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Abstract. The interaction among fluid flows and solid structures is a complex nonlinear
phenomenon that is of crucial importance in a wide range of scientific and engineering
contexts. Nevertheless, simple analytical solutions of the governing equations are often not
possible to obtain and critical difficulties arise also numerically attacking the problem. A
wide range of methodologies can be found in archival literature to approach fluid-structure
interaction (FSI) problems. Within these, a particularly challenging matter deals with the
reproduction of the dynamics of solid media fracture due to the action of hydrodynamic
forces, i.e. the hydraulic fracture. An example consists in the fracking process, adopted
to extract gas from shale rocks. In this context, the present work aims to investigate the
capabilities of a novel numerical method to reproduce solid fragmentation within fluid
media. The proposed method is based on peridynamic equations coupled with Navier-
Stokes equations through an immersed boundary method (IBM). The main advantages
introduced by peridynamics consist in the natural crack detection and the automatic
tracking of crack propagation. The proposed FSI method has been implemented into a
parallel code. The temporal integration is performed by an explicit third-order Runge-
Kutta algorithm; Navier-Stokes equations are discretized by second-order finite differences
and coupled with the multidirect IBM algorithm to account for fluid-solid force exchange.
Preliminary tests on simple configurations show the ability of the method to solve fluid-
structure interaction problems with possible crack formations.

1



F. Dalla Barba, P. Campagnari, M. Zaccariotto, U. Galvanetto and F. Picano

1 INTRODUCTION

Fluid-structure interaction problems [1] are involved in a variety of engineering appli-
cations and scientific fields ranging from aeroelasticity [2] to the interaction between fluid
and cells in biological flows [3, 4]. A particularly challenging topic is that of solid media
fracture within fluids, i.e. the fracking process adopted to extract gas from shale rocks [5].
Due to the strong non-linearity and multidisciplinary nature of FSI problems, few can be
done approaching the problems by a theoretical point of view and even numerical simula-
tions can be extremely challenging. In this context, the present work aims to investigate
the capabilities of a novel numerical method to reproduce solid fragmentation within fluid
media. Solid mechanics is described in the framework of peridynamics [6]. In this for-
mulation of continuum mechanics the interaction among material points is described by
integral equations. The main advantages introduced by this approach is achieved when
crack formation is accounted for [7]. Indeed, in these cases local theories may present
issues due to singularity of derivatives in partial differential equations. Conversely, the
use of integral equations can avoid the onset of this kind of problem when crack for-
mation occurs. In order to reproduce the solid-liquid interaction several methods have
been proposed in archival literature. When complex and time-evolving interfaces are con-
sidered, immersed boundary methods are powerful tools capable to mimic no-slip and
no-penetration boundary conditions. The basic principle behind IBM is that of imposing
an additional forcing in the fluid, within a neighbourhood of fluid-solid interface, such
that the wall boundary conditions are satisfied within certain accuracy. The present work
uses a multidirect IBM algorithm to account for fluid-solid force exchange. The incom-
pressible formulation of the Navier-Stokes equations governs the fluid dynamics while a
full coupling with peridynamic equation of motion is achieved through the IBM algorithm.
The proposed methodology has been implemented into a massively parallelized Fortran
code. Some validation test cases and preliminary results are provided.

2 NUMERICAL METHOD AND MODEL

Peridynamics is a non-local continuum theory [6] based on the assumption that material
points interact among each other within a given threshold distance, δ, called peridynamic
horizon. In the so called bond-based formulation of peridynamics interactions occurs
between couples of material points and each interaction, referred to as bond, is assumed
to be independent from each other. Let B be the reference configuration of a solid body
such that X0 ∈ B is the coordinate of each material point in the reference configuration.
Let then consider a motion of the body such that X(X0, t) is the Lagrangian coordinate
of the material point with initial position X0 at time t ≥ 0. Hence, the motion of each
material point can be described by the following integral equation [8]:

ρs
d2X(X0, t)

dt2
=

∫
HX0

f [X ′(X ′0, t)−X(X0, t),X
′
0 −X0] dVX′

0
+B(X0, t), (1)

where ρs is the solid media density, the integration domain is a neighbourhood of X0,
HX0 = {X ′0 ∈ B, ||X ′0 −X0|| < δ} and X ′, X ′0 are dummy integration variables repre-
senting the coordinates of each material point partaining to HX0 . The vector B(X0, t)
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Figure 1: Schematic of peridynamic formulation of continuum mechanics. B is the reference configuration
of the solid media. The peridynamic horizon, δ, defines the family, HXo , of material pointsX ′

0 interacting
with the material point X0.

accounts for external force density per unit volume acting on the body. The function
f , for the sake of simplicity f(X ′0,X0, t), is called pairwise force function. It is a force
density per unit volume squared representing the action of material point X ′ on X. In
the bond-based peridynamic model, due to mutual independence of interactions, the pair-
wise force function f(X ′0,X0, t) can be expresses as a function of the relative position
of the material points in the reference configuration, ξ and their relative displacement in
actual configuration, η. These assumption holds for the so-called micro-elastic materials
for which the pair-wise force function can be derived from a potential. It is then possible
to define:

s(ξ,η) =
||ξ + η|| − ||ξ||

||ξ||
, (2)

ξ = X ′0 −X0, (3)

η = (X ′ −X ′0)− (X −X0), (4)

with s the bond stretch. Then, under these hypotheses, the pairwise force function can
then be expressed as [9] [10]:

f(ξ,η) = c0 µ(s) s
ξ + η

||ξ + η||
. (5)

The parameter c0 is called micro-modulus and represents the stiffness of the bond. In the
present work it is assumed to be constant but dependency from bond position and time
can be included. In peridynamics it is assumed that crack occurs via bond rupture when
bond stretch overcomes a threshold value, s0. Hence, the parameter µ is introduced to
account for crack formation:

µ(s) =

{
1, s ≤ s0 ∀t ≥ 0

0, otherwise.
(6)
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The micro-modulus can be expressed as [11]:

c0 =


9E
πhδ3

, 2D plane stress
48E
5πhδ3

, 2D plane strain
12E
πδ4

, 3D.

(7)

The limit bond stretch is a function of the critical fracture energy release rate of the
material, G0 and can be computed from the following relations [12]:

s0 =


√

4πG0

9Eδ
, 2D plane stress√

5πG0

12Eδ
, 2D plane strain√

5G0

9Eδ
, 3D.

(8)

Equation 1 is numerically solved by a fully explicit, low storage, third order Runge-
Kutta algorithm. In order to cut high frequency vibrations and consent the computation
of steady solution an additional damping term is added to the right-hand side of the
equation. Hence, the discretized form of equation 1 reads:

ρs
d2X i

dt2
=

Ni∑
j=1

[
c0 µ(si,j) si,j

ξi,j + ηi,j
||ξi,j + ηi,j||

.

]
∆Vj − kd(U i −U avg,i) +Bi, (9)

where Ni is the number of peridynamic particles pertaining to the neighbourhood of
particle i, kd is a damping coefficient, U i is the velocity of particle i and U avg,i is the
average of the velocities of particles within the neighbourhood of particle i. The external
force density Bi represents the time-dependent load applied by the fluid on the solid
media surface and will be discussed below.

Concerning the flow solver, the open-source CaNS parallel code, originally developed
by P. Costa [17], has been adopted and expanded with the Immersed Boundary Method
of [13]. In more detail, the Navier-Stokes equations for a Newtonian incompressible fluid
are:

∇ · u = 0, (10)

ρf

(
∂u

∂t
+ u · ∇u

)
= −∇p+ µf∇2u+ ρff , (11)

where u is the velocity, p the hydrodynamic pressure, ρf the density and µf the dynamic
viscosity of the fluid. In the IBM framework, the no-slip and no-penetration conditions
are not directly imposed at the solid-fluid interface. Instead, a force per unit mass, f ,
is added to the right-hand side of equation 11 to mimic the boundary conditions. The
integration of equations 10 and 11 is also performed through a low storage third order
Runge-Kutta method. The solution is advanced via a pressure correction scheme on a
fixed, staggered and equispaced Cartesian grid, referred to as Eulerian grid. The pressure
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correction scheme applied to the discretized form of equation 11 can be summarized as in
the following:

u∗ = un−1 +
∆t

ρf

[
αnRHS

n−1 + βnRHS
n−2 − (αn + βn)∇pn−3/2

]
, (12)

u∗∗ = u∗ + ∆tfn−1/2, (13)

∇2p̂ =
ρf

(αn + βn)∆t
∇ · u∗∗, (14)

un = u∗∗ − (αn + βn)∆t

ρf
∇p̂, (15)

pn−1/2 = pn−3/2 + p̂, (16)

where the superscript n referes to the nth step of the Runge-Kutta scheme, ∆t is the
time step and αn, βn are the Runge-Kutta coefficients. The right-hand side term is
RHS = −ρf∇ · (uu) + µf∇2u. The velocities u∗ and u∗∗ are the first and second pre-
diction velocities respectively. The IBM forcing, f , is introduced after the discretization
of equation 11 and is computed iteratively. To this purpose a moving Lagrangian grid
located on the fluid-solid interface is considered. The Lagrangian grid nodes are defined
by peridynamic material particles located on the fluid-solid interface. The grid moves
with the solid-fluid interface such that each node of the grid coincide with the position
of each particle, X l, at each time step. In this framework, the IBM forcing is computed
according to the following multidirect forcing scheme [13]:

U ∗,s−1l =
∑
i,j,k

u∗,s−1i,j,k δ(xi,j,k −X
n
l )∆Ve, (17)

Fl
n+1/2,s =

Un
l −U

∗,s−1
l

∆t
, (18)

f
n+1/2,s
i,j,k =

∑
l

F
n+1/2,s
l δ(xi,j,k −Xn

l )∆Vl, (19)

usi,j,k = u∗i,j,k + ∆tf
n+1/2,s
i,j,k , (20)

where the superscript s refers to the sth iteration of the multidirect scheme while n
to the nth step of the Runge-Kutta algorithm. The volume ∆Ve is the Eulerian grid
volume while ∆Vl is the Lagrangian particle volumes. The Lagrangian velocity U ∗,s−1l is
computed at each Lagrangian node by the interpolation of the first prediction velocity
u∗,s−1i,j,k in the neighbouring Eulerian nodes. The forcing F

n+1/2,s
l is then computed on

the Lagrangian grid by the difference between the interpolated prediction velocity, U ∗,s−1l

and the peridynamic material particle velocity, Un
l . Finally, the forcing is spread on the

Eulerian grid and the prediction velocity is updated. These scheme is iterated until the
no-slip, no-penetration conditions are prescribed with arbitrary certain at the solid-fluid
interface. The interpolation and spreading operations are performed via the regularized
delta Dirac function, δd [14]. At each time step the prediction velocity is computed.
Then, the multidirect forcing scheme is used to compute IBM forcing and the prediction
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velocity is updated in order to mimic no-slip and no-penetration boundary conditions.
At this step a fast Fourier transform solver is used to solve the Poisson equation for
pressure. The correction velocity is then computed by projecting the prediction velocity
in the divergence-free space. Finally, peridynamic equations are advanced using the IBM
forcing computed on the Lagrangian grid, Bi = ρsF l

Figure 2: Dimensions of pre-cracked plate. The tensile load, σ, is applied to the upper and lower side
of the plate while the left and right sides are free.

Figure 3: Crack branching in pre-cracked plate at four different time steps. The crack starts to propagate
at t ' 10µs from the tip of the initial notch and reaches the left side of the plate at t ' 50µs. The contour
provides the damage level in the material according to equation 21.
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3 RESULTS

The described methodology has been implemented into a massively parallelized For-
tran code based on MPI and OpenMP directives. Preliminary validation and testing are
described below. The first validation test considers only the peridynamic solver and deals
with crack branching in a plate with a pre-notch subjected to step load. A tensile load
of of σ = 12MPa is applied as described in figure 2. The material properties of the plate
are set to that of Soda-Lime glass, E = 72GPa, ρs = 2440kg/m3 and G0 = 135J/m2

where E is the material Young’s modulus. The plate is discretized using an equispaced
Cartesian distribution of 200× 80 particles along the free-edge and loaded directions re-
spectively. The ratio between particle spasing, ∆, and peridynamic horizon, δ, is set to
m = ∆/δ = 3. The simulation is run for t = 50µs with a time step of ∆t = 50ns. The
results are provided by figure 3 for t = 20µs, t = 30µs, t = 40µs and t = 50µs. The figure
provides for each time step the contour plot of the damage level, Φ, defined as:

Φ = 1−
∑Ni

i=1µ(si,j)∆Vj∑Ni

i=1 ∆Vj
. (21)

The results are in optimum agreement with that obtained by Dipasquale et al. [7] and Ha
et al. [9].
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Figure 4: (a) Reynolds stress τr = −ρf 〈u′v′〉, viscous stress, τv = µf∂u/∂y and total shear stress,
τt = τr + τv as a function of the distance from the channel centre line, yc. The stresses are normalized
by wall stress, τw, while the centre-line-distance is normalized by the channel height, h. The DNS curves
reports thhe results of current simulation while the DNS-1 curves provides the numerical results obtained
by Kim et al. [15].

The second validation test considers only the fluid solver. The direct numerical simula-
tion (DNS) of a periodic channel flow has been performed and the stress budget and wall
law have been considered as the validation targets. The computation is carried out with
3932160 grid nodes, 192 × 128 × 160, in the flow, wall-normal and span-wise directions
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respectively. The computational grid extends for 2πh × h × πh in the same directions
with h the channel height. The bulk Reynolds number based on the inflow bulk velocity
is set to Reb = Ubh/νf = 5600 with Ub the bulk velocity and νf the kinematic viscosity
of the flow. Figure 4(a) provides the Reynolds stress, τr = −ρf〈u′v′〉, the viscous stress,
τv = µf∂u/∂y and the total shear stress τt = τr + τv computed as a function of the
distance from the centre line of the channel, yc, in absolute coordinates. All the stresses
are non dimensional with the reference scale set to the total shear stress at wall, τw. All
the statistics are computed after the establishment of a statistical stationary condition in
the flow. Mean quantities are averaged over time and the flow and spanwise directions.
Figure 4(b) provides the mean velocity on U+ = 〈u〉/uτ versus the distance from channel
wall, y+ = y uτ/νf . All quantities are expressed in wall units where uτ =

√
τw/ρf is the

friction velocity and τw the wall friction. Figures 4(a) and 4(b) provides also a comparison
with the results obtained by Kim et al. [15]. The Reynolds number Reτ = uτh/(2νf ) ob-
tained from the simulation is Reτ ' 180 which is in optimum agreement with theoretical
and previous numerical results. Additional tests on the results accuracy and the scaling
performances can be found in [17].

Figure 5: Computational domain of the simulation of a 2D cylinder immersed in a channel flow at
Reb = Ubh/νf . The cylinder has a diameter of d = 1/2h, with h the channel height. The contour plots
the non-dimensional velocity field, u, in stationary conditions with the reference velocity scale set to
U0 = Ub.

The last validation test consists of a preliminary small-size simulation considering the
IBM algorithm and the fluid solver. The simulation reproduces the flow in a 2D channel
extending for 4h×h in the flow and wall-normal direction and an immersed cylinder with
diameter d = h/2, where h is the channel height (see figure 5). The domain is discretized
with 120 × 60 nodes in the flow and wall-normal directions. The bulk Reynolds number
is set to Reb = Ubh/νf = 40 and Reb = Ubh/νf = 50 in two different test cases. The
drag coefficient obtained by Sahin et al. [16] is then compared to that obtained from the
present simulation. The results are reported in table 1 where Cd = D/(0.5ρfDU

2
b ). It can

be noted that present methodology overestimates the Drag Coefficient of around a 10%.
It is well known that multi-direct IBM tends to increase the effective size of the bodies
and this explains the higher drag found in this highly confined geometry. Some methods
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Figure 6: Schematic of the computational domain for the bending plate invested by the channel flow.

have been proposed to mitigate this issue (retraction) [13] that we aim to implement in
next future.

Re 40 50

Cd,1 5.5 5.0
Cd,2 6.0 5.5

Table 1: Comparison between the drag coefficient of the cylinder obtained by Sahin et al. [16], Cd,1 and
the results of the present test, Cd,2, at two different bulk Reynolds number.

In order to further proof the capabilities of the proposed methodology an additional
test have been carried out. The simulation reproduces the bending of a 2D plate immersed
in a channel and subjected to the hydrodynamic forces induced by the incident flow. The
geometry of the domain is shown in figure 6. The domain extends for Lx = 4.5 10−2m×
Ly = 1.5 10−2m in the flow and wall-normal directions respectively and is dicretized by
an Eulerian grid of Nx = 180×Ny = 60 nodes. The mechanical properties of the material
are set to E = 7300Pa, ρs = 2440kg/m3, kd = 105N s/m. The bending plate extends for
L′y = 10−2m in the wall-normal direction and has a thickness of L′x = 10−3m. The plate
is represented by a set of 4000 peridynamic particles distributed according to a Cartesian
equispaced mesh (N ′x = 20 × N ′y = 200) in the reference configuration. The m ratio
between peridynamic particle spacing (in the reference configuration) and peridynamic
horizon is set to m = ∆/δ = 3. The bulk Reynolds number is set to Reb = UbL

′
y/νf = 125.

The fluid properties are set to ρf = 1000kg/m3 and νf = 1.6 10−6m2/s. The IBM
forcing is computed using 1 peridynamic particle every 5 particles located on the solid-
fluid interface. Figure 7 shows the velocity field in the channel at four different time steps.
The bending of the plate due to the action of the hydrodynamic forces is evident and some
release of vorticity from the plate tip can be observed during the transient. The present
findings appear qualitatively correct and promising for the future work where we aim to
provide quantitative validations on FSI problems even in reproducing crack formation
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Figure 7: Contours of the x component of the velocity field, u, at four different time steps. Quantities
are non-dimensional with the reference length scale being L0 = L′

y, U0 = Ub and t0 = L′
y/Ub.

within the fluid flow.

4 CONCLUSION

The present paper provides an overview of a novel numerical method for fluid struc-
ture interaction problems based on Navier-Stokes equations coupled with peridynamic
equations through a multidirect IBM algorithm. In the peridynamic formulation of con-
tinuum mechanics the interaction among material points is described by integral equa-
tions. When crack formation is accounted for, local theory may present issues due to
singularity of derivatives in partial differential equations. Conversely, the use of the peri-
dynamic integral equations can avoid the insurgency of this kind of problem when crack
formation occurs. The described methodology has been implemented into a massively
parallelized Fortran code based on MPI and OpenMP directives. The paper provides
validation tests and preliminary results for different solid and fluid configurations. The
peridyanamic model has shown good reliability in reproducing solid media fracture and
crack branching. Also the fluid solver and the IBM algorithm has been tested with good
overall results. A simulation of a solid plate inserted in a channel and subjected to hydro-
dynamic forces induced by the incident flow has been performed. Qualitative non-steady
results are presented. The methodology is potentially capable of reproduce solid rupture
within fluids.
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