟩ − L(x)⟨x0 − x⟩}dvx + b(x0), (3)
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where ρ is the mass density, u is the displacement field, b is a prescribed body force
density, and L(x0)⟨·⟩ is the force vector state evaluated on bonds at x0. Equation (3) is
the counterpart in peridynamics of the differential equation of balance of linear momentum
from the classical theory. For a simple elastic material near its natural state,

L(x0) ≡ L̂x0 [h] =
δhŴx0 [h]

|x|
, (4)

where δh is the Fréchet derivative with respect to h and Ŵx0 [h] is a free energy function.
In [2] Aguiar uses the decomposition in (2) to present an alternative form for the

quadratic free energy function of a simple elastic material proposed in [1]. It is given by

Ŵx0 [h] = Ŵx0 [φ e]+Ŵx0 [hd]+
α̂13

2

∫
Nδ

hd⟨ξξξ⟩ ·
∫
Nδ

ω(|ξξξ|, |ηηη|)
sinα

(φ⟨ξξξ⟩+φ⟨ηηη⟩)e⟨ηηη⟩dvηdvξ, (5)

where ω(·, ·) is a given symmetric weighting function,

Ŵx0 [φ e] =
1

2

∫
Nδ

φ⟨ξξξ⟩ ·
∫
Nδ

ω(|ξξξ|, |ηηη|)[α̂11φ⟨ξξξ⟩+ 2α12φ⟨ηηη⟩]dvηdvξ, (6)

Ŵx0 [hd] =
α33

4

∫
Nδ

hd⟨ξξξ⟩ ·
∫
Nδ

ω(|ξξξ|, |ηηη|)
(sinα)2

[e⟨ηηη⟩ · hd⟨ξξξ⟩+ e⟨ξξξ⟩ · hd⟨ηηη⟩]e⟨ηηη⟩dvηdvξ, (7)

and α̂11, α12, α̂13, and α33 are elastic peridynamic constants.

2.3 Determination of three peridynamic constants

Using convergence results presented in [5], it is shown in [1] that

ŴL
x0
[E] = Ŵx0 [H0e], (8)

where

ŴL
x0
[E] =

1

2
[λ(trE)2 + 2µE · E] (9)

is the strain energy function of an isotropic classical linear elastic material and Ŵx0 [h] is
given by (5) together with both (6) and (7). In both (8) and (9), H0 is an infinitesimal
displacement gradient, E := (H0 + HT

0 )/2 is the infinitesimal strain tensor, and both λ
and µ are the Lamé constants. The authors obtain two relations between the peridynamic
material constants α̂11, α12, α33 and classical elasticity constants, which are given by

2α̂11 + α33 =
15E

16(1 + ν)ωδ

, α̂11 + 2α12 =
3E

16(1− 2ν)ωδ

, (10)

where ν = λ/[2 (λ + µ)] is the Poisson’s ratio, E = µ (3λ + 2µ)/(λ + µ) is the Young’s

modulus, and ωδ ≡ π2
∫ δ

0

∫ δ

0
ω(ρ̌, ρ̂)ρ̌2ρ̂2dρ̂dρ̌.

To obtain a third relation, it is assumed in [2] that both the multiplicative decompo-
sition

ω(|ξξξ|, |ηηη|) = ω̃(|ξξξ|)ω̃(|ηηη|)|ξξξ|2|ηηη|2 , (11)
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where ω̃ : R → R is a known weighting function, and the correspondence relation

Ŵx0 [h] = W
L

x0
[h] :=

1

m

∫
Nδ

ω̃(|ξξξ|) |ξξξ|2 ŴL
x0
[Ê[h]]dvξ, (12)

hold. In (12), Ê[h] is the infinitesimal strain tensor obtained from the vector state h and

m :=

∫
Nδ

ω̃(|ξξξ|)|ξξξ|2dvξξξ . (13)

Observe from (12) with Ê[h] constant that Ŵx0 [h] = ŴL
x0
[Ê[h]]. Therefore, the relation

(8) with ω(·, ·) given by (11) is a particular case of (12).
Considering the infinitesimal deformation of a homogeneous, isotropic, and linearly

elastic circular shaft under uniform torsion and using the correspondence relation (12), it
is shown in [2] that

α33 =
20µ

m2
. (14)

Replacing (14) and the expressions µ = E/(2(1+ ν)) and κ = E/(3(1− 2ν)) into (10),
the other two contants can also be determined, being given by

α̂11 =
5µ

m2
, α12 =

1

2m2
(9κ− 5µ) . (15)

2.4 Determination of fourth peridynamic constant, α̂13

In this section and in Section 3 we use a fixed orthonormal basis {e1, e2, e3} associated
to the Cartesian coordinates (ξ1, ξ2, ξ3) with origin at the centroid of the left end of a pris-
matic bar, which is aligned with the ξ3-direction. The bar is homogeneous, isotropic and
linearly elastic. To perform numerical integrations, we use the software MATHEMATICA
9 c⃝ with a global adaptive strategy.

We now review the procedure used in [3] to determine the fourth peridynamic constant,
α̂13. This constant represents nonlocal effects of the peridynamic material and can not
be determined from the approach leading to the expressions in (10). To determine α̂13,
we consider a simple experiment in mechanics that provides a deformation field for which
both radial and non-radial components of h in (2) do not vanish.

The experiment consists of a beam bent by terminal couples in equilibrium with no
body force, as illustrated in Fig. 1. The lateral surface of the beam is free of traction.
In classical linear elasticity, the corresponding displacement field is given by (Sokolnikoff,
1956)

u(ξ1, ξ2, ξ3) =
M

2EI
[(ξ3

2 + νξ1
2 − νξ2

2)e1 + 2νξ1ξ2e2 − 2ξ1ξ3e3], (16)

where M > 0 is the magnitude of the bending moment, I is the moment of inertia with
respect to the ξ2-direction, and we recall from (10) that ν is the Poisson’s ratio and E is
the Young’s modulus. The non-zero components of the corresponding infinitesimal strain
tensor E are given by

ϵ11 = ϵ22 =
M

EI
νξ1, ϵ33 = −M

EI
ξ1. (17)
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Figure 1: Beam bent by terminal couples.

To use the correspondence relation (12), we first consider that x0 in (12) is at the origin
of the coordinate system and recall from Section 2.1 that Nδ is a sphere with center at
this point. We then use (9) together with Ê[h] ≡ E(ξ1, ξ2, ξ3) and the strain components
given by (17) to obtain (M2/2EI2)ξ21 in the integrand on the right hand side of (12).
Using the coordinate transformation

ξ1 = ρ cosθ sinϕ, ξ2 = ρ sinθ sinϕ, ξ3 = ρ cosϕ, (18)

and taking the limits of integration

ρ ∈ (0, δ), ϕ ∈ (0, π), θ ∈ (0, 2π), (19)

we obtain

W
L

x0
[h] =

M2m6

6EI2m4

, (20)

where m4 and m6 are given by the general expression

mn := 4π

∫ δ

0

ω̃(ρ)ρndρ, n = 1, 2, . . . . (21)

Observe from both (13) and (21) that m = m4.
To determine the expressions of hd⟨ξξξ⟩ and φ⟨ξξξ⟩ in (2) for this experiment, first, we use

the definition in (1.b) together with

u⟨ξξξ⟩ := (u(x)− u(x0)) |x=x0+ξξξ (22)

and recall from above that x0 is at the origin to obtain h⟨ξξξ⟩ = u(ρ, ϕ, θ)/ρ, where u(ρ, ϕ, θ)
can be obtained from (16) by using the coordinate transformation in (18) together with
the change of basis

e1 = cosθ sinϕ eρ + cosθ cosϕ eϕ − sinθ eθ,

e2 = sinθ sinϕ eρ + sinθ cosϕ eϕ + cosθ eθ, e3 = cosϕ eρ + sinϕ eϕ.
(23)
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Using the additive decomposition given by (2), we then get the radial and non-radial
components of h⟨ξξξ⟩, which are given by, respectively,

φ⟨ξξξ⟩ = Mρ

2EI
cosθ sinϕ(ν2ϕ− cos2ϕ), (24)

hd⟨ξξξ⟩ =
Mρ

4EI
{−cosϕ cosθ[−3− ν + (1 + ν)cos(2ϕ)]eϕ + 2sinθ(ν2ϕ− cos2ϕ)eθ}.

Next, we substitute the multiplicative decomposition of ω(|ξξξ|, |ηηη|), given by (11), (24),
and the limits of integration in (19) into the expressions (5), (6), and (7) to get

Ŵx0 [h] =α̂11
mm6

840

M2

(EI)2
(24ν2 − 8ν + 3) + α33

mm6

6720

M2

(EI)2
(64ν2 + 16ν + 92)

+ α̂13
πm5

2

3360

M2

(EI)2
(−11ν2 + 20ν − 4),

(25)

where both m ≡ m4 and m6 are given by (21). The terms in (25) that multiply α33 and
α̂13 were calculated by numerical integration.

Substituting the expresion (25) together with (20) into the correspondence relation
(12), we can solve the resulting equation for α̂13, yielding

α̂13 =
140

π

m6 µ

m m2
5

8ν2 − 8ν − 1

11ν2 − 20ν + 4
, (26)

where we have used the expressions of α̂11, α12, and α33 given by (14) and (15).

3 VALIDATION OF EXPRESSIONS FOR MATERIAL CONSTANTS

So far, we have obtained the expressions in both (14) and (15) by considering homoge-
neous deformations in [1] and the uniform torsion of a circular shaft in [2]. We have also
obtained (26) by considering the beam bent by terminal couples in [3]. In that work, x0

is at the origin of the left end of the beam. To verify the validity of these expressions, we
now consider that x0 is an arbitrary point of the beam, calculate both the peridynamic
free energy function using the expressions of the peridynamic constants, given by (14),
(15), and (26), and the classical strain energy density at x0 and then verify that the
correspondence relation (12) is satisfied.

To obtain the infinitesimal strain tensor E evaluated at x0 = (x0, y0, z0), we substitute

ξ1 = ξ̂1 + x0, ξ2 = ξ̂2 + y0, ξ3 = ξ̂3 + z0 (27)

into the expressions in (17), where (ξ̂1, ξ̂2, ξ̂3) are the components of the relative position

vector ξξξ. Using the coordinate transformations in (18) for (ξ̂1, ξ̂2, ξ̂3) and taking the limits
of integration in (19), we obtain

W
L

x0
[h] =

M2

EI2

(
x0

2

2
+

m6

6m

)
, (28)
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where both m = m4 and m6 are given by (21). Observe from (28) that only the first term
within the parentheses depends upon the position x0 and that the remaining term yields
(20).

Next, we use (1.b) together with (22), where u(x) is given by (16), to obtain

h⟨ξξξ⟩ = M

2EI |ξξξ|

({
ξ̂3 (2z0 + ξ̂3) + ν

[
ξ̂21 + 2z0 ξ̂1 − ξ̂2 (2y0 + ξ̂2)

]}
e1

+ 2ν
[
y0 ξ̂1 + (x0 + ξ̂1)ξ̂2

]
e2 − 2

[
z0ξ̂1 + (x0 + ξ̂1)ξ̂3

]
e3

)
.

(29)

Similarly as before, we use (2) to decompose h⟨ξξξ⟩, given by (29), into radial and non-
radial components, given by φ⟨ξξξ⟩ = h⟨ξξξ⟩ ·e⟨ξξξ⟩ and hd⟨ξξξ⟩ = h⟨ξξξ⟩−φ⟨ξξξ⟩e⟨ξξξ⟩, respectively.
Using the coordinate transformation in (18) to write these expressions in spherical coor-
dinates, substituting the resulting expressions in the integrands of (5) thru (7), and using
the limits of integration in (19), we obtain

Ŵx0 [φ e] =
α̂11

2

(
M

EI

)2 [
m2 1

15
(3− 4ν + 8ν2)x0

2 +m6m
3− 8ν + 24ν2

420

]
+ α12

(
M

EI

)2
m2

9
(1− 2ν)2x0

2.

(30)

Observe from (30) that the second term inside the square brackets yields the expression
which multiplies α̂11 in (25) and that the remaining terms are position dependent and
proportional to x0

2.
We use numerical integration to calculate the integrals that multiply α̂13 in (5) and

α33 in (7). We divide the integrands into ten parts that correspond to multiplications
by the ten monomials 1, x0, y0, z0, x0

2, y0
2, z0

2, x0 y0, x0 z0, and y0 z0. Then, we divide
again each one of these parts into terms that multiply 1, ν, and ν2, and, finally, integrate
numerically each one of the resulting parts.

Concerning the integrals that multiply α̂13 above, the ones that multiply terms in
the set {x0, y0, z0, x0

2, y0
2, z0

2, x0 y0, x0 z0, y0 z0} are nearly zero when compared to the
remaining three integrals that multiply 1. These integrals yield[

πm5
2

3360

M2

(EI)2
(−11ν2 + 20ν − 4)

]
, (31)

which is the same expression that multiplies α̂13 in (25).
Concerning the integrals that multiply α33 above, in addition to the position indepen-

dent terms, also the terms that multiply x0
2 do not vanish. A procedure similar to the

one presented above for the calculation of the terms that multiply α̂13 yields

Ŵx0 [hd] = α33
M2

(EI)2

[
m2 (1 + ν)2

x0
2

45
+

mm6

64

(64ν2 + 16ν + 92)

105

]
. (32)

Replacing (30), (31), and (32) into (5) and using the expressions in (14), (15), and (26)
for the peridynamic constants, we finally obtain

Ŵx0 [h] =
M2

EI2

(
x0

2

2
+

m6

6m

)
, (33)
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which is equal to ŴL
x0
[h] in (28), satisfying, therefore, the correspondence relation (12).

4 CONCLUDING REMARKS

The four peridynamic constants that appear in the free energy function defined by (5)
together with (6) and (7) were previously determined using homogeneous deformations,
uniform torsion of a circular shaft and bending of a beam by terminal couples. In this
last experiment results were obtained at a single point of the beam. In this work, we
have verified the validity of the closed form expressions for the peridynamic constants
by considering an arbitrary point of the beam. At the conference we will show results
that further validate the closed form expressions. These results were obtained from dis-
placement fields from classical linear elasticity for both beam bent by terminal load and
circular shaft subjected to anti-plane shear.

In summary, all the results indicate that the correspondence relation (12) is nearly
satisfied for the above experiments. We then see that the values of the peridynamic con-
stants are not dependent on the type of experiment. This work is, therefore, an important
contribution to the development of a three-dimensional state-based peridynamic theory.
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