6th European Conference on Computational Mechanics (ECCM 6)
7th European Conference on Computational Fluid Dynamics (ECFD 7)
11-15 June 2018, Glasgow, UK

FDBB: FLUID DYNAMICS BUILDING BLOCKS

MATTHIAS MOLLER"*, ANDRZEJ JAESCHKE?

! Delft University of Technology, Delft Institute of Applied Mathematics,
Van Mourik Broekmanweg 6, 2628 XE Delft, The Netherlands
2 L6dz University of Technology, Institute of Turbomachinery,
ul. Wélczariska 219/223, 90-924 L4dz, Poland,

Key words: Heterogeneous High-Performance Computing, Expression Templates, Meta-
Programming Techniques, Computational Fluid Dynamics

Abstract. High-performance computing platforms are becoming more and more het-
erogeneous, which makes it very difficult for researchers and scientific software developers
to keep up with the rapid changes on the hardware market. In this paper, the open-
source project FDBB (Fluid Dynamics Building Blocks) is presented, which eases the
development of fluid dynamics applications for heterogeneous systems. It consists of a
low-level API that provides a unified interface to many different linear algebra back-ends
and a lightweight and extendible high-level expression template library, which provides
largely customizable fluid dynamics building blocks, like transformations between primary
and secondary variables as well as expressions for Riemann invariants, equations of state,
inviscid fluxes and their flux-Jacobians. The performance of the developed approach is
assessed both for synthetic micro-benchmarks and within mini-applications.

1 INTRODUCTION

High-performance computing hardware is progressing quite rapidly towards more and
more heterogeneous platforms, which makes it very difficult for researchers and developers
of scientific software to keep up with the latest developments in chip designs and to
explore emerging hardware technologies like, e.g., hybrid CPU-FPGA devices, without
spending a large part of their time on reimplementing the same algorithms and core
functionalities over and over again for the different compute devices. Software packages
that explicitly aim at supporting heterogeneous platforms, e.g., multi-core CPU systems
combined with many-core accelerators like GPUs, dedicated vector processors, and/or
FPGA expansion cards, suffer even more from the rapid changes of the hardware market,
since their developers need to ensure that the implementations of an algorithm for the
different hardware platforms are kept at the same maturity and functionality level.

Over the last two decades, the trend in high-performance computing (HPC) for prac-
tical large-scale applications goes away from writing hand-optimized application codes
towards compiler-based code generation and automated performance tuning [1, 3.

*Corresponding author: m.moller@tudelft.nl

Matthias Moller, Andrzej Jaeschke

It is a long-living myth that the use of expression template meta-programming tech-
niques automagically leads to efficient computer code. However, the use of specialized
expression template libraries (ETL) like Armadillo [12], ArrayFire [13], Blaze [7], Eigen
6], VexCL [4], ViennaCL [11] that provide hardware-optimized linear algebra routines
for vectors as well as dense and sparse matrices allows to write concise source code at
an abstract mathematical level that gets compiled into executables that exploit the hard-
ware capabilities to the extent implemented by the authors of the linear algebra back-ends.
None of them, of course, supports all target hardware platforms and the provided function-
ality and foreseen use case scenarios largely differ from one library to the other. Despite
all differences, the common aim of expression template libraries is to provide mechanisms
to formulate mathematical vector expressions like y=0.5%sin(x+y) and evaluate them in a
single loop over the vector entries rather than creating temporaries for sub-expression.

The Fluid Dynamic Building Blocks (FDBB) project [8] makes an attempt to develop
a unified wrapper interface for the core functionality of all of the aforementioned linear
algebra back-ends and provides an extendible set of expression templates for developing
fluid dynamic applications with the focus placed on compressible flows. These expres-
sions include transformations between conservative, primitive and characteristic variables
as well as Riemann invariants, different types of equations of state (EOS), as well as in-
viscid fluxes and their flux Jacobians. FDBB is a header-only C++11/14 library, which
is designed to leave the underlying linear algebra back-ends largely unmodified so that
applications automatically benefit from improvements in the ETLs provided that their
API does not change between versions. The low-order API of our package is released as
standalone software, the Unified Expression Template Library Interface (UETLI) [9].

The rest of the paper is structured as follows. Section 2 describes the implementation
and typical usage scenarios in more detail. A performance analysis of the low- and high-
level APIs is presented in Section 3 followed by conclusions drawn in Section 4.

ETs for conservative/primitive/characteristic variables, EOS,
inviscid /viscous fluxes, flux-Jacobians, Riemann invariants

Unified function wrapper API to core functionality of ETL's:
make_temp, tag, tie, arithmetic operations, caching, ...

ETLs
Blitz++

ArrayFire
Blaze

Armadillo
Eigen
IT4++
MTL4

uBLAS
VexCL
ViennaCL

Figure 1: Structure of the low-level Unified Expression Template Library Interface (UETLI) and the
high-level Fluid Dynamics Building Blocks (FDBB) open-source header-only C++11 library.

ot - w [V -

Matthias Moller, Andrzej Jaeschke

2 IMPLEMENTATION

The overall structure of our software package is depicted in Figure 1.

2.1 Low-level API: UETLI

Core Functionality The different linear algebra back-ends largely vary in functionality,
maturity, performance, calling conventions and in the way they evaluate the expressions on
the target hardware. Most CPU back-ends employ a delayed evaluation approach based on
recursive templates and template meta-programming, to combine several operations into
one to reduce (or eliminate) the need for temporaries. In contrast, the multi-device back-
ends ArrayFire [13], VexCL [4] and ViennaCL [11] utilize just-in-time (JIT) compilation
techniques to convert automatically generated source code into executable code.

vex ::vector<float> x (ctx, n);
vex ::vector<float>y (ctx, n);

fdbb ::tag<1>(y) = CONSTANT(0.5, y)
* fdbb::elem_sin(fdbb::tag<0>(x)+fdbb::tag<l>(y));

Figure 2: Code snippet for the evaluation of the vector expression y = 0.5sin(z + y).

Consider the code snippet depicted in Figure 2 that computes the element-wise sine
of the vector sum z + y, scales the result by the constant 0.5 and assigns it to y. The
tag<ID>(expression) function is optional to assign a unique ID tag to the expression, which
helps the VexCL [4] back-end to not pass the same expression as multiple arguments to
the device kernel. As a general design principle of our software, functionality that is only
supported by some ETLs reduce to no-ops in the other cases, which is realized by template
specialization. The CONSANT (value, expression) macro ensures that the data type of the
constant equals that of the expression result and, moreover, enables further optimization
if that is provided by the back-end. The unitary operation elem_sin (expression) is one ex-
ample of more than 30 element-wise arithmetic operations that can be applied to vectors,
dense and sparse matrices, and block expressions, the latter being discussed below.

Figure 3 shows the OpenCL source-code that has been auto-generated by the VexCL [4]
library from the above vector expression and can be further processed into CPU or GPU
code by the OpenCL subsystem. VexCL also provides code generation engines for CUDA
and OpenMP as well as experimental support for Maxeler’s dataflow computing platform
[10], which aims at making field-programmable gate arrays (FPGAs) usable as next-
generation accelerator devices. Maxeler Technologies provides a software development kit
consisting of a Java-like programming language, MAXJ, as well as compilers and libraries
to synthesizes the high-level compute kernels into bitstreams to reconfigure the FPGAs
at runtime. In this case, JI'T compilation can take up to several hours or days but, still,
the fully automated generation of FPGA bitstreams from mathematical expressions is
an attractive feature. Switching to another back-end is realized by changing lines 1-2 of
Figure 2 leaving the actual mathematical expression in lines 3-4 unmodified.

oW

oo ~ (=2} ot

10

[w

© oo ~ (=] o

10

Matthias Moller, Andrzej Jaeschke

kernel void vexcl_vector_kernel (ulong n,
global float % prm_tag_1_1,
global float % prm_tag-0_1)

{
for(ulong idx = get_global_id (0); idx < n; idx += get_global_size(0))
{
prm_tag_1_1[idx] = ((5.0000000000000000e—01f) =
sin((prm_tag-0_1[idx] + prm_tag_-1_1[idx])));
}
}

Figure 3: Auto-generated OpenCL kernel code for the expression y = 0.5sin(x + y).

Caching Mechanism. The library makes extensive use of rvalue references, move se-
mantics, and perfect forwarding. Wrapper functions are implemented based on the design
pattern depicted in Figure 4. If type A requires special treatment in back-end BACKEND
other than calling sin (std :: forward<A>(a)), the get_element_sin_impl <A> trait needs to be
specialized to hold EnumETL::BACKEND in its attribute value. The functionality is then
provided by the specialized function elem_sin_impl <A ,EnumETL::BACKEND>::eval(A&& a).

template<typename A>
auto elem_sin (A& a)

#if __cplusplus <= 201103L
—> decltype (...) // C++11 return type deduction
#endif
{
return backend:: detail ::elem_sin_impl <A,
backend :: detail :: get_elem_sin_impl<A>::value>
:reval(std::forward<A>(a));

Figure 4: Static back-end dispatching: Example implementation of the element-wise sine expression.

This approach enables minimally-invasive addition of back-ends and fine-grained con-
trol over specialized treatment at the level argument types in unary and binary operators.

The elem_sin(a) function automatically returns an expression object, whose type de-
pends on the adopted linear algebra back-end. It can be either assigned (=evaluated) to
a vector or matrix object, i.e. y = elem_sin(x), or passed as argument to another function,
i.e. y = elemin(elemsin(x)). The latter is used on Section 2.2 to compose expressions for
the inviscid fluxes and the flux-Jacobians from smaller modular building blocks.

However, not all back-ends support the construction of expressions from sub-expressions,
which is caused by their inability to store temporarily created sub-expressions as objects
in further expressions but instead just store references, which will become invalid once the
underlying objects reach the end of their scope. We have implemented a caching mecha-

4

ot - w nN -

Matthias Moller, Andrzej Jaeschke

nism as a remedy, which is itself a lightweight ETL with full UELTT functionality support.
Cache expressions encapsulate the temporal expression objects that are generated by the
back-end and pass references to them transparently to the back-end functions.

auto x = fdbb::cache:: CacheExpr<0, arma::vec>(arma::vec(10));
auto y = fdbb::cache:: CacheExpr<1, arma::vec>(arma::vec(10));

auto E = CONSTANT(0.5, y) = fdbb::elem_sin(x+y);
y = E;

Figure 5: Code snippet illustrating the caching mechanism.

Figure 5 illustrates the general use of the caching mechanism for the Armadillo [12]
back-end. The two column vectors are encapsulated by the CacheExpr<Tag,ExprType> ob-
jects, which require unique ID tags next to the expression types. All unary and binary
operations return themselves cache-type objects that hold the sub-expression objects in-
ternally. The expression object can be obtained using the get() function, which makes it
even possible to combine the caching mechanism with native expression template code

x.get() = y.get() + arma:randu(10);

It should be noted that line 5 in the above code snippet does not trigger evaluation of the
cached expression but only assigns the unevaluated and encapsulated expression to the
object E. Evaluation happens during the assignment to y in line 6. In practice, lines 5-6
are typically fused unless E serves as sub-expression in multiple further expressions.

The caching mechanisms is moreover a helpful debugging tool. E. pretty_print (os) yields

(E(0.5)*sin ((E(N4arma3ColldEE)+E(N4arma3ColldEE))))

An extensive dump of the entire expression tree is produced by E.print_debug(os).

Block Expressions. Lastly, UETLI provides a framework for working with block ex-
pressions, that is, expressions that are composed from block matrices and vectors of fixed
block size. As an example, consider the following block matrix-vector multiplication

{yol B {A B} {sin(mo + ml)l (1)
yi| |C D] |cos(xg—x1)|’

where xg, x1 € R", 4o, y1 € R™, and A, B, C, D € R™*". With the aid of block expressions,
this can be implemented as shown in the code snippet depicted in Figure 6. Here, M and
Y (lines 9-12) are a block matrix view and block column vector, respectively, and E (lines
13-14) is a block expression consisting of 2 rows and 1 column. Block matrices and vectors
can only store objects of the same type, whereas block expressions accept an arbitrary

combination of types as it is required to handle the different expression objects returned
from the element-wise sine and cosine function. View objects in contrast to the non-view

oW

oo ~ (=2} ot

10

11

12

13

14

15

Matthias Moller, Andrzej Jaeschke

vex ::vector<double> x0 (ctx, n);
vex ::vector<double> x1 (ctx, n);
// Initialize row, col, and value vectors for matrices beforehand...
vex ::sparse ::matrix<float> A (ctx, m, n, rowA, colA, valA);

vex ::sparse :: matrix<float> B (ctx, m, n, rowB, colB, valB)
vex ::sparse :: matrix<float> C (ctx, m, n, rowC, colC, valC);
vex ::sparse :: matrix<float> D (ctx, m, n, rowD, colD, valD)

fdbb :: BlockMatrixView<vex ::sparse :: matrix<float >,2,2> M (A, B, C, D);
fdbb :: BlockColVector<vex::vector<double >2> Y (
vex ::vector<double> (ctx, m),
vex ::vector<double> (ctx, m));
auto E = fdbb:: makeBlockExpr<2,1> (fdbb::elem_sin(x0+x1),
fdbb ::elem_cos(x0—x1));
Y =M x E;

Figure 6: Code snippet for the block matrix-vector multiplication in Eq. (1).

counterparts only store references to the arguments passed, which implies that the sparse
scalar matrices A, B, C, and D are not duplicated and copied into M (line 9), which would
have been the case if M was of BlockMatrix type. In contrast, the move constructor of the
block column vector is used in lines 10-12 so that, again, no data duplication takes place.

makeBlockExpr(exprs...) creates an object of type BlockExpr<nrow,ncol,Exprs...>, which is
the most flexible block container since it supports the mixing of back-ends by design. How-
ever, most linear-algebra back-ends do not support mixed expressions, i.e., matrix-vector
multiplication between a sparse Eigen matrix and a Blaze vector (yet). The aforemen-
tioned block types support all unitary and binary operations and element-wise functions
that can be applied to a scalar matrix or vector object if they make mathematical sense.

The idx-th sub-item of a block object is accessible via fdbb:: utils :: get<idx>(obj), whereby
all block types adopt row-major storage ordering by default. The latter can be adjusted
by passing StorageOrder:: ColMajor as template parameter to the block objects.

2.2 High-level API: FDBB

On top of UETLI, we created the expression template library FDBB, which provides
the main building blocks for developing fluid dynamics applications.

Variables. Secondary variables can be computed from the primary ones with only a few
lines of code. Let U = [p, pv, pE]" denote the state vector of conservative variables in 3D
and assume a perfect gas with adiabatic index v = ¢, /¢, = 1.4. Then the absolute pressure
p is computed in a single line as shown in the code snippet depicted in Figure 7. By making
dimension Np ('3") and variable type ('EnumForm::conservative’) template parameters, it
is even possible to write dimension- and formulation-independent application code. This
approach is most effective in combination with factory-based object creation [5].

Matthias Moller, Andrzej Jaeschke

using eos = fdbb:: EOSidealGas<double,

std ::ratio <7, 2> /+ Cp %/,

std ::ratio <b, 2> /+ Cv */>;
using varU = fdbb:: Variables<eos,3,fdbb::EnumForm:: conservative >;
// Create and fill vectors rho, mx, my, mz, and rhoE beforehand ...
auto p = varU::p(rho, mx, my, mz, rhoE);

Figure 7: Code snippet for computing the pressure p from the conservative variables U = [p, pv, pE] .

Instead of passing the scalar variables one by one, it is handy to collect them in a block
expression that can be passed as single parameter (see paragraph 'Passing of Variables’
below for details). The scalar variables can be accessed via fdbb:: utils :: get<idx>(U).

auto U = varU:: conservative (rho, mx, my, mz, rhoE);
auto p = varU::p(U);

Figure 8: Collection of state variables into block expressions

A further advantage of using block expression is the easy conversion between state
vectors. Let the vector of conservative values U be defined as in line 1 of Figure 8. Then
the conversion from conservative to primitive variables and vice versa can be realized
elegantly as illustrated in the following code snippet. Assuming that well-designed linear
algebra back-ends will not perform copy operations if source and destination vectors are
the same, no memory bandwidth is lost on unnecessary transfers of the density variable.

using varV = fdbb:: Variables<eos,3,fdbb::EnumForm:: primitive >;
auto V = varV::conservative (rho, vx, vy, vz, p);

V = varU:: primitive (U);
U = varV::conservative(V);

Figure 9: Conversion from conservative to primitive variables and vice versa.

Equations of state. User-defined equations of state of the form f(p,V,T) = 0 with
absolute pressure p, volume V', and absolute temperature 7' can be specified by imple-
menting a derived class that implements the prototype EOF_pVT depicted in Figure 10. In
a forthcoming release of FDBB, experimental support for the open-source thermophysical
property library CoolProp [2] will be enabled, which provides a large collection of equa-
tions of state for (pseudo-)pure fluids. Since CoolProp does not accept vector expressions
as arguments, its use is currently limited due to the generation of temporary objects. This
shortcoming can be overcome by extending CoolProp to accept generic vector arguments
and perform computations based on expression templates rather than data directly.

oW

oo ~ (=2} ot

10

1

2

Matthias Moller, Andrzej Jaeschke

struct userDefinedEOS : public EOS_pVT
{

template<typename Trho, typename Te>
static FDBB_INLINE auto constexpr p_rhoe(Trho&& rho, Te&& e);
template<typename Trho, typename Te>
static FDBB_INLINE auto constexpr T_rhoe(Trho&& rho, Te&& e);
static std::ostream& print(std::ostream& os);

¥

Figure 10: Prototype of a user-defined equation of state of the form f(p,V,T) = 0.

Inviscid Fluxes. The Ny x Np dimensional tensor of inviscid fluxes

pv
F(U)= |pv®Vv+Ip
v(pE + p)

is implemented as a ready-to-use block expression, cf. Figure 11, whereby it is assumed
that eos and varU are defined as in lines 1-4 of Figure 7 and U is the state vector of
conservative variables defined in line 1 of Figure 8. It should be noted that F only holds
the expressions, while their evaluation takes place upon assignment to block matrix f.

using fluxU = fdbb:: Fluxes<varU >;
auto F = fluxU::inviscid (U);
fdbb :: BlockMatrix<vec_-t,5,3> f(F);

Figure 11: Code snippet for computing the inviscid fluxes for conservative state variables.

The implementation of flux-Jacobian matrices for the inviscid fluxes is not yet finished
and will be enabled in a forthcoming release of the FDBB library.

Passing of Variables. FDBB has been designed with utmost flexibility in mind. Ex-
cept for a few exceptions, all functions exhibit the same generic interface shown in Fig-
ure 12, which allows the user to pass any combination of arguments and leave the mapping
to variables to an extra trait that is passed to the variable type, say varU, as additional
template parameter. The default behavior is a perfectly forwarding 1-to-1 map from
the parameter pack vars ... to the variables, whereby the mapping from the variable,

template<typename ... Vars>
static auto constexpr conservative(Vars&&... vars)—>decltype (...){...}

Figure 12: Code snippet for computing the inviscid fluxes for conservative state variables.

© oo ~ (=2} ot [w nN -

=
V) - (=

-
w

Matthias Moller, Andrzej Jaeschke

dimension, and formulation triple to the argument index is realized via an extensive spe-
cialization of the MapVar2Arg<Var, dim, Form> trait. The default behavior can be changed
by providing a user-defined mapping that follows the structure depicted in Figure 13.
Additional traits the support the passing of state variables as block objects as illustrated
in Figures 8 and 9 are provided and can be further adjusted to the needs of the user.

template<std::size_t dim, fdbb::EnumForm Form>
struct TraitsPerfectForwarding

{

template<fdbb :: EnumVar var, typename... Vars>
static auto constexpr getVariable(Vars&&... vars) noexcept
—> const

typename std::tuple_element<fdbb:: MapVar2Arg<var, dim, Form>::index,

std :: tuple<Vars... > >::type

{

return std::get<fdbb::MapVar2Arg<var, dim, Form>::index >(
std :: tuple<Vars...>(vars...));

Figure 13: Code snippet for a perfectly forwarding 1-to-1 map from arguments to variables.

3 PERFORMANCE ANALYSIS

An extensive performance analysis of all possible combinations of linear algebra back-
ends and FDBB features on all supported hardware platforms is beyond the scope of this
paper. We restrict ourselves to a synthetic micro-benchmark to measure the computa-
tional overhead introduced by the extra FDBB layer and one mini-application.

Micro-benchmark. The kinetic energy or a multiple thereof occurs quite frequently as
sub-expression in fluid dynamics applications. We therefore chose the calculation of |v||?
from the conservative state vector in 3D, i.e. varU::v_mag2(U), as micro-benchmark.

All tests were run under CentOS Linux 6.7 with thread pinning (likwid —pin —c N:0—15)
on a dual-socket workstation (Intel E5-2670 @ 2.6 GHz, 20MB cache) with 64GB main
memory. The ArrayFire and VexCL back-ends were tested in CUDA-mode on an NVIDIA
Tesla K20Xm GPU with 6GB memory and ECC turned off. The exact compiler versions
were gee 5.3.0 and nvee 7.5.17 with CUDA driver version 352.93.

Figure 14 shows the compute performance (left) and the memory bandwidth (right)
measured for a wide range of problem sizes for the element-wise expression

Y (Mg * my +my. xmy +m,. xm,)./(p. * p). (2)

Remarkably, no measurable performance loss is observed between the back-end specific
implementations (straight lines) and the FDBB-enabled generic ones (symbols).

9

Matthias Moller, Andrzej Jaeschke

Single precision performance Single precision performance
5 6
10 i Armadillo 10
A g w/ FDBB "
74 \ ArrayFire ¥
T 10 - s fo "/ Boge v s
o E (O v, 7, VO G iy
RS Sossoamanes w/ FDBB -
E 4 YIS0 /litFZS-B-i-B s |
w v _
8 10° | apen Eigen £
2 o e e aa w/ FDBB E
5 o IT4++ °
< 4 w/ FDBB . ©
d.: 102 E uBLAS @ 9 [
; w/ FDBB 10 ¢
VexCL :
w/ FDBB o]
100 Lo id i 100 Lot d
103 10* 10° 105 107 10® 10°10%° 10% 10* 10° 105 107 10® 109 10%°
Problem size [bytes] Problem size [bytes]

Figure 14: Compute performance (left) and memory bandwidth (right) for the expression given in Eq.
(2) computed in single precision with the different linear algebra back-ends on CPUs and GPUs.

Mini-application. To estimate the performance of FDBB in real-life scenarios we im-
plemented a mini-app, in which the conservative variables are initialized once by physical
values and used to evaluate the inviscid fluxes multiple times. The computing times are
given in Table 1. Columns 2—4 show the wall clock-times (in us) measured for the three
efficient linear algebra back-ends Blaze, Eigen, and VexCL. Though all back-ends run in
CPU-mode and employ OpenMP parallelization, the VexCL back-end is 1,5x faster then
the slowest one for the largest problem size, which consumes 1,25 GB of main memory.

The same mini-app has been run on an IBM Power S822LLC server, which consists of
128 cores running at 4.02 GHz and features Nvidia’s NVLink interconnect to communicate
with four Nvidia P100 Pascal GPUs. The results are given in columns 5-7 of Table 1.
The performance of the two CPU back-ends surprisingly differs by 5x. The savings in
terms of computing times resulting from using a single GPU is up to 30x.

4 CONCLUSIONS

This paper described the main features and design principles of the FDBB project
(https://gitlab.com/mmoellel/FDBB) and provided a brief performance analysis. From
the results obtained from a synthetic micro-benchmark we conclude that the additional
abstraction layer introduced by FDBB does not cause any performance penalty. Prelimi-
nary timings for the more realistic mini-app support our claim that it is possible to write
generic codes for heterogeneous HPC systems without sacrificing efficiency. It is, however,
necessary to implement mechanisms to choose the optimal back-end for the platform at
hand since the performance of the different back-ends can differ by orders of magnitudes.

10

Matthias Moller, Andrzej Jaeschke

Table 1: Wall-clock times (in ps) measured for the mini-app on different hardware platforms.

2x Intel E5-2670 @ 2.6 GHz POWERSNVL @ 4.02 GHz + GP100GL
Problem size Blaze Eigen VexCL Blaze Eigen CUDA-VexCL
1.024 428 420 575 367 149 4.487
2.048 1.264 1.282 1.385 743 322 1.076
4.096 2.667 2.810 2.383 1.476 640 1.074
8.192 5.100 5.330 4.122 2.941 1.277 1.158
16.384 9.610 9.286 7.134 5.932 2.606 5.292
32.768 17.390 15.981 12.135 11.857 5.095 2.896
65.536 29.907 25.778 19.024 | 353.000 10.495 4.644
131.072 52.377 49.042 34.706 | 332.000 22.113 10.111
262.144 | 110.000 110.000 71.622 | 126.000 46.626 16.983
524.288 | 250.000 197.000 126.000 48.985 93.918 32.395
1.048.576 | 338.000 325.000 214.000 68.930 189.000 33.759
2.097.152 | 605.000 588.000 398.000 | 104.000 378.000 36.770
4.194.304 | 1.119.000 1.086.000 750.000 | 211.000 771.000 49.715
8.388.608 | 2.166.000 2.114.000 1.442.000 | 321.000 1.444.000 77.291
16.777.216 | 4.222.000 4.131.000 2.862.000 | 639.000 2.910.000 128.000
33.554.432 — — — | 1.244.000 5.775.000 224.000
67.108.864 — — — | 2.353.000 11.660.000 382.000
134.217.728 — — — | 4.634.000 23.692.000 —
268.435.456 — — — 1 9.683.000 47.941.000 —
ACKNOWLEDGEMENTS

The author would like to thank Denis Demidov, Peter Gottschling, Klaus Iglberger,
Karl Rupp, and Conrad Sanderson for their support on integrating the different linear al-
gebra back-ends into FDBB. This project has received funding from the European Unions
Horizon 2020 research and innovation programme under grant agreement No 678727.

REFERENCES

[1] Basu, P., Williams, S., Straalen, B. Van, Oliker, L., Colella, Ph., and Hall,
M. Compiler-Based Code Generation and Autotuning for Geometric Multigrid
on GPU-Accelerated Supercomputers, Parallel Computing (PARCO) (2017). DOL:
10.1016/j.parco.2017.04.002.

[2] Bell, 1. H., Wronski, J., Quoilin, S., and Lemort, V. Pure and Pseudo-pure Fluid
Thermophysical Property Evaluation and the Open-Source Thermophysical Property
Library CoolProp. Industrial & Engineering Chemistry Research (2014) 53(6):2498—
2508. DOI: 10.1021/1e4033999.

11

Matthias Moller, Andrzej Jaeschke

3]

8]

[9]

[10]

[11]

[12]

[13]

[14]

Christen, M., Schenk, O. and Burkhart, H. PATUS: A Code Generation and Auto-
tuning Framework for Parallel Iterative Stencil Computations on Modern Microar-
chitectures. Parallel & Distributed Processing Symposium (IPDPS), 2011 IEEE In-
ternational. DOI: 10.1109/IPDPS.2011.70.

Demidov, D., Ahnert, K. Rupp, K. and Gottschling, P. Programming CUDA and
OpenCL: A Case Study Using Modern C++ Libraries. SIAM Journal on Scientific
Computing (2013) 35(5):C453-C472. DOI: 10.1137/120903683.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison

Guennebaud, G., Jacob, B. et al. Figen v3. (2010), http://eigen.tuxfamily.org.

Iglberger, K., Hager, G., Treibig, J. and Riide, U. Expression Templates Revisited: A
Performance Analysis of Current Methodologies. SIAM Journal on Scientific Com-
puting (2012) 34(2):C42-C69. DOI: 10.1137/110830125.

Méller, M. and Jaeschke, A. FDBB: Fluid Dynamics Building Blocks. (2018), Re-
trieved from https://gitlab.com/mmoellel/FDBB.

Méller, M. UETLI: Unified Expression Template Library Interface. (2018), Retrieved
from https://gitlab.com/mmoellel/uetli.

Pell, O. and Averbukh, V. Maximum Performance Computing with Dataflow En-
gines. Computing in Science & Engineering (2012) 14(4):98-103. DOI: 10.1109/M-
CSE.2012.78.

Rupp, K., Tillet, Ph., Rudolf, F., Weinbub, J., Morhammer, A., Grasser, T., Jiingel,
A., and Selberherr, S. ViennaCL - Linear Algebra Library for Multi- and Many-
Core Architectures. SIAM Journal on Scientific Computing (2016) 38:412-439. DOI:
10.1137/15M1026419.

Sanderson, C. and Curtin, R. Armadillo: a template-based C++ library for linear
algebra. Journal of Open Source Software (2016) 1(2):26. DOI: 10.21105/j0ss.00026

Yalamanchili, P., Arshad, U., Mohammed, Z., Garigipati, P., Entschev, P., Kloppen-
borg, B., Malcolm, James and Melonakos, J. (2015). ArrayFire - A high performance
software library for parallel computing with an easy-to-use API. Atlanta: Accel-
erEyes. Retrieved from https://github.com/arrayfire/arrayfire

Gottschling, P. and Lumsdaine, A. The Matrix Template Library 4. Retrieved from
www.osl.iu.edu/research/mtl/mt14/.

12

