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Abstract. Dams are fundamental infrastructures for energy production, flood control
and agricultural-industrial sustenance. Most of them were built before the introduction
of seismic regulations with no concerns about their dynamic behaviour. Nevertheless, in
recent years, the international scientific community has been paying close attention to the
seismic risk of existing dams.
Concrete gravity dams have never failed during earthquakes, so no case studies are avail-
able and their seismic behaviour can only be explored and investigated using numerical
approaches. For this reason, finite element models must be calibrated through reliable
procedures to obtain a sensible result. In this scenario, measurements acquired by a mon-
itoring system and data from in-situ tests have taken on a major role as important sources
of information.
Methods usually employed for this purpose require a low computational burden, however
they are characterised by a high level of uncertainty. Probabilistic methods may be suit-
able to solve this inverse problem, but they always require considerable computing power,
due to the high number of analyses needed, especially when stochastic finite elements are
involved. In this paper, a procedure for the model parameters calibration in a Bayesian
context is proposed. The novelty of this study is the use of a proxy model replicating
the mechanical behaviour of a dam, in order to reduce the computational burden. This
approach also allows us to estimate the global model error.
Two models, a single monolith and a complete 3D model of a large Italian dam, have
been considered. After comparing the errors of different approaches, the best model sim-
ulating the observed behaviour of the dam was selected. The efficiency of the proposed
methodology is also evaluated.



A. De Falco, M. Mori and G. Sevieri

1 INTRODUCTION

Concrete gravity dams are a key component of the worldwide energy production sys-
tem, but they are also used to control floods, for industrial purposes and more. Nowadays
for environmental reasons only few new dams are being built in developed countries. A
large part of the existing ones have been designed before the introduction of seismic reg-
ulation or have been built in those regions classified as seismic in a later time [1] and now
they are ageing out fast. Therefore, in the recent years the scientific community has been
paying more attention on the seismic assessment of dams, by evaluating their dynamic
behaviour via numerical models [2].
In this scenario, reliable numerical models are fundamental and all available information
about the structure must be used to reduce uncertainties. Two important sources in
this regard are in situ tests and data recorded by the monitoring system during normal
operation of the dam. The static monitoring system of concrete gravity dams usually
acquires displacements of some significant points of the structure, together with environ-
mental data as water level and air and water temperatures [4]. Several different methods
to calibrate numerical model parameters are available in literature [3].
This paper proposes a procedure defined in a Bayesian framework which represents one of
the first applications to concrete dams. The novelty lies in the approximation of the model
response via a proxy model obtained through the general Polynomial Chaos Expansion
technique (gPCE). For the sake of simplicity, in this first application only displacements
due to basin level variations have been considered, by extracting them from total data as
indicated in literature [3].
In paragraph 2 the probabilistic model is introduced for the general case and for concrete
dams; in paragraph 3, the Bayesian updating is shown with focus on the likelihood func-
tion, on the definition of prior and proposal distributions and on the numerical algorithm;
in paragraph 4 a brief review of the general polynomial chaos expansion is reported: in
paragraph 5 the procedure is applied to the case of an Italian concrete gravity dam.

2 PROBABILISTIC MODEL

In this section, the probabilistic model for the FE model parameters updating of con-
crete dams is presented. The main sources of uncertainties are due to the measurement
system, the deterministic model, the proxy model and the data pre-processing step. Fol-
lowing Gardoni [5], an additional set of explanatory functions accounts for the bias related
to the other phenomena which are not included in the model. Generally, Bayesian updat-
ing procedures are computationally expensive, becoming prohibitive in conjunction with
FE models with a large number of degrees of freedom. For this reason, in the present
work a proxy model [6] has been created to reduce the computational burden, as it will
be explained in detail in the paragraph 4.

2.1 General Formulation

In the present work a probabilistic additive model has been used to link the output of
the deterministic model with recorded data. Let x the vector of the uncertain parameters
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of the deterministic model, the q-variate probabilistic model can be written as follows

Ck,i(x, θθθk,Σ) = ĉk,i(x) + γk,i(x, θθθk) + σkεk,i k = 1, ..., q (1)

where γk =
∑N

n=1 θn,khn,k is the k-th correction term, that is a combination of the N
explanatory functions hn,k via the combination coefficients collected in the vector θθθk;
Ck,i(x, θθθk,Σ) is either the i-th value of the k-th measure recorded by the monitoring
system, or its transformation; ĉk,i(x) is either the i-th value of the k-th response of the
deterministic model, or its transformation; εk,i are normal random variables with zero
mean and unit variance, σk is the k-th standard deviation of the probabilistic model error
and Σ is the covariance matrix of the random variables σkεk. The additive corrected
model is valid when the following assumptions are satisfied:

(a) the model standard deviation is independent of x (homoskedasticity assumption)
and

(b) the model error has the normal distribution (normality assumption).

Sometimes, in order to satisfy the homoskedasticity assumption, the reference parame-
ter must be transformed using the family functions reported in Yang [7]; in this case a
logarithmic function has been used.

2.2 Application of the probabilistic model to concrete gravity dams

The aim of this work is the updating of the materials mechanical parameters, by means
of data recorded by static monitoring system. Materials have been assumed linear elastic,
since static displacements are really small in comparison to the characteristic dimension
of the system and the stress level is extremely limited, well below the material strength.
The mechanical behaviour of elastic materials is completely described by the fourth-order
constitutive matrix C [8], whose components may be treated as random variables in a
Bayesian updating procedure.
In this work, the reference measure is the displacement of a control point recorded
only in the upstream/downstream direction. If the displacement data were available
both upstream-downstream and in the cross-valley direction, it might be worthwhile to
update the parameters of an orthotropic material through a multivariate probabilistic
model. Conversely, when only upstream-downstream measurements are available, as in
the present case, mechanical parameters along the cross-valley have little influence on
the structural deformability in the upstream-downstream direction, so the assumption of
isotropic material is the best choice. Thus the matrix C becomes as in equation (2).
Uncertainties parametrization for elastic materials by selecting the bulk modulus K and
the shear modulus G as random variables is a particularly convenient choice, since these
are physically and statistically independent. By choosing log-normal distributions for K
and G, the elastic constitutive matrix is positive defined. In this paper, K and G of both
concrete and foundation soil have been treated as random variables and collected in the
x vector. Furthermore, since the displacement of a control point in one direction only is
considered, a uni-variate form of the probabilistic model can be adopted.
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C =


K + 4G/3 K − 2G/3 K − 2G/3 0 0 0
K − 2G/3 K + 4G/3 K − 2G/3 0 0 0
K − 2G/3 K − 2G/3 K + 4G/3 0 0 0

0 0 0 G 0 0
0 0 0 0 G 0
0 0 0 0 0 G

 (2)

Let δQi (x) the i-th value of the recorded displacement related to the basin level variation

and δ̂Qi (x) the i-th value of the reference displacement obtained as deterministic model
output, and using logarithmic transformation functions to satisfy the homoskedasticity
assumption, the probabilistic model can be written as follows

ln
(
δQi (x, θθθ, σ)

)
= ln

(
δ̂Qi (x)

)
+ γi(x, θθθ) + σε (3)

In this special case, only one explanatory function h0 = 1 has been introduced to cap-
ture the potential bias representing the discrepancy between the measured data reference
system and the one of the FE model displacements.

3 BAYESIAN UPDATING VIA MONTE CARLO MARKOV CHAIN (MCMC)

All the uncertain parameters are collected in the vector Θ = (x, θθθ, σ)T , where x con-
tains the unknown material parameters, σ is the global error standard deviation and θθθ is
the combination coefficients vector. The prior state of knowledge about Θ, called prior
distribution p(Θ), is updated via the well-known Bayes rule [9], using the new informa-
tion y about the system. The posterior distribution p(Θ|y), which represents the updated
state of knowledge about the parameters Θ, is obtained as follows

p(Θ|y) = κL(Θ|y)p(Θ) (4)

where κ =
[∫
L(Θ|y)p(Θ)dΘ

]−1
is the normalizing factor and L(Θ|y) is the likelihood

function. Since the global error is normally distributed, the likelihood function can be
defined as follows [10, 11]

L(x, θθθ, σ) ∝
l∏

i=1

{
1

σ
ϕ

[
ri(x, θθθ)

σ

]}
(5)

where ϕ(•) is the standard normal density function and ri(x, θθθ) is the i-th residual

ri(x, θθθ) = ln
(
δQi (x, θθθ, σ)

)
− ln

(
δ̂Qi (x)

)
− γi(x, θθθ) (6)

Once the probabilistic model is defined, the choice of the solution procedure is fundamen-
tal. In real problems a closed-form solution cannot usually be performed, then numerical
procedures are needed. Several different numerical approaches for the determination of
the posterior distribution are available. In this work Monte Carlo Markov Chain (MCMC)
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with Metropolis-Hastings algorithm [12] has been implemented. This particular approach
is powerful and versatile because it can draw samples from any target probability density
function π for the uncertain parameters Θ, since it only requires the pdf can be calculated
at Θ . Moreover, the new proposed parameter samples Θ∗ are generated by a proposal
density function q (Θt,Θ

∗), depending on the current state of the chain Θt. The proposal
Θ∗ can be accepted as next state of the chain Θt+1 = Θ∗ with acceptance probability
α (Θt,Θ

∗), or can be rejected otherwise. The specification of the probability α allows
generating a Markov chain with desired target density π.
On the other hand, MCMC requires a large analyses number to reach convergence and,
for this reason its application with FE models could be prohibitive. In this work, a proxy
model based on the gPCE has been used in order to reduce the computational burden
[13]. Nevertheless, the proxy model introduces an additional error (included in the global
error of the equation 3), due to the differences between the FE model output and the
proxy model response.

3.1 Prior distributions

Prior distributions represent the initial state of knowledge about the uncertain parame-
ters. Their definition is a fundamental step in the updating procedure, particularly when
few new information is available. Usually, in the case of dams, results of survey cam-
paigns are available, allowing a precise definition of prior distributions of the materials
mechanical parameters, i.e. K and G. When no information are available, as in the case
of the combination coefficients collected in θθθ and the global error standard deviation σ,
non-informative prior distributions have to be used, to avoid affecting updating result.
Following Gardoni [10], non-informative priors can be written as follows

p(σ) ∝ 1

σ
(7)

p(θθθ) ∝ θn
σ

(8)

Thus, in this case, given the large amount of observed data, any reasonable choice of the
prior has little influence on the posterior estimates of the mechanical parameters.

3.2 Convergence diagnostic

Convergence diagnostic is used to determine whether the samples generated by MCMC
are representative of the underlying equilibrium distribution. In this paper, the commonly
used diagnostics metric proposed by Brooks and Gelman [14] has been adopted. The con-
vergence of Markov chain simulation is reached when inferences for quantities of interest
do not depend on the starting point. Monitoring convergence is obtained by compar-
ing several inferences performed with different starting points. The diagnostics metric is
based on the calculation of the Multivariate Potential Scale Reduction Factor (MPSRF)
R̂p in the multivariate case shown as follows

R̂p = max
a

aT V̂a

aTWa
(9)
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where V̂ is the total variance extended to the multivariate case, W is the within-sequence
variance extended to the multivariate case and a is a vector used to achieve the maximum
value of the ratio.
In general, MPSRF is defined as the ratio between total variance and within-sequence
variance. It represents the upper bound of the maximum of the univariate Potential
Scale Reduction Factor (PSRF) statistics R̂ among variables. When the convergence is
reached, the between-sequence variance should be negligible, obtaining R̂p = 1. Usually,
R̂p = 1.1 is considered as acceptable, but when the dimension of the problem increases, a
convergence criterion R̂p = 1.5 is allowed [14].

4 GENERAL POLYNOMIAL CHAOS EXPANSION

The general Polynomial Chaos Expansion (gPCE) is an uncertainties propagation tech-
nique through a deterministic model, which also allows building a proxy model, called
response surface [6], which can be used in the updating procedure.
The uncertain structural response u(x), which is a function of the set of unknown pa-
rameters collected in x, can be described in a probabilistic space defined by the triplet
(Ω,F,P): where Ω is the space of all events, F is the σ-algebra and P the probability mea-
sure. Assuming that u(x) is smooth enough to be represented in terms of some simple
random variables ζ(x) (e.g. Gaussians, uniform, etc.), via the PCE [15] the structural
response can be approximated by uN(ζ(x)), defined as follows

u(ζ(x)) ≈ uN(ζ(x)) =
∑
α∈I

u(α)Ψα(ζ(x)) (10)

where Ψα(ζ(x)) represents the multivariate orthogonal polynomials with finite multi-index
set I and u(α) are the polynomial coefficients. Exploiting the orthogonality condition, all
statistics can be retrieved from gPCE in a straightforward manner, as in the case of the
expected values, defined as follows

E [u(ζ(x))] ≈ E [uN(ζ(x))] =

∫ ∑
α∈I

u(α)Ψα(ζ(x))dFζ(x)ζ(x) = u0 (11)

The polynomial coefficients u(α) are determined based on the deterministic model solu-
tions, e.g. FE models. Several different approaches are available to solve this task. In
this work a regression procedure which minimize the error between the gPCE and the
model response has been used. The choice of maximum polynomial degree and analyses
number must consider both the accuracy of the result and the computational burden.
Moreover, the choice of the polynomial family depends on the probability distributions of
the unknown parameters, as accurately indicated in Xiu [6].
Finally, the model sensitivity analysis can be performed very easily using the gPCE. In
this work Sobols coefficients [16] allow determining the influence of each model parameter
on the final results.
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5 CASE OF STUDY

The procedure has been applied to the case of an Italian gravity dam, composed by 11
monoliths separated with vertical contraction joints. Its maximum height is 108 m and it
has a curved shape in plan, with curvature radius of 150 m and crest length of 234.25 m.
The proposed model makes use of static displacements due to basin level variations during
dam normal operation. To this aim, displacements have been previously processed to
eliminate their thermal variations related part.
Two models have been set up: a complete 3D model with bonded monoliths and a 3D
single monolith model, representing only the central spillway monolith. Both models
shown in Figure 1 have been created in ANSYS r17 [17]. The complete 3D model, whose
mesh is composed of 29981 second order Hex-dominant elements, is restrained along the
three directions at the base and along the horizontal directions on the sides. The single
monolith model is made of 3587 second order Hex-dominant elements and is laterally
unrestrained. The reference parameter is the displacement of a control point placed in
the upper part of the central spillway monolith, where displacements recorded by the
inverse pendulum are available. The unknown model parameters are the elastic moduli
of the concrete Kcls and Gcls and those of the foundation soil Ksoil and Gsoil. The prior
distributions of the model parameters have been defined basing on in-situ tests results.
The global error standard deviation σ and the combination coefficients of the explanatory
functions θθθ have been treated as random variables and updated. Since no information
about σ and θθθ are available, their prior distributions have been defined as non-informative.
The prior distributions statistics of the mechanical parameters are shown in table 1.

Table 1: Prior distributions of the mechanical parameters

Kcls [MPa] Gcls [MPa] Ksoil [MPa] Gsoil [MPa]
distributions LN LN LN LN
mean values 12148 8364.2 41000 23428

standard deviations 4915.1 3384.2 9393.1 5367.4

Basin levels data and control point displacements recorded during normal operation of
the dam are the information available to update the probabilistic model. Dam displace-
ments are previously processed according to De Sortis [3], in order to separate thermal
and basin level related displacement contributions. The latter are shown in figure 2.
The first step of the procedure is the composition of the proxy models; the maximum
polynomial degree has been set equal to 3 and a complete basis has been built requiring
1024 analyses for each model. The sensitivity analysis of the proxy model provided the
Sobols coefficients of the two models, as shown in figure 3. Sobols coefficients related to
concrete and soil parameters of the two models must be analysed in comparative terms.
Their values are so low in comparison to the Sobols coefficient of the basin level variation
which is not shown here. Anyway, in both models the most significant parameters are
those of the concrete.
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Figure 1: Single monolith model and 3D complete model
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Figure 2: Control point displacements (left) and basin level (right)

Table 2: Posterior distributions of the 3D complete model parameters

Kcls [MPa] Gcls [MPa] Ksoil [MPa] Gsoil [MPa] σ
mean values 12149 8653.9 40769 22517 0.0332

standard deviations 220.17 152.05 553.10 169.53 0.0016

Table 3: Posterior distributions of the single monolith model parameters

Kcls [MPa] Gcls [MPa] Ksoil [MPa] Gsoil [MPa] σ
mean values 36264 23545 40224 22571 0.0661

standard deviations 8436.5 5152.5 3032.3 958.29 0.0984
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Figure 3: Sobols coefficients: 3D complete model and single monolith model

Unknown parameters have been updated using the proxy models and the results in
terms of mean and variance values are reported in table 2 and 3. In figure 4 the comparison
between prior and posterior distributions is shown and, in figure 5, the effects of the model
parameters updating are shown in terms of residuals.
The convergence of the MCMC algorithm has been checked according to the paragraph
4.2, considering R̂p = 1.5. As for the single monolith model, updated values of the mean
and are higher than both the complete model and the prior distribution. The reason lies
in the lower stiffness of the single monolith in respect to that of the complete model,
due to different lateral boundary conditions. Moreover, standard deviations of the single
monolith model parameters are higher than those of the complete model. This fact is
also evident in terms of mean values, that in the single monolith model is twice the
complete model. The good agreement between recorded and calculated results can be
observed in figure 5, where the residuals in both deterministic and updated cases are
shown. The proximity of the points to the bisector line indicates that the model control
point displacements are close to the recorded ones.
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Figure 4: Comparison between prior and posterior distributions

6 CONCLUSIONS

In the present work, a procedure to update the FE model parameters of concrete dams
has been set up in a probabilistic framework. Displacements recorded by the control sys-
tem and in-situ tests results have been used to estimate model parameters values which
provide a model response as similar as possible to the real structural behaviour. The ad-
ditive corrected probabilistic model allows considering the global error and its standard
deviation, which can be used to compare different classes of models. Moreover, the sets
of explanatory functions allow correcting the probabilistic model, reducing bias related to
unknown phenomena. The FE model response has been approximated by a proxy model,
reducing the computational burden, via the general polynomial chaos expansion. This
technique is particularly advantageous because it allows solving the forward problem in
straightway manner and performing a sensitivity analysis on the results. The sensitivity
analysis is a fundamental step because it allows determining the most influencing parame-
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Figure 5: Effects of the model parameters updating on the residuals

ters. Finally, the application of the presented procedure to a concrete Italian gravity dam
shows the effectiveness of the method and its feasibility in real cases application. Future
developments concern the introduction of thermal displacements within the probabilistic
model, eliminating the pre-process data step. The presented procedure could be the base
for a better estimation of the structural reliability and it can be regarded as a starting
point of health monitoring system application for dams.
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