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Abstract. Using the concept of symplectic subdifferential, a modification of the Hamil-
tonian formalism which can be used for dissipative systems is proposed. The formalism
is specialized to the standard plasticity in small strains and statics. It is applied to solve
the classical problem of a thick tube in plane strain subjected to an internal pressure.
The continuum is discretized with mixed finite elements.

1 INTRODUCTION

Realistic dynamical systems considered by engineers and physicists are subjected to
energy loss. It may stem from external actions, the conservative case. The behaviour
of such systems can be represented by Hamilton’s least action principle. If the cause
is internal, resulting from a broad spectrum of phenomena such as collisions, surface
friction, viscosity, plasticity, fracture, damage and so on, it’s called dissipative. Hamilton’s
variational principle doesn’t work for such systems, so another principle is proposed.

Classical dynamics are generally addressed through the world of smooth functions
while the mechanics of dissipative systems deals with the one of non smooth functions.
Unfortunately, both worlds widely ignore each other. Aim of this article is laying strong
foundations to link both worlds and their corresponding methods.

2 NON DISSIPATIVE SYSTEMS

The variables of a dynamical systems are z = (x, y) ∈ X × Y where the degrees of
freedom x describe the body motion and y are the corresponding momenta. X and Y are
topological, locally convex, real vector spaces. There is a dual pairing 〈·, ·〉 : X × Y → R
which makes continuous the linear forms x 7→ 〈x, y〉 and y 7→ 〈x, y〉.

The space X × Y has a natural symplectic form ω : (X × Y )2 → R defined by :

ω(z, z′) = 〈x, y′〉 − 〈x′, y〉

For any smooth hamiltonian function (x, t) 7→ H(x, t), the symplectic gradient (or Hamil-
tonian vector field) is defined by ż = XH ⇔ ∀δz, ω(ż, δz) = δH. In the particular case
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X = Y , the dual pairing is a scalar product and the space X × Y is dual with itself, with
the duality product :

〈〈(x, y), (x′, y′)〉〉 = 〈x, x′〉+ 〈y, y′〉

Introducing the linear map J(x, y) = (−y, x) and putting ω(z, z′) = 〈〈J(z), z′〉〉 which
allows to recover the canonical equations governing the motion :

ẋ = gradyH, ẏ = −gradxH (1)

3 DISSIPATIVE SYSTEMS

For such systems, the cornerstone hypothesis is to decompose the velocity in the phase
space into reversible and irreversible parts :

ż = żR + żI , żR = X H, żI = ż − X H

For a non dissipative system, the irreversible part vanishes and the motion is governed by
the canonical equations. A crucial turning-point is the tools of the differential geometry
to the ones of the non smooth mechanics. Starting with a dissipation potential φ, it is
not differentiable everywhere but convex and lower semicontinuous. Introducing a new
subdifferential, called symplectic [1]. Mere sleight of hand, all what have to do is to
replace the dual pairing by the symplectic form in the classical definition :

żI ∈ ∂ωφ(ż) ⇔ ∀ż′, φ(ż + ż′)− φ(ż) ≥ ω(żI , ż
′) (2)

From a mechanical viewpoint, it is the constitutive law of the material. Likewise, defining
a symplectic conjugate function, by the same sleight of hand in the definition of the
Legendre-Fenchel transform :

φ∗ω(żI) = sup
ż
{ω(żI , ż)− φ(ż)}

satisfying a symplectic Fenchel inequality :

φ(ż) + φ∗ω(żI)− ω(żI , ż) ≥ 0 (3)

The equality is reached in the previous relation if and only if the constitutive law (2) is
satisfied.

Remarks. Always in the case X = Y , taking into account the antisymmetry of ω :

〈〈DzH, ż〉〉 = 〈〈J (X H), ż〉〉 = ω(X H, ż) = ω(ż, ż −X H) = ω(ż, żI)

If one supposes that for all couples (ż, żI) :

φ(ż) + φ∗ω(żI) ≥ 0

the system dissipates for the couples satisfying the constitutive law :

〈〈DzH, ż〉〉 = −ω(żI , ż) = −(φ(z, ż) + φ∗ω(z, żI)) ≤ 0

2
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4 THE SYMPLECTIC BREZIS-EKELAND-NAYROLES PRINCIPLE

The variational formulation can be obtained by integrating the left hand member of
(3) on the system evolution. On this ground, a symplectic version of the Brezis-Ekeland-
Nayroles (BEN) variational principle [2] is proposed :

The natural evolution curve z : [t0, t1]→ X × Y minimizes the functional :

Π(z) :=

∫ t1

t0

[φ(ż) + φ∗ω(ż −XH)− ω(ż −XH, ż)] dt

among all the curves verifying the initial conditions z(t0) = z0 and, remarkably, the
minimum is zero. Observing that ω(ż, ż) vanishes and integrating by part, the variant is
given (which is not compulsory) :

Π(z) =

∫ t1

t0

[φ(ż) + φ∗ω(ż −XH)− ∂H

∂t
(t, z)] dt +H(t1, z(t1))−H(t0, z0)

5 APPLICATION TO THE STANDARD PLASTICITY AND VISCOPLAS-
TICITY

To illustrate the general formalism and to show how it allows to develop powerful
variational principles for dissipative systems within the frame of continuum mechanics,
the standard plasticity and viscoplasticity in small deformations based on the additive
decomposition of strains into reversible and irreversible strains (ε = εR + εI where εI
is the plastic strain) are studied. Let Ω ⊂ Rn be a bounded, open set, with piecewise
smooth boundary ∂Ω. As usual, it is divided into two disjoint parts, ∂Ω0 (called support)
where the displacements are imposed and ∂Ω1 where the surface forces are imposed. The
elements of the space X are fields x = (u, εI) ∈ U × E where u is a displacement field
on the body Ω with trace ū on ∂Ω. The elements of the corresponding dual space Y
are of the form y = (p,π). Unlike p which is clearly the linear momentum, the physical
meaning of π is not known at this stage.

The duality between the spaces X and Y has the form :

〈x, y〉 =

∫
Ω

(〈u,p〉+ 〈εI ,π〉)

where the duality products which appear in the integral are finite dimensional duality
products on the image of the fields u,p (for our example this means a scalar product on
R3) and on the image of the fields ε,π (in this case this is a scalar product on the space
of 3 by 3 symmetric matrices). All these standard dualities are denoted by the same 〈·, ·〉
symbols.

The total Hamiltonian of the structure is taken of the integral form :

H(t, z) =

∫
Ω

{
1

2ρ
‖ p ‖2 +w(∇u− εI)− f(t) · u

}
−
∫
∂Ω1

f̄(t) · u

The first term is the kinetic energy, w is the elastic strain energy, f is the volume force
and f̄ is the surface force on the part ∂Ω1 of the boundary, the displacement field being
equal to an imposed value ū on the remaining part ∂Ω0.

3
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According to (1), its symplectic gradient is XH = ((DpH,DπH), (−DuH,−DεIH))
where, introducing as usual the stress field σ = Dw(∇u−εI) DuH which is the gradient
in the variational sense (from (1) and the integral form of the duality product) :

DuH =
∂H

∂u
−∇ ·

(
∂H

∂∇u

)
= −f −∇ · σ DūH = σ · n− f̄

Thus one has :

żI = ż −XH =

((
u̇− p

ρ
, ε̇I

)
, (ṗ− f −∇ · σ, π̇ − σ)

)
A dissipation potential which has an integral form is given as Φ(z) =

∫
Ω
φ(p,π) and one

assumes the symplectic Fenchel transform of Φ expresses as the integral of the symplectic
Fenchel transform of the dissipation potential density φ.

The symplectic Fenchel transform of the function φ reads :

φ∗ω(żI) = sup {〈u̇I , ṗ′〉+ 〈ε̇I , π̇′〉 − 〈u̇′, ṗI〉 − 〈ε̇′I , π̇I〉 − φ(ż′) : ż′ ∈ X × Y }

To recover the standard plasticity, supposing that φ is depending explicitly only on π̇ :

φ(ż) = ϕ(π̇) (4)

Denoting by χK the indicator function of a set K (equal to 0 on K and to +∞ otherwise) :
φ∗ω(żI) = χ{0}(u̇I)+χ{0}(ṗI)+χ{0}(π̇I)+ϕ∗(ε̇I) where ϕ∗ is the usual Fenchel transform.
In other words, the quantity φ∗ω(żI) is finite and equal to φ∗ω(żI) = ϕ∗(ε̇I) if and only if
all of the following are true :

(a) p equals the linear momentum
p = ρu̇ (5)

(b) The balance of linear momentum is satisfied

∇ · σ + f = ṗ = ρü on Ω, σ · n = f̄ on ∂Ω1 (6)

(c) An equality which reveals the meaning of the variable π :

π̇ = σ (7)

Eliminating π̇ by (7), the symplectic BEN principle applied to standard plasticity
states that the evolution curve minimizes :

Π(z) =

∫ t1

t0

{
ϕ(σ) + ϕ∗(ε̇I)−

∂H

∂t
(t, z)

}
dt +H(t1, z(t1))−H(t0, z0) (8)

among all curves z : [t0, t1]→ X×Y such that z(0) = (x0, y0), the kinematical conditions
on ∂Ω0, (5), (6) are satisfied. For instance, in plasticity, the potential ϕ is the indicator
function of the plastic domain.

Remark. The assumption that u, εI and p are ignorable in (4) comes down to intro-
duce into the dynamical formalism a ”statical” constitutive law : ε̇I ∈ ∂ϕ(π̇) = ∂ϕ(σ).
Conversely, the symplectic framework suggests to imagine fully ”dynamical’ constitutive
laws of the more general form : (u̇, ε̇I) ∈ ∂ωφ (ṗ, π̇).

4
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The symplectic BEN principle and the original BEN principle. Examining the
important case where the kinetic energy and inertia forces can be neglected (quasi-static
behaviour) gives :

ṗ = 0, H(t, z) =

∫
Ω

{w(∇u− εI)− f(t) · u} −
∫
∂Ω1

f̄(t) · u

and the elasticity is linear :

ε̇I = ∇u̇− Sσ̇ (9)

denoting S = (Dw)−1 the compliance operator. Eliminating π and p thanks to (5) and
(7), the symplectic BEN principle (8) is transformed and claims that the evolution curve
minimizes :

Π(σ, u̇) =

∫ t1

t0

{
ϕ(σ) + ϕ∗(∇u̇− Sσ̇)− ∂H

∂t
(t, z)

}
dt +H(t1, z(t1))−H(t0, z0) (10)

among all curves u : [t0, t1] → U satisfying the kinematical conditions on ∂Ω0 and all
curves σ : [t0, t1]→ E such that σ(0) = σ0 and

∇ · σ + f = 0 on Ω, σ · n = f̄ on ∂Ω1 (11)

are satisfied. This expression can be transformed as follows for sake of easiness :

〈l(t), u〉 =

∫
Ω

f(t) · u+

∫
∂Ω1

f̄(t) · u

Then ∂H
∂t

(t, z) = −〈l̇(t),u〉. In the other hand : d
dt

[H(t, z(t))] = 〈σ,∇u̇− ε̇I〉−〈l(t), u̇〉−
〈l̇(t), u〉. For the minimizer, the kinematical conditions on ∂Ω0 and the equilibrium equa-
tions (11) are satisfied and using Green’s formula :

〈σ,∇u̇〉 = 〈l(t), u̇〉 (12)

that leads to d
dt

[H(t, z(t))]− ∂H
∂t

(t, z) = −〈σ, ε̇I〉.
Time-integrating, replacing in (10) and taking into account (9) leads to the original

BEN principle [3, 4]. The evolution curve minimizes :

Π(σ, , u̇) =

∫ t1

t0

{ϕ(σ) + ϕ∗(∇u̇− Sσ̇)− 〈σ,∇u̇− Sσ̇〉} dt (13)

among all curves u : [t0, t1] → U satisfying the kinematical conditions on ∂Ω0 and all
curves σ : [t0, t1]→ E and the equilibrium equations (11) are satisfied.

5
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6 THE THICK TUBE PROBLEM

A thick tube which has internal radius a and external one b in plane strain and is
subjected to an internal pressure p > 0 monotonic increasing from zero is studied. The
material is elastic perfectly plastic and isotropic with Tresca model and yield stress σY .
The initial stresses and displacements are null. To ensure in statical equilibrium, the
pressure must not overcome the limit value. And the dissipation potential is: ϕ(σ) =∫

Ω
χK(σ).
The elastic domain is shown below with s the stress deviator tensor :

K = {σ such that σθθ − σrr − σY ≤ 0}

The inelastic strain rate ε̇I is plastic and denoted ε̇p. The Fenchel conjugate is obtained
combining this rule with the expression of the dissipation power by unit volume and the
yield condition :

D = σ : ε̇p = σY ε̇
p
θθ

As ε̇pθθ must be non negative, the Fenchel conjugate function is :

ϕ∗(ε̇p) =

∫
Ω

{
σY ε̇

p
θθ + χR+(ε̇pθθ)

}
In plane strain and axisymmetry, the displacement is radial. Taking into account the
previous assumptions, the functional (13) becomes :

Π̄(σ,u) =

∫ t1

t0

{
(

∫
Ω

χK(σ) + σY ε̇
p
θθ + χR+(ε̇pθθ)− 〈σ,∇u̇− Sσ̇〉

}
dt

In this problem, there is no supports (∂Ω0 = ∅).
As the minimum is certainly finite, this amounts to minimizing :

Π̄(σ,u) =

∫ t1

t0

{
(

∫
Ω

σY ε̇
p
θθ)− 〈σ,∇u̇− Sσ̇〉

}
dt (14)

among all the curves among all curves (σ,u) : [t0, t1] → U × E such that σ(0) = 0,
u(0) = 0, satisfying the Tresca yield condition. The normality rule and the equilibrium
equations :

d

dr
(r σrr) = σθθ for a < r < b, σrr(a, t) = −p(t), σrr(b, t) = 0 (15)

7 MIXED FINITE ELEMENT OF THICK TUBE

The continuum is discretized with mixed finite elements. The continuum mechanics
requires only the continuity of the radial stress across a section r = Cte but the hoop stress
is also continuous for the exact solution, an axisymmetric element occupying a volume
α < r < β with four stress connectors is proposed :

g1 = σrr |r=α, g2 = σθθ |r=α, g3 = σrr |r=β, g4 = σθθ |r=β (16)

6
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The choice of a polynomial statically admissible stress field is guided by the aim to avoid
the global (or structural) equilibrium equations in the constrained minimization problem.
Only remains the local yield condition.

For the stress field being defined by the four connectors : σrr = h1 +h2r+h3r
2 +h4r

3.
Using the internal equilibrium equation in (15), the hoop stress is : σθθ = h1 + 2h2r +
3h3r

2 + 4h4r
3. In matrix form, the stress field in terms of stress parameters reads :

[
σrr
σθθ

]
= σe(r) = Re(r)he =

[
1 r r2 r3

1 2 r 3 r2 4 r3

] 
h1

h2

h3

h4


The stress connectors (16) are linearly depending on the stress parameters: ge = Cehe.
With the connection matrix :

Ce =


1 α α2 α3

1 2α 3α2 4α3

1 β β2 β3

1 2 β 3 β2 4 β3


Eliminating the stress parameters provides the stress field in terms of stress connectors :

σ(r) = Re(r)C
−1
e ge = Te(r)ge

The displacement field is proposed : ur = u1 + u2r + u3r
2 + u4r

3 to provide a strain field
with the same number of parameters as the one of the stress field.

εrr =
dur
dr

= u2 + 2u3r + 3u4r
2, εθθ =

ur
r

=
u1

r
+ u2 + u3r + u4r

2

There is two connectors: q1 = ur |r=α and q2 = ur |r=β. Considering two intermediate
equidistant nodes of position :

γ =
2α + β

3
, δ =

α + 2 β

3

Introducing two extra degrees of freedom internal to the element (not connected with the
other ones) : q3 = ur |r=γ and q4 = ur |r=δ. By defining a cubic Lagrange interpolation,
one has :

ur(r) = Ne(r) qe

with :

NT
e (r) =

1

16


−(1− ρ) (1− 9 ρ2)
−(1 + ρ) (1− 9 ρ2)
9 (1− ρ2) (1− 3 ρ)
9 (1− ρ2) (1 + 3 ρ)



7
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where ρ = 2 r−(β+α)
β−α . The corresponding strain field can be expressed in term of the nodal

displacement :

ε(r) =

[
εrr
εθθ

]
=

 dNe

dρ

dρ

dr
Ne

r

 qe = Be(r) qe

After calculation, one has:

Be(r) =
1

16
∗[

J (1 + 18 ρ− 27 ρ2) J (−1 + 18 ρ+ 27 ρ2) J (−27− 18 ρ+ 81 ρ2) J (27− 18 ρ− 81 ρ2)

−1

r
(1− ρ) (1− 9 ρ2) −1

r
(1 + ρ) (1− 9 ρ2)

9

r
(1− ρ2) (1− 3 ρ)

9

r
(1− ρ2) (1 + 3 ρ)

]

with J =
dρ

dr
= 2

β−α .

7.1 Space discretization of the principle

As usual, the integral are approximated by numerical integration (g = 4 for example)
on every element : ∫ β

α

A(r) 2π r dr ∼=
4∑
g=1

wgA(rg) 2π rg

So the total dissipation power in the element reads
∫ β
α
D(r) 2π r dr = ΛT

g λ̇g with :

Λe =

 w1 2π r1

· · ·
w4 2π r4

 , λ̇e =

 λ̇1

· · ·
λ̇4


Performing the assembling thanks to the localization matrices Me,Le,Pe such that :

ge = Meg qe = Leq, λ̇e = Peλ̇

the discretized form of the functional (14) is :

Π̄(g, q, λ̇) =

∫ t1

t0

(ΛT λ̇(t)− q̇T (t)Gg(t) + ġT (t)F g(t)) dt (17)

with :

Λ =
n∑
e=1

P T
e Λe,

G =
n∑
e=1

∫ β

α

LTeB
T
e (r)Te(r)Me 2π r dr, F =

n∑
e=1

∫ β

α

MT
e T

T
e (r)S Te(r)Me 2 π r dr

The BEN claims that it needs to find the minimum of (17) with respect to the path
t 7→ (g(t), q(t), λ̇(t)) under the constrains of :

8
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• Equilibrium (on the boundary, the internal equilibrium being satisfies a priori) :

g1(t) = −p(t), g2 (n+1)(t) = 0

• Plasticity (at every integration point g of every element e) :

NT
Y,e(rg)g − σY ≤ 0, λ̇g ≥ 0, NY λ̇g = Be(rg) q̇e − S Te(rg) ġe

• Initial conditions :

g(t0) = 0, q(t0) = 0, λ̇(t0) = 0

With NY,e(r) = MT
e T

T
e (r)NY , NT

Y = [−1 1].

7.2 Time discretization of the functional

For the time discretization of any physical quantity a, putting aj = a(tj), ∆aj =

aj − aj−1. On each step, one approximates the time rates by ȧ =
∆aj
∆tj

. As the plasticity is

independent of the time parameterization in statics, for convenience, proposing: ∆tj = 1.
Considering m time step from t0 to tm and enforcing the yield condition only at the
beginning and the end of the step, it has to minimize the objective function:

Π̄(g0, · · · , gm, q0, · · · , qm, λ̇0, · · · , λ̇m) =

j=m∑
j=1

(ΛT λ̇j −∆qTj Ggj + ∆gTj F gj) (18)

under the constrains of :

• Equilibrium (on the boundary, at each time step) :

g0,j = −p(tj), g2 (n+1)−1,j = 0

• Plasticity (at every integration point g of every element e and at every time step) :

NT
Y,e(rg)gj − σY ≤ 0, λ̇g,j ≥ 0, NY (rg)λg,j = Be(rg)Le∆qj − S Te(rg)Me∆gj

• Initial conditions :
g0 = 0, q0 = 0, λ̇0 = 0

8 SIMULATION RESULTS

The thick tube has an internal radius a = 100 mm and external one b = 200 mm.
A perfect plasticity material with Young modulus E = 210000 MPa, Poisson’s ratio
ν = 0.3 and yield stress σY = 360 MPa is chosen. Program is coded with Matlab, solver
fminsearch is used to find the local minimum of functional with values of starting points
are always 0.1 for all local values. In simulation, the pressure history t 7→ p(t) is imposed
firstly in statics, the number of elements and time steps are given. By using the results
of pre-processing, local minimum of the functional (18) is calculated.

In here, the thick tube is molded by one, three and six elements (ne = 1, 3, 6) with
two time steps, the first time step is initial conditions for both elastic and elasto-plastic
regimes.

9
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8.1 Elastic regime

In elastic regime, numerical solutions are compared to analytical solution (Fig. 1).
Imposed pressure is 100 MPa which is smaller than elastic limit.
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Figure 1: Comparison of local values in elastic regime

With only one time step, stress and radical displacement field converge to analytical
solution by increasing number of elements. BEN method works well in elastic regime.

8.2 Elasto-plastic regime

In this regime, numerical solutions of Cast3M [5] are reference solutions (Fig. 2) because
analytical one not exists anymore. Imposed pressure is 200 MPa which is bigger than
elastic limit but smaller than limit charge.

Like in elastic regime, with one time step, stress, radical displacement and plastic
multiplier field converge to reference solution by increasing number of element. BEN
method works well in elasto-plastic regime.

9 CONCLUSIONS AND FUTURE WORKS

The symplectic Brezis-Eleland-Nayroles principle makes it possible to have a coherent
view of the global evolution by calculating all the steps simultaneously. With the present
results, it can prove that this method is robust.

Next step is to test this method in dynamic case with a cyclic charge. Moreover, as
this principle is space-time, the resolution is more expensive, hence the idea of combining
it with a model reduction method such as the PGD (Proper Generalized Decomposition).
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Figure 2: Comparison of local values in elasto-plastic regime
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