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Abstract. Numerical formulations of the Koiter theory allow the efficient prediction,
through a reduced order model, of the behavior of shell structures when failure is domi-
nated by buckling. In this work, we propose an isogeometric version of the method based
on a solid-shell model. A NURBS-based interpolation is employed on the middle surface
of the shell to accurately describe the geometry and the high continuity typical of the dis-
placement field in buckling problems and to directly link the CAD model to the structural
one. A linear interpolation is then adopted through the thickness together with a modified
generalized constitutive matrix, which allows us to easily eliminate thickness locking and
model multi-layered composites. Reduced integration schemes, which take into account
the continuity of the shape functions, are used to avoid interpolation locking and make
the integration faster. A Mixed Integration Point strategy makes it possible to transform
the displacement model into a mixed (stress-displacement) one, required by the Koiter
method to obtain accurate predictions, without introducing stress interpolation functions.
The result is an efficient numerical tool for buckling and initial post-buckling analysis of
composite shells, characterized by a low number of DOFs and integration points and by
a simple and quick construction of the reduced order model.

1 INTRODUCTION

The failure of composite shells often occurs because of buckling phenomena which make
them sensitive to material, geometrical and load imperfections [1]. Thousands of equilib-
rium path evaluations can be required in order to detect the worst imperfection case in
terms of failure load. Furthermore, the stacking sequence has proven to strongly affect
the buckling and post-buckling response of the shells and the design of an optimal layup
can significantly increase the load-carrying capability. Consequently, the need for an opti-
mization process leads to a further computational burden and requires more efficient tools
of analysis and design. For these reasons, a great amount of research has focused on de-
veloping reduced order models (ROMs) based on the finite element (FE) implementation
[2, 3] of the Koiter theory of elastic stability, capable of furnishing, with an acceptable
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computational cost, an accurate prediction [1] of the limit load value and the initial post-
critical behaviour for a very large number of imperfections. A solid-shell FE model [4] is
particularly convenient for the construction of the ROM, since it allows us to avoid the
use of finite rotations. Although a large number of locking free linear solid-shell elements
are available, their behavior is not sufficiently accurate when modeling curved geometry
and, as a consequence, a fine discretization is required. An interesting alternative is given
by the isogeometric analysis (IGA) [5] based on NURBS shape functions. IGA seems
very attractive in particular in buckling problems, where a highly continuous solution is
often expected [6, 7, 1]. It has been shown in [3] that the Koiter method requires a mixed
formulation in order to avoid a locking phenomenon in the evaluation of the fourth-order
coefficients of the reduced system of equations and to increase the range of validity of the
ROM, which gets worse in displacement formulations when the slenderness of the struc-
ture increases [3] and the pre-buckling path exhibits even small nonlinearities. This aspect
can also be observed in path-following analyses [3, 4, 8] where displacement formulations
lead to a slow convergence rate of the Newton scheme when slender structures are ana-
lyzed. In Koiter analysis this phenomenon is much more evident because the equilibrium
path is directly extrapolated using the ROM, and an equilibrium error is not corrected
by an iterative scheme, so affecting the accuracy of the method. On the contrary mixed
formulations avoid this drawback because the stresses are directly extrapolated. Further-
more, the joint use of a Green-Lagrange strain measure and of a mixed Hellinger-Reissner
variational formulation [2, 3], leads to a 3rd order polynomial dependence of the strain
energy on the discrete DOFs with the consequence of the zeroing of all the fourth order
strain energy variations. In this work, we propose an isogeometric numerical formulation
of the Koiter theory for the analysis of composite shells which exploits the advantages of a
solid-shell model. A linear through-the-thickness interpolation is considered for geometry
and displacements. The nonlinear model is based on a Total-Lagrangian formulation with
the use of the Green-Lagrange strain measure. Inspired by the FE approach proposed by
Sze [4], the Green-Lagrange strains are linearized along the thickness direction, allowing
the definition of a modified generalized constitutive matrix which effectively eliminates
thickness locking and leads to accurate predictions for multi-layered composites, with-
out introducing additional through-the-thickness DOFs. The displacement field and the
geometry are rewritten in terms of semi-sum and semi-difference of the top and bottom
surface quantities. The model so obtained is described by middle surface coordinates only,
allowing us to interpolate geometry and displacements using bivariate NURBS of generic
order and continuity. Each control point is equipped with six DOFs but, in contrast
to traditional shell models, only displacement DOFs are employed. Different patch-wise
reduced integration rules [9, 10], previously proposed for linear analysis, are investigated
in stability problems with the aim of eliminating interpolation lockings and increasing
the computational efficiency when C1 and C2 NURBS are adopted. To obtain the mixed
description of the problem, required by the Koiter formulation, the Mixed Integration
Point (MIP) strategy, recently proposed in [8] for finite element path-following analyses,
is here extended to the proposed isogeometric Koiter analysis.
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2 KOITER IGA USING MIXED INTEGRATION POINTS

2.1 The nonlinear model and the numerical integration

We consider a slender hyperelastic structure subject to conservative loads p[λ] propor-
tionally increasing with the amplifier factor λ. The equilibrium is expressed by the virtual
work equation

Φ[u]′ δu − λp̂ δu = 0 , u ∈ U , δu ∈ T (1)

where u ∈ U is the field of configuration variables, Φ[u] denotes the strain energy, T is
the tangent space of U at u and a prime is used to express the Frechèt derivative with
respect to u. We assume that U will be a linear manifold so that its tangent space T
will be independent of u. When a mixed format is adopted the configuration variables
u collect both displacement and stress fields. The displacement based IGA formulation
previously presented allows us to express the strain energy of the element as a sum of
element contributions Φ[u] ≡

∑
e Φe[de]

Φe[de] ≡
∫

Ωe

(
1

2
εTCεε

)
dΩe (2)

where Ωe is the element domain and a numerical integration is usually adopted. The shell
is modeled using the isogeometric solid-shell model proposed in [11]. The d-dimensional
target space of order p and regularity r, labeled as Spr , is exactly integrated by a number
of ≈ ((p− r)/2)d integration points per element, distributed over the patch, significantly
lower than in standard Gauss quadrature rules. Their positions and weights are not
equal for each element, but are evaluated, once and for all, in a pre-processing phase and
depend on r, p and patch mesh [10, 9]. They also open up new possibilities for patch-wise
reduced integration schemes. In fact p and r can be selected by the user and are not
required to be those for the exact integration of the problem space. If the integration
space presents spurious modes, a certain number of quadrature points are added near
the boundary elements in order to remove them and the approximation space is said to
be over-integrated and labeled as S̄pr [10, 9]. The number of integration points n can be
different element-by-element and the strain energy can be evaluated as

Φe[de] ≡
1

2

n∑
g=1

εg[de]
TCgεg[de] wg (3)

where subscript g denotes quantities evaluated at the integration point [ξg, ηg], wg is
the product of the corresponding weight and the determinant of the Jacobian matrix J
evaluated at the integration point and Cg is Cε at the integration point.

2.2 The Koiter method using mixed integration points

The fundamental idea of the MIP strategy [8] is to relax the constitutive equations
at the level of each integration point. This is made by rewriting the strain energy in a
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pseudo Hellinger-Reissner form on the element

Φe[ue] ≡
n∑
g=1

(
σTg εg[de]−

1

2
σTg C−1

g σg

)
wg (4)

where the stresses at each integration point σg are now independent variables being

ue =


σ1
...
σn
de

 (5)

The Koiter method is based on a third order Taylor expansion of Eq.(1), in λ and the
modal amplitudes αi [1, 2]. Letting ui ∈ T be a generic variation of the displacement
field and denoting with a bold symbol the discrete FEM counterpart of the continuum
quantities, and referring to the solid-shell finite element model presented in [2], the reduced
model construction for the perfect structure consists of the following steps.

1. The fundamental path is evaluated as

uf [λ] = u0 + λû , K0 û = f , K0 ≡ K[u0] (6a)

where K0 and f are obtained from the following energy equivalence

uT1 K0u2 := Φ′′0u1u2 uT1 f = p u1.

and requires the solution of a linear system to evaluate the initial path tangent û. A
subscript will denote, from now on, the point in which the quantities are evaluated,
i.e. Φ′′0 ≡ Φ′′[u0] and so on.

2. The buckling modes and loads are obtained from the linearized critical condition
consisting of the eigenvalue problem

K[λ]v̇ ≡ (K0 + λK1[û])v̇ = 0 (6b)

where K1 is obtained from the following energy equivalence

uT1 K1u2 = Φ′′′0 ûu1u2.

3. The (m × (m + 1))/2 + 1 quadratic corrective FE vectors wij, ˆ̂w are obtained by
the solution of the linear systems

Kb
ˆ̂w +ˆ̂f +

m∑
k=1

ckf̂k = 0 with ck = v̇Tk
ˆ̂
f

Kbwij + f ij +
m∑
k=1

ck f̂k = 0 with ck = v̇Tk f ij

(6c)
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in which Kb ≡ K0 + λbK1, f̂k = K1v̇k, λb is a reference value of the bifurcation
cluster, usually the first buckling load and f ij, f00 are defined as a function of modes
v̇i and û by the energy equivalences

δwT f ij = Φ′′′v̇j v̇jδw δwT ˆ̂
f = Φ′′′û2δw

4. The construction of the reduced system of equations

rk[λ, αi] ≡ µk[λ] + (λk − λ)αk −
1

2
λ2

m∑
i=1

αiCik +
1

2

m∑
i,j=1

αiαjAijk

+
1

6

m∑
i,j,h=1

αiαjαhBijhk = 0, k = 1 · · ·m
(6d)

is carried out by evaluating the energy terms for i, j, h, k = 1 · · ·m, being Φ′′bu1u2 =
(Φ′′0 + λbΦ

′′′û)u1u2 ∀u1, u2 as sum of element contributions

Aijk =Φ′′′v̇iv̇j v̇k Cik = Φ′′b
ˆ̂wwik

Bijhk =− Φ′′b (wijwhk + wihwjk + wikwjh)

µk[λ] =
1

2
λ2Φ′′′û2v̇k.

The evaluation of the equilibrium path, to be repeated for each additional imperfection,
is obtained by solving the modified reduced system

rk[λ, αi] + µ̃k[λ, αi] = 0

where µ̃k represents the effect of the imperfection, and can be evaluated as in [1].

2.3 Strain energy variations using mixed integration points

In the following uig = {σig,die} will denote the vector representation on the integration
point g of ui. The first variation of (4) is

Φ′eu1 =
n∑
g=1

[
σ1g

d1e

]T [
sgσ
sgd

]
wg with

{
sgσ ≡ εg[de]−C−1

g σg

sgd ≡ Bg[de]
Tσg.

(7a)

and Bg[de] = Lg + Qg[de]. The second variation of (4) is

Φ′′eu1u2 =
n∑
g=1

{
σT1gBg[de]d2e + σT2gBg[de]d1e + σTg Qg[d1e]d2e

}
wg. (7b)

Letting εQgk = dT1eΨgkd2e the kth component of vector Qg[d1e]d2e we have

σTg Qg[d1e]d2e ≡
∑
k

σgk ε
Q
gk = dT1eG[σg]d2e with G[σg] =

∑
k

σgkΨgk. (7c)
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In matrix form the second variation of (4), letting Gg ≡ Ge[σg], becomes

Φ′′eu1u2 =
n∑
g=1

[
σ1g

d1e

]T [−C−1
g Bg

BT
g Gg

] [
σ2g

d2e

]
wg =

∑
g

uT1gKgu2g. (7d)

The second variation can also be written in vector form introducing the incremental
force vector so defined

Φ′′eu1u2 =
∑
g

uT1gs
′
g[u2g] with s′g[u2g] ≡

[
−C−1

g σ2g + Bgd2e

BT
g σ2g + Ggd2e

]
(7e)

The third variation of the strain energy is

Φ′′eu1u2u3 =
n∑
g=1

{
σT1gQg[d3e]d2e + σT2gQg[d3e]d1e + σT3gQg[d1e]d2e

}
wg (7f)

that can also be written in vector form introducing the secondary force vector as

Φ′′′e δu1δu2δu3 =
∑
g

uT1gs
′′
g [u2g,u3g] with s′′g [u2g,u3g] ≡

[
Qg[d3e]d2e

Qg[d3e]
Tσ2g + Gg[σ3g]d2e

]
(7g)

3 NUMERICAL RESULTS

3.1 Composite curved panel under compression

The first test regards a curved panel under compression whose geometry, loads, and
boundary conditions are depicted in Fig.1. The material properties can be found in
Table 1. Two different layups are considered: [0]6 and [45,−45, 0]s. The lamination
significantly influences the shape of the buckling modes as illustrated in Fig.2. This is
confirmed by Tables 2, 3, 4 and 5 which show the convergence of the first 4 linearized
buckling loads. The high continuity together with the exact representation of the geometry
leads to very good results with all the integration strategies. Again, however, the S̄2

0 for
C1 and S4

1 and S̄3
1 for C2 represent the best choices in terms of accuracy and efficiency.

The study of the initial post-buckling behavior of the panel is carried out considering
the presence of a geometrical imperfection ẽ that is a combination of the first and the
second buckling modes. In particular, it is the difference between them scaled in order to
obtain ‖ẽ‖∞ = 0.1t. The Koiter solution is evaluated using a ROM based on the first two
buckling modes only, since the higher ones are far from the first two, and it is compared
with reference paths. For both the layups, the initial post-buckling exhibits a limit load
as shown in Fig.3 and Fig.4 for [0]6 and in Fig.5 and 6 for [45,−45, 0]s. C1-S̄2

0 , C2-S̄3
1

and C2-S4
1 are the best performing strategies, providing a good estimate of the limit loads

with a 8× 8 mesh, which became practically exact using a 16× 16 mesh.
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100

R 300

v=0

v=0

C

v=0

v=0, w=0

l/100

l/100

100.5

uC=0

Figure 1: Composite curved panel: geometry and boundary conditions.

E11 E22 = E33 ν12 = ν13 ν23 G12 = G13 G23

30.6 8.7 0.29 0.5 3.24 2.9

Table 1: Composite curved panel: material properties.

4 elm. 8 elm. 16 elm.

S̄2
0 S3

0 S4
0 ANS S̄2

0 S3
0 S4

0 ANS S̄2
0 S3

0 S4
0 ANS

1.053 1.055 1.078 1.042 1.002 0.998 1.020 1.008 0.995 0.995 0.998 0.996
1.158 1.424 1.694 1.177 1.005 1.008 1.069 1.018 0.996 0.998 1.003 0.997
1.259 1.609 ∗ 1.299 1.009 1.035 1.124 1.039 1.003 1.004 1.012 1.003
1.408 1.746 ∗ 1.396 1.007 1.061 1.213 1.067 1.003 1.005 1.020 1.004

∗ > 2

Table 2: Composite curved panel: first 4 normalized buckling loads for [0]6 with C1

interpolation.

4 elm. 8 elm. 16 elm.

S̄2
0 S3

0 S4
0 ANS S̄2

0 S3
0 S4

0 ANS S̄2
0 S3

0 S4
0 ANS

1.096 1.144 1.263 1.165 1.016 1.018 1.095 1.054 1.001 1.002 1.015 1.004
1.082 1.201 1.656 1.106 1.013 1.010 1.078 1.036 0.998 0.999 1.011 1.001
1.080 1.346 ∗ 1.333 1.007 1.010 1.157 1.061 0.998 0.999 1.010 0.999
1.235 1.456 ∗ 1.848 1.035 1.073 1.228 1.119 1.003 1.012 1.049 1.011

∗ > 2

Table 3: Composite curved panel: first 4 normalized buckling loads for [45,−45, 0]s with
C1 interpolation.

4 elm. 8 elm. 16 elm.

S̄3
1 S4

1 S6
1 S̄3

1 S4
1 S6

1 S̄3
1 S4

1 S6
1

0.995 1.034 1.031 1.001 1.005 1.004 1.001 1.002 1.001
1.000 1.013 1.073 1.001 1.004 1.003 1.001 1.001 1.001
1.008 1.063 1.132 1.003 1.008 1.007 1.002 1.003 1.003
1.014 1.104 1.210 1.004 1.009 1.010 1.002 1.003 1.003

Table 4: Composite curved panel: first 4 normalized buckling loads for [0]s with C2

interpolation.
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4 elm. 8 elm. 16 elm.

S̄3
1 S4

1 S6
1 S̄3

1 S4
1 S6

1 S̄3
1 S4

1 S6
1

0.995 1.097 1.110 1.006 1.014 1.018 1.002 1.005 1.004
1.014 1.044 1.068 1.006 1.012 1.015 1.001 1.003 1.003
1.002 1.121 1.167 1.003 1.007 1.014 1.001 1.003 1.002
1.062 1.205 1.280 1.041 1.022 1.061 1.001 1.003 1.003

Table 5: Composite curved panel: first 4 normalized buckling loads [45,−45, 0]s with C2

interpolation.

(a) mode 1 [0]6

(b) mode 1 [45/− 45/0]s

(c) mode 2 [0]6

(d) mode 2 [45/− 45/0]s

Figure 2: Composite curved panel: first and second buckling mode for two layups
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u
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1

16× 16 elements

u

λ
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0

C1-S3
0

C1-S4
0

C1-ANS
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Figure 3: Composite curved panel: equilibrium path for [0]6 and C1 interpolation
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0
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Figure 4: Composite curved panel: equilibrium path for [0]6 and C2 interpolation
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Figure 5: Composite curved panel: equilibrium path for [45/−45/0] and C1 interpolation
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Figure 6: Composite curved panel: equilibrium path for [45/−45/0] and C2 interpolation
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12 elm. 24 elm. 48 elm.

S̄2
0 S3

0 S4
0 ANS S̄2

0 S3
0 S4

0 ANS S̄2
0 S3

0 S4
0 ANS

0.957 1.594 ∗ 1.658 1.003 1.041 1.200 1.056 1.000 1.002 1.015 1.001
0.960 1.596 ∗ 1.664 1.006 1.046 1.200 1.059 1.000 1.002 1.015 1.001
0.959 1.618 ∗ 1.661 1.005 1.044 1.200 1.060 1.000 1.002 1.014 1.001
0.962 1.618 ∗ 1.719 1.007 1.048 1.208 1.060 1.000 1.002 1.014 1.001

∗ > 2

Table 6: Laminate composite cylinder: first 4 normalized buckling loads for C1.

12 elm. 24 elm. 48 elm.

S̄3
1 S4

1 S6
1 S̄3

1 S4
1 S6

1 S̄3
1 S4

1 S6
1

1.156 1.120 1.245 1.003 1.011 1.007 1.000 1.001 1.000
1.176 1.127 1.245 1.003 1.011 1.007 1.000 1.001 1.000
1.175 1.150 1.266 1.002 1.012 1.006 1.000 1.001 1.000
1.183 1.150 1.278 1.002 1.012 1.006 1.000 1.001 1.000

Table 7: Laminate composite cylinder: first 4 normalized buckling loads for C2.

3.2 Laminate composite cylinder subjected to axial compression

The cylinder considered in the following and labelled Z33 was manufactured and tested
by DLR (German Aerospace Center). Geometry, material properties and boundary condi-
tions are reported in [12]. The lowest buckling loads of the perfect structure are reported
in Table 6 and Table 7 for the C1 and the C2 interpolation respectively. The corresponding
buckling modes are depicted in Fig.7. Due to problem symmetries they occur in couples.
Also for this test, C1-S̄2

0 , C2-S̄3
1 and C2-S4

1 turn out to be particularly accurate and provide
good results with a relatively coarse mesh in comparison with those usually employed in
the FE literature [12]. In evaluating the initial post-buckling behavior a load imperfection
is introduced by a concentrated force halfway up the cylinder axis. By including just one
mode in the ROM, a good prediction of the limit load is obtained as shown in Fig.8 and
Fig.7.

(a) mode 1 and mode 2 (b) mode 3 and mode 4

Figure 7: Laminate composite cylinder: first 4 buckling modes.

10



Leonardo Leonetti, Domenico Magisano, Francesco Liguori and Giovanni Garcea

−0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0
0

2

4

6

8
·10−2

C1

u

λ

C1-S̄2
0

C1-S3
0

C1-S4
0

C1-ANS

C2 48 × 192

−0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0
0

2

4

6

8
·10−2

C1

u

λ

C1-S̄2
0

C1-S3
0

C1-S4
0

C1-ANS

C2 48 × 192

−0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0
0

2

4

6

8
·10−2

C2

u

λ

C2-S̄3
1

C2-S4
1

C2-S6
1

C2 48 × 192

−0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0
0

2

4

6

8
·10−2

C2

u

λ

C2-S̄3
1

C2-S4
1

C2-S6
1

C2 48 × 192

Figure 8: Laminate composite cylinder: equilibrium path using 24× 96 mesh

4 CONCLUSIONS

This work explored the use of IGA for the construction of a reduced model for composite
shells undergoing buckling. The results showed that the isogeometric model is able to
furnish an excellent approximation of the buckling loads, the limit loads and the initial
post-buckling behavior employing a very low number of DOFs and a reduced number of
integration points. In particular the C1-S̄2

0 and C2-S̄3
1 approaches proves to be convenient

because it requires just one integration point per element without spurious modes.
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