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Abstract. We newly propose a GENERIC-based variational formulation for ini-
tial boundary value problems of finite strain thermoelasticity. The transformation
properties of the underlying GENERIC formalism make possible the free choice of
the thermodynamic state variable. Moreover, due to the structure properties of
GENERIC the proposed variational formulation provides a solid foundation for the
structure-preserving discretization in space and time.

1 INTRODUCTION

GENERIC (General Equation for the Non-Equilibrium Reversible-Irreversible
Coupling) is a double-generator formalism for the thermodynamically consistent for-
mulation of problems from continuum mechanics. The GENERIC-based formulation
relies on an additive decomposition of the evolution equations into a reversible part
and a dissipative part. While the reversible part is generated by the total energy
of the system, the irreversible part is generated by the total entropy. Originally,
GENERIC has been developed in the context of complex fluids. We refer to the
book by Öttinger [1] for a comprehensive account of the GENERIC formalism up to
the year 2005.

More recently, the GENERIC framework has been extended to solid mechanics
(see [2]-[4]). Romero [5, 6] recognized at an early stage the great potential of the
GENERIC framework for the design of structure-preserving numerical schemes and
coined the notion of a thermodynamically consistent (TC) method (see also [7]-[11]).
If a TC scheme is also capable of conserving momentum maps associated to sym-
metries of the underlying mechanical system, it may be termed Energy-Momentum-
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Entropy (EME) scheme. EME schemes can be viewed as extension to dissipative sys-
tems of earlier developed Energy-Momentum (EM) schemes for conservative systems
with symmetry such as large strain elastodynamics and flexible multibody dynamics
(see [12] for a comprehensive overview of previous developments in this direction).

Previously developed GENERIC-based TC methods for thermomechanically cou-
pled solids are typically subject to serious limitations such as (i) the use of the entropy
density as thermodynamical variable, and (ii) the restriction to isolated (or closed)
systems in which the boundaries are neglected. We newly propose a generalized
GENERIC-based formulation that (i) allows for the free choice of the thermody-
namical variable among either the temperature, internal energy density or entropy
density, and (ii) takes into account the boundaries of the system. Full details of the
proposed approach can be found in our recent work [13]. The new formulation lays
the ground for the design of structure-preserving methods for the solution of initial
boundary value problems for thermomechanically coupled solids. In the present work
we focus on the dynamics of thermoelastic solids with heat conduction.

2 GENERIC FOR CLOSED SYSTEMS

The GENERIC formalism was originally developed in the context of closed (or
isolated) systems. That is, boundaries of the domain under consideration are typi-
cally disregarded. The GENERIC framework relies on an additive decomposition of
the evolution equations into reversible and irreversible parts. Correspondingly, the
time-evolution of an arbitrary functional A can be written in the form

dA
dt
= {A,E} + [A,S] (1)

This equation represents a 2-generator formalism in which the reversible part is
generated by the total energy E of the system via the Poisson bracket {⋅, ⋅}, while the
irreversible part is generated by the total entropy S of the system via the dissipative
bracket [⋅, ⋅].

Consider a continuum body with material points X = Xiei in the reference config-
uration B ⊂ R3 (Fig. 1). Here and in the sequel the summation convention applies to
repeated indices. Moreover, ei denote the canonical base vectors in R3. Within the
Lagrangian description of continuum mechanics the deformed configuration of the
body at time t is characterized by the deformation map ϕt ∶ B ↦ R3. The velocity of
the material point X ∈ B located at x = ϕt(X) is given by vt = ∂ϕt/∂t. Alternatively
we will often write vt = ϕ̇t. The conjugate momentum density is defined by pt = ρvt.

The deformation gradient corresponds to the Jacobian of the deformation map,
Ft = ∂ϕt/∂X. In what follows the partial derivative with respect to the material
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Figure 1: Reference configuration B and deformed configuration ϕt(B) at time t.

coordinates will be denoted by the nabla operator. Accordingly, the deformation
gradient assumes the form

Ft = ∇ϕt (2)

A natural choice for the thermodynamic state variable is the absolute temperature
θt ∶ B ↦ R+. Alternatively, the entropy density ηt ∶ B ↦ R or the internal energy
density ut ∶ B ↦ R could be chosen.

The generalized GENERIC formulation developed in [13] makes possible the free
choice of the thermodynamic state variable τt ∈ {θt,ηt,ut}. An arbitrary functional
A can now be written in the form

A = A′(ϕt,pt, τt) = ∫
B

a′(ϕt,∇ϕt,pt, τt)dV (3)

with the corresponding density function a′(ϕt,∇ϕt,pt, τt). Now the Poisson bracket
required in the GENERIC evolution equation (1) can be written as

{A′,B′} = ∫
B

(δϕa′ ⋅ δpb′ − δpa′ ⋅ δϕb′) dV
+∫

B

(Div ( δτa′
∂τη′

∂∇ϕη′) ⋅ δpb′ − δpa′ ⋅Div ( δτ b′
∂τη′

∂∇ϕη′)) dV
(4)

In addition to that, the dissipative bracket featuring in the GENERIC evolution
equation (1) assumes the form

[A′,B′] = ∫
B

∇( δτa′
∂τu′
) ⋅ (θ′)2Kt∇( δτb

′

∂τu′
) dV (5)

3



Peter Betsch, Mark Schiebl

In the last equation, the absolute temparature can be calculated via the formula

θ′(∇ϕt, τt) = ∂τu′(∇ϕt, τt)
∂τη′(∇ϕt, τt) (6)

which is valid for any τt ∈ {θt,ηt,ut} (see [3] and also [1]). Moreover, in (5), the
material conductivity tensor is given by Kt =K′(∇ϕt, τt). We further note that the
functional derivatives in the brackets (4) and (5) are given by

δϕa′ = ∂ϕa′ −Div(∂∇ϕa′)
δpa

′ = ∂pa′

δτa
′ = ∂τa′

(7)

The GENERIC evolution equation (1) can now be considered in more detail by
using the previously derived Poisson bracket (4) along with the dissipative bracket
(5). Accordingly, we obtain

dA′

dt
= {A′,E ′} + [A′,S ′] (8)

We note that the evolution equation (8) represents a uniform description of thermo-
elastodynamics in which the thermodynamic variable τt ∈ {θt,ηt,ut} can be freely
chosen. In (8), the total energy of the system is given by the functional

E ′(ϕt,pt, τt) = ∫
B

e′(ϕt,∇ϕt,pt, τt)dV (9)

with associated density function

e′(ϕt,∇ϕt,pt, τt) = 1

2
ρ−1pt ⋅ pt + u′(∇ϕt, τt) − b ⋅ϕt (10)

In the last equation b ∶ B ↦ R3 represents prescribed body forces which are assumed
to be dead loads. In addition to the total energy, the total entropy of the system
acts as second generator in the GENERIC evolution equation (8) and is given by the
functional

S ′(ϕt, τt) = ∫
B

η′(∇ϕt, τt)dV (11)
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3 GENERIC FOR OPEN SYSTEMS
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Figure 2: Reference configuration B with boundary ∂B and current configuration
ϕt(B) at time t. External tractions tt = PtN act on the boundary of the current
configuration. In addition to that, the heat flux accross the current boundary is
denoted by qt =Qt ⋅N.

The GENERIC formulation for closed systems outlined in the last section can be
extended to open systems (Fig. 2) by means of a straightforward procedure (see [14]
and [13]). Accordingly, the Poisson bracket (4) and the dissipative bracket (5) are
now viewed as full brackets that can be decomposed according to

{A′,B′} = {A′,B′}
bulk
+ {A′,B′}

boun

[A′,B′] = [A′,B′]
bulk
+ [A′,B′]

boun

(12)

That is, the full brackets are split additively into bulk and boundary parts, respec-
tively. This split can be accomplished by applying integration by parts to the full
brackets. Following [14], the proper interpretation of the GENERIC evolution equa-
tion (8) is now given by

dA′

dt
= {A′,E ′}

bulk
+ [A′,S ′]

bulk
(13)
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Invoking the symmetry properties of the full brackets, i.e. {A′,B′} = −{B′,A′} and
[A′,B′] = [B′,A′], (12) leads to

{A′,B′}
bulk
= −{B′,A′}

bulk
− ({A′,B′}

boun
+ {B′,A′}

boun
)

[A′,B′]
bulk
= [B′,A′]

bulk
− ([A′,B′]

boun
− [B′,A′]

boun
) (14)

Substitution from (14) into (13) yields the GENERIC evolution equation for open
systems

dA′

dt
= −{E ′,A′}

bulk
+[S ′,A′]

bulk
−({A′,E ′}

boun
+ {E ′,A′}

boun
+ [A′,S ′]

boun
− [S ′,A′]

boun
)

(15)
In the sequel, we use the above equation to derive the variational formulation for
large strain thermo-elastodynamics.

3.1 Specific brackets

Next, we provide the specific brackets featering in the GENERIC evolution equa-
tion (15) pertaining to thermoelastic solids. Proceeding along the lines of [14], we
start from the full brackets derived above and apply integration by parts. In this
connection, the goal is to get the derivatives (δϕa′, δpa′, δτa′) free of any spatial
derivatives. To this end, we rewrite the full Poisson bracket (4) as

{A′,B′} = ∫
B

(∂ϕa′ ⋅ ∂pb′ − ∂pa′ ⋅ (∂ϕb′ −Div (∂∇ϕb′ − ∂τ b′

∂τη′
∂∇ϕη′))) dV

−∫
B

Div (∂∇ϕa′ − ∂τa
′

∂τη′
∂∇ϕη′) ⋅ ∂pb′ dV

(16)

Applying integration by parts to the second integral on the right-hand side of (16),
and taking into account the additive decomposition (12)1, we obtain

{A′,B′}
bulk
= ∫

B

(∂ϕa′ ⋅ ∂pb′ − ∂pa′ ⋅ (∂ϕb′ −Div(∂∇ϕb′ − ∂τ b′

∂τη′
∂∇ϕη′))) dV

+ ∫
B

(∂∇ϕa′ − ∂τa′

∂τη′
∂∇ϕη′) ∶ ∇∂pb′ dV

(17)

and

{A′,B′}
boun
= −∫

∂B
∂pb

′ ⋅ (∂∇ϕa′ − ∂τa′

∂τη′
∂∇ϕη′)NdA (18)

Here, the vector N denotes the unit outward normal field on the boundary ∂B of the
reference configuration (Fig. 2). Similarly, applying integration by parts to the full
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dissipative bracket (5), yields the corresponding bulk bracket

[A′,B′]
bulk
= −∫

B

∂τa′

∂τu′
Div((θ′)2Kt∇( ∂τ b

′

∂τu′
)) dV (19)

along with the boundary bracket

[A′,B′]
boun
= ∫

∂B

∂τa′

∂τu′
N ⋅ (θ′)2Kt∇( ∂τ b

′

∂τu′
) dA (20)

Table 1 contains a summary of the specific brackets appearing in the GENERIC
evolution equations (15) for open systems. In Table 1, the material heat flux vector
and the first Piola-Kirchhoff stress tensor are given by

Q′ = (θ′)2Kt∇(∂τη
′

∂τu′
)

P′ = ∂∇ϕu′ − ∂τu
′

∂τη′
∂∇ϕη′

(21)

Table 1: Summary of the brackets featuring in the GENERIC evolution equations
(15) for open systems.

{E ′,A′}
bulk
= − ∫

B

(b ⋅ ∂pa′ + ρ−1pt ⋅ (∂ϕa′ −Div (∂∇ϕa′ − ∂τa′

∂τη′
∂∇ϕη′))) dV

+ ∫
B

P′ ∶ ∇∂pa′ dV

[S ′,A′]
bulk
= − ∫

B

1

θ′
Div ((θ′)2Kt∇(∂τa

′

∂τu′
)) dV

{A′,E ′}
boun
= − ∫

∂B
ρ−1pt ⋅ (∂∇ϕa′ − ∂τa′

∂τη′
∂∇ϕη′)NdA

{E ′,A′}
boun
= − ∫

∂B
∂pa

′ ⋅P′NdA

[A′,S ′]
boun
=∫

∂B

∂τa′

∂τu′
N ⋅Q′ dA

[S ′,A′]
boun
=∫

∂B

1

θ′
N ⋅ (θ′)2Kt∇(∂τa

′

∂τu′
) dA
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3.2 Initial boundary value problem

We next deal with the initial boundary value problem (IBVP) pertaining to large-
strain thermoelastodynamics. To this end we decompose the boundary ∂B of the
continuum body (Fig. 2) into a displacement boundary ∂ϕB, on which ϕt = ϕt, and
a traction boundary ∂σB, on which PtN = tt, where ϕt and tt are prescribed functions
for t ≥ 0 . Moreover, ∂ϕB ∪ ∂σB = ∂B and ∂ϕB ∩ ∂σB = ∅. Similarly, for the thermal
part we consider the subsets ∂τB and ∂qB, with the properties ∂τB ∪ ∂qB = ∂B and
∂τB ∩ ∂qB = ∅. Here, the thermodynamic variable is prescribed on ∂τB, i.e. τt = τ t,
whereas the heat flux is prescribed on ∂qB, i.e. Qt ⋅N = qt.

The goal is now to determine the motion ϕt ∶ B ↦ R3, the linear momentum
density pt ∶ B ↦ R3, and the thermodynamic variable τt ∶ B ↦ R for t ∈ (0,T ]. The
unknown fields are subject to initial conditions of the form ϕ0 = X, p0 = ρV0, and
τ0 = τ ini in B. Here, V0 is a prescribed material velocity field and τ ini is a prescribed
field of the thermodynamic variable τ ∈ {θ,η,u}. The unknown fields are determined
by the variational problem to be dealt with in the next section.

3.2.1 Variational formulation

To deduce the variational formulation of the present IBVP from the GENERIC
evolution equation (15), we choose the specific density function a′ = w′, where

w′ = wϕ ⋅ϕt +wp ⋅ pt +wτ τt (22)

Here, wϕ,wp ∶ B ↦ R3 and wτ ∶ B ↦ R are test functions that have to satisfy the
boundary conditions wϕ = 0 and wp = 0 on ∂ϕB, and wτ = 0 on ∂τB. With the choice
(22), the left-hand side of the GENERIC evolution equation (15) yields

d

dt
W ′ = ∫

B

(wϕ ⋅ ϕ̇t +wp ⋅ ṗt +wτ τ̇t) dV (23)

On the other hand, the specific brackets on the right-hand side of (15) assume the
form (cf. Table 1)

{E ′,W ′}
bulk
= − ∫

B

(b ⋅wp + ρ−1pt ⋅ (wϕ +Div ( wτ

∂τη′
∂∇ϕη′)) −P′ ∶ ∇wp) dV

[S ′,W ′]
bulk
= − ∫

B

1

θ′
Div ((θ′)2Kt∇( wτ

∂τu′
)) dV
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and

{W ′,E ′}
boun
= − ∫

∂B
ρ−1pt ⋅ (− wτ

∂τη′
∂∇ϕη′)NdA

{E ′,W ′}
boun
= − ∫

∂B
wp ⋅P′NdA

[W ′,S ′]
boun
=∫

∂B

wτ

∂τu′
N ⋅Q′ dA

[S ′,W ′]
boun
=∫

∂B

1

θ′
N ⋅ (θ′)2Kt∇( wτ

∂τu′
) dA

Accordingly, the GENERIC evolution equation (15) gives rise to the equations

0 =∫
B

wϕ ⋅ (ϕ̇t − ρ−1pt) dV
0 =∫

B

(wp ⋅ (ṗt − b) +P′ ∶ ∇wp) dV − ∫
∂B

wp ⋅P′NdA
(24)

along with

0 =∫
B

(wτ τ̇t −Div ( wτ

∂τη′
∂∇ϕη′) ⋅ ρ−1pt + 1

θ′
Div ((θ′)2Kt∇( wτ

∂τu′
))) dV

+∫
∂B
(ρ−1pt ⋅ ( wτ

∂τη′
∂∇ϕη′)N − 1

θ′
N ⋅ (θ′)2Kt∇( wτ

∂τu′
) + wτ

∂τu′
N ⋅Q′) dA

Integrating by parts twice, we arrive at an alternative representation of the last
equation given by

0 =∫
B

(wτ τ̇t +∇(ρ−1pt) ∶ ( wτ

∂τη′
∂∇ϕη′) −∇( 1

θ′
) ⋅ (θ′)2Kt∇( wτ

∂τu′
)) dV

+∫
∂B

wτ

∂τu′
N ⋅Q′ dA

Using expression (21)1 for the material heat flux and the symmetry property Kt =
KT

t , the above equation can be recast in the form

0 = ∫
B

(wτ τ̇t +∇(ρ−1pt) ∶ ( wτ

∂τη′
∂∇ϕη′) −∇( wτ

∂τu′
) ⋅Q′) dV +∫

∂B

wτ

∂τu′
N ⋅Q′ dA (25)

Taking into account the above stated boundary conditions, (24) and (25) give rise
to the following variational formulation of the present IBVP:

0 =∫
B

wϕ ⋅ (ϕ̇t − ρ−1pt) dV
0 =∫

B

(wp ⋅ (ṗt − b) +P′ ∶ ∇wp) dV − ∫
∂σB

wp ⋅ tt dA

0 =∫
B

(wτ τ̇t +∇(ρ−1pt) ∶ ( wτ

∂τη′
∂∇ϕη′) −∇( wτ

∂τu′
) ⋅Q′) dV + ∫

∂qB

wτ

∂τu′
qt dA

(26)
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These equations have to hold for all times t ≥ 0 and for arbitrary test functions
subject to the above mentioned boundary conditions.

3.2.2 Balance laws

Important balance laws can be directly deduced from the GENERIC-based vari-
ational formulation (26). For that purpose we confine our attention in this section
to the pure Neumann problem (i.e. ∂σB = ∂qB = ∂B).

First, we choose wϕ = ∂ϕj′ξ and wp = ∂pj′ξ, where j′ξ = ξ ⋅ (ϕt × pt) is the density

function corresponding to the total angular momentum Jt = ∫Bϕt × pt dV projected
onto the straight line specified by the constant vector ξ ∈ R3. Inserting wϕ = pt × ξ
and wp = ξ ×ϕt into (26)1,2, and subsequently adding both equations, we obtain the
balance of angular momentum in the form

ξ ⋅ dJt

dt
= ξ ⋅ (∫

B

ϕt ×bdV + ∫
∂B

ϕt ×P′NdA) (27)

To verify the balance of energy we choose for the test functions in (26)

wϕ = ∂ϕe′

wp = ∂pe′

wτ = ∂τe′
or

wϕ = −b
wp = ρ−1pt

wτ = ∂τu′

Substituting these quantities into (26) and subsequently adding the three resulting
equations, a straightforward calculation taking into account the identity ϕ̇t = ρ−1pt

and formula (21)2 for the first Piola-Kirchhoff stress tensor yields

d

dt∫B (
1

2
ρ−1pt ⋅ pt + u′) dV = ∫

B

b ⋅ ϕ̇t dV + ∫
∂B
(ϕ̇t ⋅P′N −N ⋅Q′) dA (28)

This equation corresponds to the balance law for the energy. Concerning the balance
of entropy, we insert wτ = ∂τη′ into (26)3, to obtain

0 =∫
B

(∂τη′τ̇t +∇(ρ−1pt) ∶ (∂∇ϕη′) −∇(∂τη′
∂τu′
) ⋅Q′) dV + ∫

∂B

∂τη′

∂τu′
Q′ ⋅NdA

=∫
B

(dη′
dt
−∇( 1

θ′
) ⋅ (θ′)2Kt∇( 1

θ′
)) dV + ∫

∂B

1

θ′
Q′ ⋅NdA

Here, use has been made of formula (6) for the temperature along with expression
(21)1 for the material heat flux vector. Moreover, the identity ϕ̇t = ρ−1pt has again

10
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been taken into account. The above equation can be rewritten as

dS ′

dt
= ∫

B

∇( 1
θ′
) ⋅ (θ′)2Kt∇( 1

θ′
) dV

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≥0

−∫
∂B

1

θ′
Q′ ⋅NdA (29)

which complies with the second law of thermodynamics.

4 CONCLUSIONS

We have developed a new GENERIC-based variational formulation for large strain
elastodynamics. Two salient features of the newly proposed weak formulation (26)
are (i) the possibility to freely choose from among three options for the thermo-
dynamic state variable (the absolute temperature, the internal energy density, or
the entropy density), and (ii) the nonstandard form provided by the underlying
GENERIC formalism. These features make possible the design of alternative ther-
modynamically consistent Energy-Momentum-Entropy schemes. This is shown in
the companion contribution [15].
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[14] H.C. Öttinger. Nonequilibrium thermodynamics for open systems. Physical

Review E, 73(3):036126–1–10, 2006.

[15] M. Schiebl and P. Betsch. Energy-momentum-entropy consistent numerical
methods for thermomechanical solids based on the GENERIC formalism. In
Proceedings of the 6th European Conference on Computational Mechanics, Glas-
gow, UK, 11-15 June 2018.

12


	INTRODUCTION
	GENERIC FOR CLOSED SYSTEMS
	GENERIC FOR OPEN SYSTEMS
	Specific brackets
	Initial boundary value problem
	Variational formulation
	Balance laws


	CONCLUSIONS

