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Abstract. Employing a phase space which includes the (Riemann-Liouville) fractional
derivative of curves evolving on real space [5], we develop a restricted variational principle
for Hamiltonian systems yielding the so-called restricted fractional Hamilton equations.
Moreover, we introduce controlled external forces in the dynamics by means of an exten-
sion of the Lagrange-d’Alembert principle. In this scenario, we establish the Fractional
Optimal Control Problem, whose necessary optimality conditions we obtain by using cal-
culus of variations. We observe that these optimality conditions are a system of algebraic-
differential equations with fractional terms and mixed (initial-final) endpoint conditions.
We treat the example of a linearly damped harmonic oscillator and minimum effort with
external forces which are linear in the control variables. The deviation of the expected
behaviour, with respect to the non-fractional case, is explained in terms of the geometry
of a higher order cotangent bundle.

1 INTRODUCTION

Optimal control theory and variational mechanics ([7]) have their common origin in
the calculus of variations. Our objective is to obtain optimality conditions (also known
as Pontryagin’s maximum principle [8] assuming enough regularity) for linearly damped
mechanical systems subject to external controlled forces as the Euler-Lagrange equations
(via Hamilton’s principle [4]) of a particular augmented action functional. In order to
model the dissipative forces we employ the recent approach by the authors [5] based
on previous literature ([1, 2, 3, 9]), i.e. a restricted variational principle defined on a
α−fractional phase space TRd and curves evolving on real space which, in the case of
α = 1/2 and mechanical Lagrangian functions, model linear damping. The obtained
dynamical equations are so-called restricted fractional Euler-Lagrange equations.
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In the present paper, we take the dual approach. Namely, we define the dual of
the above mentioned α−fractional phase space, say T∗Rd. This space, involves the mo-
menta and the dual variables of the fractional derivatives, all of them defined through the
fractional Legendre transform. The fractional Legendre transform is established as the
fiber derivative of the Lagrangian, and provides as well a Hamiltonian function on T∗Rd.
Through the Hamilton’s principle we obtain the so-called restricted fractional Hamilton
equations, which become the usual Hamilton equations for linearly damped mechanical
systems when α = 1/2. The controlled external forces are easily introduced in the new
fractional Hamiltonian dynamics by means of an extension of the Lagrange-d’Alembert
principle. Then, we extend the usual notion of Optimal Control Problem, considering the
new restricted fractional Hamilton equations (for a general α) with controlled external
forces as constraints. This allows to define the augmented action functional in the usual
way, leading to the optimality conditions via calculus of variations.

Outline. In §2 we provide all the background material. In §3 we display the restricted
fractional Euler-Lagrange equations (13) in [5] and obtain their Hamiltonian version, i.e.
the restricted fractional Hamiltonian equations (Theorem 3.2). In Corollary 3.3 we
show that the restricted fractional Hamiltonian equations (17) become the usual Hamilto-
nian equations for linearly damped mechanical systems when α = 1/2. Furthermore, we
introduce the controlled external forces in the fractional dynamics through the extension
of the Lagrange-d’Alembert principle described in Theorem 3.5. In §4 we extend the
usual notion of an Optimal Control Problem, allowing the forced fractional dynamics.
Also, we derive the necessary optimality conditions through calculus of variations. Fi-
nally, we treat the example of a linearly damped harmonic oscillator and minimum effort
with external forces which are linear in the control variables.

2 PRELIMINARIES

2.1 Optimal Control Problem

We shall define the Optimal Control Problem (OCP henceforth) in the Hamiltonian
fashion [6]. The evolution of a forced mechanical system evolving on a finite dimensional
smooth manifold Q is given by smooth curves q : [a, b] ⊂ R→ Q determined through the
usual Hamiltonian dynamics provided by the Lagrange-d’Alembert principle1, i.e.

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
+ fH(q, p, u), (1)

where H : T ∗Q → R is the Hamiltonian function defined on T ∗Q, the cotangent bundle
of Q with local coordinates (q, p). On the other hand, fH : T ∗Q × U → T ∗Q represents
the controlled external forces, where U ≡ Rm is the control space, with m ≤dimQ. Given

1The Lagrange-d’Alembert principle in its Hamiltonian version is established as

δ

∫ b

a

{〈p, q̇〉 −H(q, p)} dt+

∫ b

a

〈fH(q, p, u), δq〉 dt = 0.

2
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a cost functional

J(q, p, u) =

∫ b

a

C(q(t), p(t), u(t))dt+ Φ(q(b), p(b)),

where C : T ∗Q× U → R and Φ : T ∗Q→ R (Mayer term) are continuously differentiable
functions, we define the OCP as follows:

Problem 2.1 (Optimal Control Problem)

min(q,p,u) J(q, p, u) =

∫ b

a

C(q(t), p(t), u(t))dt+ Φ(q(b), p(b)), (2a)

subject to q̇(t) = ∂H(q(t), p(t))/∂p, (2b)

ṗ(t) = −∂H(q(t), p(t))/∂q + fH(q(t), p(t), u(t)), (2c)

(q(a), p(a)) = (qa, pa). (2d)

According to this, since the final time b is fixed, we are establishing a fixed-time, free-
endpoint problem. Pontryagin’s maximum principle [8] provides necessary conditions
for optimality of feasible trajectories η(·) = (q(·), p(·), u(·)) for Problem 2.1 (which are
curves satisfying (2b)-(2d); they are optimal if moreover they satisfy (2a)). For regular
systems (i.e. C,Φ, fH , ∂H/∂q and ∂H/∂q are differientiable w.r.t. q, p and u and u(·) ∈ C0,
q̇(·) ∈ C1 and q(·) ∈ C2 [7]) and when there are no further constraints on the control
variables and the final state, these conditions can be derived by means of the Euler-
Lagrange equations of the augmented cost functional:

S(η, λ) =

∫ b

a

{
C(q(t), p(t), u(t)) + 〈λq(t), q̇(t)− ∂H(q(t), p(t))/∂p〉

+ 〈λp(t), ṗ(t) + ∂H(q(t), p(t))/∂q − fH(q(t), p(t), u(t))〉
}
dt+ Φ(q(b), p(b)),

(3)

where λ(t) = (λq(t), λp(t)) is called the adjoint variable or costate of the system and we
consider all states and costates at final time b as independent variables. Under these
conditions and considering separable Hamiltonians H(q, p) = K(p) + P (q) for sake of
simplicity, the necessary optimality conditions for feasible curves are

q̇ =
∂K

∂p
, ṗ = −∂P

∂q
+ fH , (4a)

λ̇q = λp
(
∂2P

∂q2
− ∂fH

∂q

)
+
∂C

∂q
, λ̇p = −λq ∂

2K

∂p2
− λp ∂fH

∂p
+
∂C

∂p
, (4b)

0 = −λp ∂fH
∂u

+
∂C

∂u
, (4c)

q(a) = qa, p(a) = pa, λq(b) = −∂Φ

∂q

∣∣∣
b
, λp(b) = −∂Φ

∂p

∣∣∣
b
, (4d)

which is a system of algebraic-differential equations with mixed (initial-final) endpoint
conditions. From (4c) we observe that, if the matrix

[
− λp (∂2fH/∂u

2) + ∂2C/∂u2
]

is

3
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invertible, then according to the implicit function theorem we will be able to determine
u as a function of the rest of variables, i.e. u = u(q, p, λp). Inserting this into (4a)-(4b)
we end up with a pure system of differential equations with mixed endpoint conditions
where the control variables are absent.

2.2 Riemann-Liouville fractional derivatives

Let α ∈ [0, 1] ⊂ R and f : [a, b] → R a smooth function. The Riemann-Liouville
fractional derivatives are defined by

Dα
−f(t) =

1

Γ(1− α)

d

dt

∫ t

a

(t− τ)−αf(τ)dτ, (5a)

Dα
+f(t) = − 1

Γ(1− α)

d

dt

∫ b

t

(τ − t)−αf(τ)dτ, (5b)

for t ∈ [a,b], and Γ(z) the gamma function ([10]). As it is well-known, the fractional
derivatives are non-local operators: in the sequel − and + will denote the retarded and
advanced cases, respectively. Let us consider two smooth functions f, g. The fractional
integration by parts rule is given by∫ b

a

f(t)Dα
σg(t)dt =

∫ b

a

(
Dα
−σf(t)

)
g(t)dt, (6)

where σ stands either for − or +. An important feature of fractional integrals is, when
α = 1/2:

D
1/2
− D

1/2
− f(t) =

d

dt
f(t), D

1/2
+ D

1/2
+ f(t) = − d

dt
f(t). (7)

See [10] for more details. According to the above definitions, the fractional derivatives
are R-valued. To see this, it is enough to note that f(t) is R-valued, as well as (t− τ)−α

for t > τ and (τ − t)−α for τ > t.

2.3 Fractional phase space

Henceforth we shall set Q = Rd. Consider smooth curves γx : [a, b] ⊂ R → Rd,
γy : [a, b] ⊂ R→ Rd for d ∈ N, both belonging to C∞([a, b],Rd). Their local representation
are given by γx(t) = (x1(t), ..., xd(t)), γy(t) = (y1(t), ..., yd(t)), t ∈ [a, b]. On the other
hand, γ̃ : [a, b]→ Rd × Rd is formed as γ̃ = (γx, γy).

With these ingredients, we can form the double tangent bundle and double fractional
tangent bundle, TRd := ((γx, γy), (γ̇x, γ̇y)) and TαRd := ((γx, γy), (D

α
−γx, D

α
+γy)), respec-

tively. Their structure as vector bundles over Rd × Rd is explained in detail in [5].
Furthermore, with these two bundles we can construct the fractional tangent phase

space:
TRd := TRd ⊗Rd×Rd TαRd. (8)

Thus, Vγ̃ := (γx, γy, γ̇x, γ̇y, D
α
−γx, D

α
+γy) ∈ TRd is locally described by Vγ̃ = (x, y, ẋ, ẏ, Dα

−x,
Dα

+y), where we omit the i = 1, ..., d superindex for simplicity. The bundle projection is
given by T(Vγ̃) = (x, y).

4
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The construction of the dual bundle of (8), which we shall name fractional cotangent
phase space

T∗Rd := T∗Rd ⊗Rd×Rd Tα∗Rd,

follows straightforwardly from the dual bundles Tα∗Rd and T∗Rd. For Aγ̃ ∈ T∗Rd, we fix
local coordinates

Aγ̃ = (x, y, px, py, p
α
x , p

α
y ). (9)

The bundle projection P : T∗Rd → Rd × Rd is locally given by P(Aγ̃) = (x, y). Further-
more, the fiber P−1(Rd×Rd) is a vector space with dimension 4d; and T∗Rd is locally the
Cartesian product of 6 copies of Rd (equivalently to TRd, see [5] for more details).

3 RESTRICTED FRACTIONAL DYNAMICS

3.1 Restricted fractional Euler-Lagrange equations

Consider C∞(xa, xb;Rd×Rd) the set of curves γ̃ = (γx, γy) with fixed endpoints γ̃(a) =
(xa, xb), γ̃(b) = (xb, xa). A varied curve of γ̃ is a map Γ : R× [a, b]→ Rd × Rd, Γ(ε, t) :=
γ̃(t) + εδγ̃(t), defined such that the variation δγ̃ vanishes at the endpoints, i.e. δγ̃(a) =
δγ̃(b) = 0. Observe that this implies

δx(a) = δy(a) = δx(b) = δy(b) = 0. (10)

Remark 3.1 Note that we are establishing that γy(a) = xb and γy(b) = xa. This will
make sense afterwards since we shall interpret γy as γx for reversed time.

The set of restricted varied curves is defined by Γη(ε, t) := γ̃(t) + εη(t), where δγ̃ =
η(t) = (δγx(t), δγx(t)). In other words, we impose δx = δy.

Now, define a C2 Lagrangian function L : TRd → R and the action functional S :
C∞(xa, xb;Rd × Rd)→ R given by

S(γ̃) :=

∫ b

a

L(Vγ̃) dt. (11)

As proven in [5], Hamilton’s principle with restricted curves as Γη and endpoint conditions
(10), provides the so-called restricted fractional Euler-Lagrange equations: as sufficient
conditions for γ̃ to be extremals of (11). If we particularize in the Lagrangian

L(x, y, ẋ, ẏ, Dα
−x,D

α
+y) := Lx(x, ẋ) + Ly(y, ẏ)− [[Dα

−x,D
α
+y]]

R
, (12)

where Lx(x, ẋ) := 1
2
ẋTMẋ− P (x), Ly(y, ẏ) := 1

2
ẏTMẏ − P (y) for M =diag(m1, ...,md) ∈

Md×d(R+) and P : Rd → R is a smooth function; and [[·, ·]]
R

is a symmetric bilinear form
defined by [[Dα

−x,D
α
+y]]

R
:= (Dα

−x)TRDα
+y, where R =diag(ρ1, ..., ρd) ∈ Md×d(R+); these

equations are (see [5] for their general form):

M ẍ+RD2α
− x+∇P (x) = 0, ⇒ M ẍ+R ẋ+∇P (x) = 0, (13a)

M ÿ +RD2α
+ y +∇P (y) = 0, ⇒ M ÿ −R ẏ +∇P (y) = 0, (13b)

5
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when α = 1/2, according to (7). We observe that equations (13) represent the dynamical
evolution of a linearly damped mechanical system in both directions of time if we interpret
that γy(t) is γx(t) in reversed time. Consequently, the system of second order differential
equations (13) is invariant under time reversal, this is t→ a+ b− t.

3.2 Fractional Legendre transform and restricted Hamiltonian dynamics

Let us define the fractional Legendre transform FL : TRd → T∗Rd as the fiber derivative
for a Lagrangian function L : TRd → R, i.e.

FL : Tγ̃Rd −→ T∗γ̃Rd

Vγ̃ 7→ Dγ̃L(Vγ̃),
(14)

where Dγ̃ denotes the partial derivative in the fiber T−1(γ̃). Locally we have

FL(Vγ̃) =

(
∂L

∂ẋ
,
∂L

∂ẏ
,
∂L

∂Dα
−x
,
∂L

∂Dα
+y

)
. (15)

It is easy to check that FL is fiber preserving. Moreover, we will say that FL is regular
if it is a diffeomorphism, and furthermore we will call L regular if that is the case. Under
the hypothesis of regularity, we define the Hamiltonian function H : T∗Rd → R by

H(Aγ̃) := 〈FL(Vγ̃),Vγ̃〉 − L(Vγ̃), (16)

where the coordinates of Aγ̃ := FL(Vγ̃) are given in (9) and 〈·, ·〉 : Tγ̃Rd × T∗γ̃Rd → R
denotes the natural pairing.

Employing these elements, we can establish the following result.

Theorem 3.2 A curve γ̃ : [a, b] → Rd × Rd, subject to varied curves Γη, is an extremal
of the action (11) if it satisfies the restricted fractional Hamilton equations:

ẋ =
∂H

∂px
, Dα

−x =
∂H

∂pαx
, ṗx = Dα

−p
α
y −

∂H

∂x
, (17a)

ẏ =
∂H

∂py
, Dα

+y =
∂H

∂pαy
, ṗy = Dα

+p
α
x −

∂H

∂y
, (17b)

Proof. In the first place, we express the action (11) in terms of the Hamiltonian function,
i.e.

S(γ̃) =

∫ b

a

{
pxẋ+ pyẏ + pαxD

α
−x+ pαyD

α
+y −H(x, y, px, py, p

α
x , p

α
y )
}
dt,

where we have employed (16) and the regularity of FL. To find the extremals of S
for restricted varied curves Γη(ε, t) we impose the usual critical condition, i.e. δS :=
d
dε
S(Γη)

∣∣
ε=0

= 0. According to this, we have that

δS =

∫ b

a

{
δpx

(
ẋ− ∂H

∂px

)
+ δpy

(
ẏ − ∂H

∂y

)
+ δpαx

(
Dα
−x−

∂H

∂pαx

)
+ δpαy

(
Dα

+y −
∂H

∂pαy

)
+

(
−ṗx +Dα

+p
α
x −

∂H

∂x
− ṗy +Dα

−p
α
y −

∂H

∂y

)
δx
}
dt+ pxδx

∣∣∣b
a

+ pyδy
∣∣∣b
a
,

6
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where we have employed the constraints δx = δy, and have used integration by parts with
respect to the total and fractional derivatives (6). From the endpoint conditions (10), all
the boundary terms vanish, leading to

δS =

∫ b

a

{
δpx

(
ẋ− ∂H

∂px

)
+ δpαx

(
Dα
−x−

∂H

∂pαx

)
+

(
−ṗx +Dα

−p
α
y −

∂H

∂x

)
δx

+δpy

(
ẏ − ∂H

∂y

)
+ δpαy

(
Dα

+y −
∂H

∂pαy

)
+

(
−ṗy +Dα

+p
α
x −

∂H

∂y

)
δx
}
dt.

From this last expression of δS is easy to see that the restricted fractional Hamilton
equations (17) are a sufficient condition for δS = 0; and the claim holds. �

As mentioned above, equations (17) are only sufficient conditions for the extremal
curves.

Corollary 3.3 If L is given by (12), with Lx(x, ẋ) := 1
2
ẋTMẋ − P (x), Ly(y, ẏ) :=

1
2
ẏTMẏ − P (y) for M =diag(m1, ...,md) ∈ Md×d(R+), R =diag(ρ1, ..., ρd) ∈ Md×d(R+)

and P : Rd → R is a smooth function; then the Hamiltonian function (16) reads

H(x, y, px, py, p
α
x , p

α
y ) = Hx(x, px) +Hy(y, py)− [[pαx , p

α
y ]]∗

R
, (18)

where Hx(x, px) := 1
2
pxM

−1pTx + P (x), Hy(y, py) := 1
2
pyM

−1pTy + P (y) and [[·, ·]]
R

is a
symmetric bilinear form defined by [[pαx , p

α
y ]]∗

R
:= pαx R

−1 (pαy )T .
Moreover, if α = 1/2 and the Hamiltonian function is given by (18), then the restricted

fractional Hamilton equations (17) are

ẋ = M−1pTx , D
1/2
− x = −R−1(p1/2y )T , ṗx = −pxM−1R−∇P (x)T , (19a)

ẏ = M−1pTy , D
1/2
+ y = −R−1(p1/2x )T , ṗy = pyM

−1R−∇P (y)T . (19b)

Proof. From (12) and (15) we have that

px = ẋT M, py = ẏT M, pαx = −(Dα
+y)TR, pαy = −(Dα

−x)TR,

which is invertible. Then, (16) reads

H(x, y, px, py, p
α
x , p

α
y ) =pxM

−1pTx + pyM
−1pTy − pαxR−1(pαy )T − pαyR−1(pαx)T

− 1

2
pxM

−1pTx + P (x)− 1

2
pyM

−1pTy + P (y) + pαyR
−1(pαx)T .

From this expression it is straightforward to arrive to (18).
Regarding the second statement, for (18) the restricted fractional Hamilton equations

read

ẋ = M−1pTx , Dα
−x = −R−1(pαy )T , ṗx = −Dα

−(Dα
−x)TR−∇P (x)T , (20a)

ẏ = M−1pTy , Dα
+y = −R−1(pαx)T , ṗy = −Dα

+(Dα
+y)TR−∇P (y)T . (20b)

When we particularize in α = 1/2, (7) applies; furthermore, inserting the dynamical
equation ẋ = M−1pTx (resp. ẏ = M−1pTy ) into the dynamical equation of ṗx (resp. ṗy) in
the last expression, we obtain directly (19). �

7
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Remark 3.4 For each coordinate, the dynamical equations (19) are

ẋi =
1

mi

(px)i, (ṗx)i = − ρi
mi

(px)i − ∂iP (x), (21a)

ẏi =
1

mi

(py)i, (ṗy)i =
ρi
mi

(py)i − ∂iP (y), (21b)

for i = 1, ..., d. We observe that these are the Hamiltonian dynamics of linearly damped
mechanical systems. Defining the energy as Ei(ξ

i, (pξ)i) = (pξ)
2
i /2mi + P (ξi), we observe

that the x−system is dissipative, whereas the y−system gains energy at the same rate.
This is consistent with the interpretation of the y-system as the x-system in reversed time
as discussed after (13) [5]. Accordingly, in the sequel we shall consider t = b as the final
time for the x-system and initial time for the y-system (conversely for t = a).

3.3 Controlled restricted Hamiltonian dynamics

We are only going to consider external forces coming from actuators steering the system
(since the damping is obtained through the fractional approach). We double our control
space, accordingly with the phase space. Thus, we consider U ≡ Rmu , V ≡ Rmv the
control spaces, with mu,mv ≤ d, and express the external controlled forces by

fx : U → T ∗xRd, fy : V → T ∗xRd,

u 7→ fx(u), v 7→ fy(v),
(22)

We pick T ∗xRd for both forces because we are going to consider restricted varied curves
Γη. Moreover, we are allowed to consider the sum fx(u) + fy(v) since T ∗xRd is a vector
space. The next theorem stands for the obtaining of the controlled restricted fractional
Hamilton equations (the proof is equivalent to Theorem 3.2’s.).

Theorem 3.5 A curve γ̃ : [a, b]→ Rd×Rd, subject to restricted varied curves Γη satisfies
the Lagrange-d’Alembert principle (fractional Hamiltonian version with controlled external
forces)

δ

∫ b

a

{
pxẋ+ pyẏ + pαxD

α
−x+ pαyD

α
+y −H

}
dt+

∫ b

a

(fx(u) + fy(v)) δx dt = 0,

if it satisfies the controlled restricted fractional Hamilton equations:

ẋ =
∂H

∂px
, Dα

−x =
∂H

∂pαx
, ṗx = Dα

−p
α
y −

∂H

∂x
+ fx(u), (23a)

ẏ =
∂H

∂py
, Dα

+y =
∂H

∂pαy
, ṗy = Dα

+p
α
x −

∂H

∂y
+ fy(v). (23b)

8
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4 FRACTIONAL OPTIMAL CONTROL PROBLEM

In this section, we extend the OCP 2.1, to the fractional scenario. This is, we are going
to consider controlled restricted fractional Hamilton dynamics (23). Furthermore, we will
be mainly interested in Hamiltonian functions with the form (18) and

Hx(x, px) = K(px) + P (x), Hy(y, py) = K(py) + P (y).

In such a case, the fractional momenta pαx , p
α
y are directly related to the coordinates x, y

through the second equations in (20a) and (20b). Thus, they are no longer independent
variables and we can remove them from our phase space (this is, instead of T∗Rd we shall
consider T ∗xRd × T ∗yRd). According to this, we pick the cost function C : T ∗xRd × T ∗yRd ×
U × V → R and Mayer term Φ̃ : T ∗xRd × T ∗yRd → R. We define the Fractional Optimal
Control Problem (FOCP), in its Hamiltonian version, as follows.

Problem 4.1 (Fractional Optimal Control Problem)

min
(x,px,y,py,u,v)

J(x, px, y, py, u, v) =

∫ b

a

C(x, px, y, py, u, v)dt (24a)

+ Φ̃(x(b), px(b), y(a), py(a)),

subject to ẋ = ∂H/∂px, (24b)

ṗx = −(D2α
− x)TR− ∂H/∂x+ fx(u), (24c)

ẏ = ∂H/∂py, (24d)

ṗy = −(D2α
+ y)TR− ∂H/∂y + fy(v), (24e)

(x(a), px(a), y(b), py(b)) = (xa, pax, y
b, pby). (24f)

We establish necessary optimality conditions for feasible curves η̃(·) = (x(·), px(·), y(·),
py(·), u(·), v(·)) (which are those curves satisfying (24b)-(24f); they will be optimal if
moreover they satisfy (24a)) by means of the Euler-Lagrange equations of the augmented
cost functional

S̃(η̃, λ̃) =

∫ b

a

{
C(x, px, y, py, u, v) + 〈λx, ẋ− ∂H/∂px〉+ 〈λpx , ṗx + (D2α

− x)TR+ ∂H/∂x− fx(u)〉

+ 〈λy, ẏ − ∂H/∂py〉+ 〈λpy , ṗy + (D2α
+ y)TR+ ∂H/∂y − fy(v)〉

}
dt+ Φ̃(x(b), px(b), y(a), py(a)),

(25)

where now λ̃(·) = (λx(·), λpx(·), λy(·), λpy(·)) These Euler-Lagrange equations are

ẋ =
∂K

∂px
, ẏ =

∂K

∂py
, (26a)

ṗx = −(D2α
− x)TR− ∂P

∂x
+ fx(u), ṗy = −(D2α

+ y)TR− ∂P

∂y
+ fy(v), (26b)

λ̇x = (D2α
+ λ

px)R + λpx
∂2P

∂x2
+
∂C

∂x
, λ̇y = (D2α

− λ
py)R + λpy

∂2P

∂y2
+
∂C

∂y
, (26c)
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λ̇px = −λx∂
2K

∂p2x
+
∂C

∂px
, λ̇py = −λy ∂

2K

∂p2y
+
∂C

∂py
, (26d)

0 =
∂C

∂u
− λpx ∂fx

∂u
, 0 =

∂C

∂v
− λpy ∂fy

∂v
, (26e)

with endpoint conditions

x(a) = xa, px(a) = pax, λx(b) = −∂Φ̃

∂x

∣∣∣
b
, λpx(b) = − ∂Φ̃

∂px

∣∣∣
b
,

y(b) = yb, py(b) = pby, λy(a) = −∂Φ̃

∂y

∣∣∣
a
, λpy(a) = − ∂Φ̃

∂py

∣∣∣
a
.

(27)

It is important to point out that in the variational process leading to (26), (27) we have
considered δx(a) = δpx(a) = δy(b) = δpy(b) = 0, while δx(b), δpx(b), δy(a), δpy(a) free.
We observe that they conform a system of algebraic-differential equations with fractional
terms and mixed (initial-final) endpoint conditions. From the algebraic equations (26e),
according to the implicit function theorem we observe that if the matrix∂

2C
∂u2
− λpx ∂

2fx
∂u2

∂2C
∂v∂u

∂2C
∂u∂v

∂2C
∂v2
− λpy ∂

2fy
∂v2


is regular, then we can determine u, v as a functions of the rest of variables, i.e. u =
u(x, px, y, py, λ

px , λpy), v = v(x, px, y, py, λ
px , λpy). Inserting those into (26b)-(26d) we end

up with a pure system of differential equations with fractional terms and mixed endpoint
conditions where the control variables are absent. However, we observe that still in that
case the x and y sides are coupled through the terms involving fx, fy and C. Obviously,
the decoupling of both sides depends on the particular form of these functions.

4.1 Example

We consider the expample of a linearly damped harmonic oscillator (both in the x and
y sides) and minimum effort with external forces which are linear in the control variables.
Let us consider d = mu = mv = 1. We pick α = 1/2, R = (ρ1) = 1 and fx(u) = u,
fy(v) = v, the cost function C(x, px, y, py, u, v) = u2/2 + v2/2, and Hamiltonian functions
Hx(x, px) = p2x/2 + x2/2, Hy(y, py) = p2y/2 + y2/2. In this case, the necessary optimality
conditions (26) read

ẋ = px, ṗx = −px − x+ u; ẏ = py, ṗy = py − y + v;

λ̇x = λx + λpx , λ̇px = −λx; λ̇y = −λy + λpy , λ̇py = −λy;
0 = u− λpx ; 0 = v − λpy .

We have taken into account that D1
−x = ẋ, D1

+y = −ẏ (according to (7)) in eqs. (26b)

and ẋ = px, ẏ = py in eqs. (26b). Moreover, in (26c) we have that D1
+λ

px = −λ̇px ,

D1
−λ

py = λ̇py and λ̇px = −λx, λ̇py = −λy from (26d). Taking into account that u = λpx ,
v = λpy , we end up with a linear system of ordinary differential equations, where the x

10
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and y sides are decoupled, circumstance which is strongly dependent on the particular
choice C = u2/2 + v2/2.

Let us now focus on the x-system. It is interesting to observe that the dynamics of the
costates, say [

λ̇x

λ̇px

]
= Λ1

[
λx

λpx

]
, Λ1 =

[
1 1
−1 0

]
, (28)

is not the same that one obtains from (4) choosing H(x, px) = p2x/2 +x2/2, fH(x, px, u) =
−px + u and C = u2/2, as one would expect. The costate dynamics following from these
choices is [

λ̇x

λ̇px

]
= Λ2

[
λx

λpx

]
, Λ2 =

[
0 1
−1 1

]
. (29)

However, (28) is the costate dynamics that one obtains setting the forced dynamics as

ẋ = px, ṗx = −ẋ− x+ u, (30)

instead of the natural choice when we work on T ∗Q, i.e.

ẋ = px, ṗx = −px − x+ u, (31)

when we define the augmented Lagrangian (3). However, if we fix u as an external
parameter, it is straightforward to check that (30) and (31) determine the same regular
submanifold of TT ∗Q, which has coordinates (x, px, ẋ, ṗx), and therefore one expects to
find certain transformation linking (28) and (29), or in other words linking Λ1 and Λ2,

which accounts for a linear transformation

[
λx

λpx

]
= T

[
λ̃x

λ̃px

]
. Indeed, one can check that

T−1Λ1T = Λ2 for T =

[
a b
c d

]
such that

dc− ad− ab = 0, d2 + b2 − c2 − a2 + ac− db = 0, ad− cb 6= 0.

The conditions above are satisfied if a = b = d = 1 and c = 0. In such a case, one can
check that

〈λx, ẋ− px〉+ 〈λpx , ṗx + px + x+ u〉 = 〈λ̃x, ẋ− px〉+ 〈λ̃px , ṗx + ẋ+ x+ u〉

in the definition of (3). T can be alternatively understood as a linear transformation in
the space of costates λ or in the submanifold defined by dynamics (30) and (31).

5 CONCLUSIONS

We establish the Fractional Optimal Control Problem for controlled Hamiltonian dy-
namics and obtain the necessary optimality conditions. These determine the dynamical
evolution of coordinates, momenta, costates and control variables, and we observe that
they are a system of algebraic-differential equations with fractional terms and mixed
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(initial-final) endpoint conditions. Under some regularity conditions, the control vari-
ables can be solved in terms of the rest, leading to a system of pure fractional differential
equations as optimality conditions. In the treated example (linearly damped harmonic
oscillator and minimum effort with external forces which are linear in the control vari-
ables), the deviation from the expected behaviour of the costates, with respect to the
non-fractional case, is explained in terms of the geometry of higher cotangent bundles
(concretely TT ∗Q).
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