COMPUTATIONAL METHODS FOR STRUCTURAL DYNAMICS

ANDREAS E. KAMPITSIS^{*} AND IOANNIS C. DIKAROS[†]

*Faculty of Engineering, Imperial College London South Kensington Campus, London SW7 2AZ, UK <u>a.kampitsis@imperial.ac.uk</u> <u>cvakamb@gmail.com</u>

[†]School of Civil Engineering, National Technical University of Athens Zografou Campus, Athens, GR–157 80, Greece <u>dikarosgiannis@gmail.com</u>

Key words: Computational Mechanics, Structural Dynamics, Multiscale Modelling, Fracture models, Warping, Distortion

ABSTRACT

Recent advances in computational mechanics have allowed for efficient, robust and realistic simulation of nonlinear structural dynamic systems involving behaviours covering a range from higher order warping and distortional effects to plasticity and brittle failure. This is mainly contributed to new generation of high-performance computational tools and the development of suitable algorithms capable of handling complex nonlinear phenomena. The study of these phenomena requires cross-disciplinary analysis from the fields of computational mechanics, dynamics of structures, brittle and ductile damage, material science and high performance computing.

The aim of this mini-symposium is to constitute a forum for idea exchange and knowledge dissemination concerning the latest research developments in the fields of *Computational Methods for Structural Dynamics*, with topics including but not limited to:

- Dynamic inelastic analysis of structures
- Multiscale modelling for dynamic brittle and ductile fracture
- Higher order dynamic analysis of structural elements
- Advances in continuous or discrete numerical methods for structural dynamics
- Optimization techniques for structural dynamics
- Reliability assessment of structures

Contributions pertaining to the implementation of such methods on real-life applications, such as on/offshore wind turbine dynamics, masonry, and fracturing are most welcomed.