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Abstract. Some years ago, a family of solid-shell finite elements based on reduced inte-
gration [1],[2],[3],[4] was investigated. Many engineering problems with isotropic material
behaviour were considered and these elements showed accurate results while beeing more
efficient than similar three-dimensional formulations based on full integration. The ob-
jective of the present contribution is the extension to layered structures with anisotropic
material behaviour undergoing large deformations. Here, we follow an ansatz which is sim-
ilar to so called equivalent single layer theories, i.e. we model the inhomogeneous material
as a continuum using solely one solid-shell element over the thickness. Therefore, some
modifications of the element formulation are needed. First, we introduce an additional
mapping procedure which enables both, the usage of a certain quadrature rule within each
layer of the composite and the consideration of layers with different thicknesses. Second,
we investigate an appropriate hourglass-stabilization which is needed to recover so-called
zero energy modes which might arise from the reduced integration scheme. Considering a
benchmark problem from the literature, it will be shown that the new developed ingredi-
ents within the solid-shell concept lead to accurate results in terms of the global response
of anisotropic structures at large deformations.

1 INTRODUCTION

For future space transportation systems, investigations encompassing higher payloads
and further performance increases always play an important role. In order to decrease
the dependence of the design process on experimental test campaigns, reliable simulation
tools have to be developed to be able to predict the mechanical behaviour of rocket engine
nozzle structures. In addition to the research on conventional nozzle structures made out
of heavy metal super alloys, e.g. [5], composite materials are very promising in lightweight
constructions due to their very high stiffness and low density at the same time. They are
built up of multiple layers each of which consists of fibres embedded in a matrix material.
In aerospace engineering one can find ceramics which can be used for both fibres and
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Figure 1: Vinci rocket engine with corresponding microstructure of the CMC material [6]

matrices, see e.g. Fig. 1. Due to different damage mechanisms like matrix cracking,
delamination and fibre pullout, the stress-strain behaviour of ceramic matrix composites
(CMC) is non-linear and strongly depends on the fibre direction. Moreover, the material’s
response in tension and compression may differ significantly. In the present contribution
we use a modified version of the micromechanically motivated model proposed in [7, 8].
Therein, an anisotropic model has been presented for the hyperelastic material behaviour
of pneumatic membranes reinforced with woven fibres which is particularly suitable for the
considered CMC material. In order to overcome locking phenomena, the discretization of
thin nozzle structures requires an appropriate finite element technology. For this reason
we use a solid-shell finite element formulation based on reduced integration [3], for which
the implementation of the fibre orientation is crucial.

2 ANISOTROPIC CONSTITUTIVE MODEL

2.1 Continuum mechanical framework

Introducing the deformation gradient F, the deformation of a continuous body is repre-
sented by the right Cauchy-Green tensor C = FTF. Using the concept of hyperelasticity,
the strain energy density function (SEDF) ψ = ψ(C) is defined as a scalar potential.
In the anisotropic case considered here, the energy function ψ = ψ(C,Mi) is a scalar
function of C and the structural tensors Mi, which are defined as Mi = ni ⊗ ni, where
the unit vectors ni are oriented parallel to the fibres. Obviously, for unidirectional layers,
only one vector n and one structural tensor M = n ⊗ n need to be defined, where for
woven composites with two families of fibres, two vectors n1 and n2 are used leading to the
structural tensors M1 = n1⊗n1 and M2 = n2⊗n2. Then, the SEDF can be represented
in dependence of the three principal invariants of C

I1 = tr C I2 =
1

2

[
(tr C)2 − tr

(
C2
)]

I3 = det C (1)

2
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and the following mixed invariants

I4 = tr (C M1) = C ·M1 I5 = tr
(
C2 M1

)
= C2 ·M1

I6 = tr (C M2) = C ·M2 I7 = tr
(
C2 M2

)
= C2 ·M2

(2)

The inner product of C and Mi (i = 1, 2) can be interpreted as a weighted stretch in
the direction of the corresponding structural vector. The anisotropy is taken into account
within the scalar SEDF by adding terms that depend on additional invariants. In this
work, a SEDF is proposed based on the following formulation by [7]

ψ = ψNH(I1, I3) + ψiso(I1, I2) + ψani(I1, I4, I5, I6, I7), (3)

where ψNH denotes a Neo-Hookean part, ψiso an additional isotropic part which is needed
to model the extreme stiffening in the large strain case, and ψani is the anisotropic part
referring to the fibre direction. This SEDF has been originally proposed for a rubber-like
matrix material reinforced with polyester fibres. To adjust it to the CMC considered
here, some modifications are necessary. First of all, the CMC consists of unidirectional
plies each of which consists of a carbon fibre reinforced carbon matrix surrounded by a
silicon carbide matrix (C/C-SiC), cf. Fig. 1. Therefore, we will restrict our constitutive
model to transversely isotropic material behaviour. Secondly, in the original formulation
the fibres were assumed to carry no load at all under compression. Due to the continuous
support of the fibres, this assumption is not realistic for the CMC considered here. And
third, the Neo-Hookean part ψNH can be neglected, because the isotropic response can
be adequately described by the part ψiso in the moderate strain regime, which is defined
as

ψiso = Kiso
1 (I1 − 3)α1 +Kiso

2 (I2 − 3)α2 . (4)

The anisotropic part for a transversely isotropic material can be described by

ψani = Kani
1 (I4 − 1)β1 +Kani

2 (I5 − 1)β2 +Kc (I1 − 3)δ(I4 − 1)δ . (5)

The resulting SEDF for unidirectional materials reads

ψ =Kiso
1 (I1 − 3)α1 +Kiso

2 (I2 − 3)α2

+Kani
1 (I4 − 1)β1 +Kani

2 (I5 − 1)β2 +Kc (I1 − 3)δ(I4 − 1)δ .
(6)

The nonlinear model contains the following ten material parameters Kiso
1 , Kiso

2 , Kani
1 ,

Kani
2 , Kc, α1, α2, β1, β2 and δ, which have to be fitted to experimental data. The second

Piola-Kirchhoff stress tensor S is determined from

S = 2
∂ψ

∂C
= 2

∂ψ

∂Iα

∂Iα
∂C

, (7)

where α = 1, . . . , 5. The corresponding fourth-order material tensor C is defined as

C = 4
∂2ψ

∂C ∂C
= 2

∂S

∂C
. (8)
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2.2 Modified strain energy function and material parameters

In order to further simplify the model of section 2.1 we require S to be linear in C.
To achieve this, the exponents of the nonlinear model (6) are set to

α1 = 2, α2 = 1, β1 = 2, β2 = 1, δ = 1 (9)

In order to obtain a stress-free undeformed state, the terms

∆ψiso = −2Kiso
2 (I1 − 3) ∆ψani = −2Kani

2 (I4 − 1) (10)

have to be added to the SEDF. The resulting modified SEDF for unidirectional materials
reads

ψud =Kiso
1 (I1 − 3)2 +Kiso

2 [(I2 − 3)− 2(I1 − 3)]

+Kani
1 (I4 − 1)2 +Kani

2 [(I5 − 1)− 2(I4 − 1)] +Kc(I1 − 3)(I4 − 1) .
(11)

This St.Venant-Kirchhoff type model contains the five material parameters Kiso
1 , Kiso

2 ,
Kani

1 , Kani
2 and Kc. In order to determine those, the constant material tensor in Voigt

notation Ĉud of the modified model with fibre direction nT = (1, 0, 0) is compared to the
well known stiffness matrix for transversely isotropic materials, containing the engineering
constants, i.e. Young’s moduli, shear moduli and Poisson’s ratios. As a result of this
comparison, the following relations can be obtained:

Kiso
1 =

E2ν23 + 2G23v + E2ν12ν21 + 2G23vν23
8v(ν23 + 1)

Kiso
2 = −1

2
G23

Kani
1 =

E1(1− 2ν21 − 2ν21ν23 − ν223) + E2(ν23 + ν12ν21)

8v(ν23 + 1)
+

1

4
(G23 − 2G12) (12)

Kani
2 =

1

2
(G12 −G23)

Kc =
E1ν21 − E2ν23 − E2ν12ν21 + E1ν21ν23

4v(ν23 + 1)
.

with v = 1− ν23 − 2ν12ν21, ν21 = E2

E1
ν12 and ν23 = E2

2G23
− 1. Therewith, the five material

parameters of the proposed model can be uniquely determined from the five engineering
constants of the transversely isotropic effective material. Furthermore this model auto-
matically fulfils the principle of material frame-indifference and can be easily extended to
the large strain regime.

3 FE technology

As already mentioned in chapter 1 we use sophisticated solid-shell finite elements based
on the works by [2, 3], for the discretization of the considered composite structures. In
order to overcome different kinds of locking phenomena, a tailored combination of the
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Figure 2: (left) C/C-SiC sample geometry with two layers [0◦/90◦]; (right) model gener-
ation of C/C-SiC using one solid-shell element with multiple integration points over the
thickness

enhanced assumed strain (EAS) method and the assumed natural strain (ANS) method
is utilized. Furthermore, we use reduced integration with hourglass stabilization in order
to increase numerical efficiency as well as the robustness for distorted element geometries.
Here we avoid the repetition of the element formulation and refer to [3] for further details.
Instead, we focus on the two newly developed ingredients within the solid-shell concept,
which have to be considered in order to investigate layered structures.

3.1 Extension to layered structures - thickness discretization

The solid-shell element presented in [3] is now used to discretize layered structures.
One possibility would be to stack up multiple solid-shell elements over each other, i.e. to
use one or several elements per layer. But since this is a very expensive approach, we
follow a more efficient ansatz by discretizing the entire composite with only one solid-shell
over the whole thickness using multiple integration points in that direction representing
individual material properties of each layer, cf. Fig. 2. This approach can be understood
as a special case of well known equivalent-single-layer theories, e.g. [9, 10], with exten-
sion to the geometrical nonlinear regime, as it was already presented in [11]. Since we
want to use the Gauss-Legendre quadrature rule within this one-element approach, we
need a consistent distribution of integration points within each layer (i.e. subdomain).
Therefore we apply a general algorithm for composite materials, similar to [12]. After a
first (standard) isoparametric map for the element geometry, see Fig. 3 , we introduce a
second isoparametric map for each layer thickness. The thickness coordinate of the first
isoparametric space is interpolated as

ζ =

nlay∑
i=1

N̄i ζi, with N̄i =
1

2
(1 + z̄i z̄) (13)

where ζi represents the thickness coordinate of the considered layer. In addition the
coordinate −1 ≤ z̄i ≤ 1 is defined within a second isoparametric space, see Fig. 4. In
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Figure 3: First isoparametric map for the element geometry

order to evaluate the element matrices given in [3] we have to sum over all layers nlay
and over all integration points ngp. For instance the evaluation of the material part of
the element stiffness matrix corresponding to the integration points reads:

K?mat
uu = 4J0

∫ 1

−1

B? T
c Ĉ?B?

c dζ (14)

≈ 4J0

nlay∑
L=1

ngp∑
m=1

[
B? T
c (ζLm) ĈLB?

c (ζ
L
m)
]
JLwLm , (15)

where B?
c denotes the discrete gradient operator coming from the compatible strain and

ĈL determines the constant stiffness tensor of the considered layer in Voigt-notation.
Furthermore J0 and JL represent the determinant of the Jacobian matrix of the first and
second map, respectively and wLm depicts the weighting factor of the considered integration
point.

3.2 Adjustment of the hourglass stabilization

The two-field formulation of the enhanced strain method is transferred into an equiva-
lent reduced integration concept by carrying out a Taylor expansion of the stress measure

Figure 4: Second isoparametric map for each layer
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with respect to the shell director ξ? = (0, 0, ζ)T :

Ŝ ≈ Ŝ
∣∣∣
ξ=ξ?

+
∂Ŝ

∂ξ

∣∣∣∣∣
ξ=ξ?

(ξ − 0) +
∂Ŝ

∂η

∣∣∣∣∣
ξ=ξ?

(η − 0) (16)

≈ Ŝ? + Ĉ? Êhg (17)

With that we are able to split the element residual vectors and further the element stiff-
ness matrices into two parts. A physical relevant part corresponding to the integration
points located at the shell director and an hourglass part which stabilizes the element
formulation. Therefore, we have to choose an appropriate hourglass stabilization matrix
Ĉ? which prevents additional zero eigenvalues of the element stiffness matrix (so-called
zero energy modes) coming from the reduced integration. Since we deal with structures
consisting of several orthotropic layers, we suggest two different stabilization schemes.
First, we introduce a so-called physical stabilization scheme, which is based on the real
material stiffness:

Ĉ? :=

nlay∑
L=1

(ĈL)wL with ĈL :=
∂2ψud

∂Ê ∂Ê
(18)

Here we sum over all constant layer stiffnesses ĈL multiplied with a scalar weighting
factor, which fulfils

∑nlay
L=1 w

L = 1 and which depends on the specific layer thickness. Next,
we consider a simplified stabilization scheme which is based on a pseudo isotropic material:

Ĉ? := 2µ?I with µ? :=

nlay∑
L=1

S?Leq
E?L
eq

wL (19)

Here we introduce an effective shear modulus µ?, which is computed from the quotient
of the equivalent stress and strain evaluated at the integration points, multiplied with
the thickness weighting factor, which was already introduced in (18). Furthermore, I
represents the identity matrix. A similar stabilization scheme was first introduced by [13]
and further investigated by [3] for isotropic materials, in order to take into account the
degree of inelasticity within the hourglass stabilization.

4 NUMERICAL EXAMPLE

As an example we consider a pinched half-cylindrical shell. Fig. 5 shows a sketch of the
geometry with boundary conditions and loading. The dimensions of the cylinder are given
by the length l = 304.8, inner radius r = 100.1 and thickness t = 3.0. For this structure we
consider three different material configurations. An isotropic one with Young’s modulus
E = 2.0685 · 107 and Poisson’s ratio ν = 0.3 as well as two anisotropic configurations
consisting of three layers with equal thicknesses and the stacking sequences [0◦/90◦/0◦]
and [90◦/0◦/90◦], respectively. The values of the engineering constants, taken from [14]
and the equivalent model parameters for the anisotropic case are listed in Table 1. The
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Figure 5: Sketch of the pinched half cylinder problem

Table 1: Engineering constants and equivalent material parameters for the anisotropic
configurations

E1 = 2068.50 Kiso
1 = 74.21

E2 = 517.13 Kiso
2 = −99.45

G12 = 795.60 Kani
1 = −106.48

G23 = 198.89 Kani
2 = 298.35

ν12 = 0.30 Kc = 10.25

load is applied incrementally up to F = 1400. For the quadrature in thickness direction we
used two Gauss-points per layer. Furthermore we carried out a mesh convergence study
with respect to the hourglass-stabilization schemes presented in section 3.2 by using the
vertical displacement of the load application point. Since we didn’t observe a significant
influence on the stabilization scheme for the considered configurations in this example,
we choose the simplified (isotropic) scheme. Fig. 6 shows the converged undeformed mesh
used for all configurations as well as the deformed isotropic mesh after the last load step.
The resulting load displacement curves for the considered configurations are depicted
in Fig. 7. We can observe an excellent agreement between the present results and the
reference solutions from Sze et al. [14], where they used four-node shell elements with
reduced integration (S4R) within the commercial FEA software ABAQUS.

5 CONCLUSION

In this paper a specific FE-model was presented in order to determine the global re-
sponse of layered anisotropic structures. Based on former works, a modified strain en-
ergy function was derived which is suitable for a wide range of unidirectional materials.
The spatial discretization of layered structures is performed by using one single reduced
integration-based solid-shell element over the thickness with multiple integration points.
To this end a second mapping procedure as well as a suitable hourglass stabilization
scheme were proposed. It should be stated, however, that the suggested stabilization
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Figure 6: Converged meshes of the half-cylindrical shell

schemes are still under investigation and therefore, not discussed in detail within this pa-
per. A numerical benchmark problem was considered and the underlying concept showed
promising results by means of the global response of layered anisotropic shell structures.
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Figure 7: Load displacement curves of the half cylinder for three different configurations
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