Two-way coupling between a Finite-Volume Solver with pressuredependent rheology and a Lagrangian Particle Simulation for debris flow modelling—Coupled Problems 2017

von Boetticher Albrecht*

*Swiss Federal Institute of Technology Zurich (ETHZ), Zurich, Switzerland Email: albrecht.vonboetticher@wsl.ch - Web page: http://www.ethz.ch

ABSTRACT

The open-source, OpenFOAM-based finite-volume debris flow model *debrisInterMixing*¹ treats gravel as a Coulomb-viscoplastic fluid, accounting for pressure-dependent rheology but neglecting grain-to-grain collisions and the coupling between the coarser gravel grains and the interstitial fluid. An extension of that solver is presented that accounts for the grain collisions with a Lagrangian Particle Simulation, which introduces granular flow behavior to the finite volume simulation of the continuous phases. The two-way coupling exchanges momentum between the phase-averaged flow in a finite volume cell and all individual particles contained in that cell using drag models. The coupling is implemented in analogy to the OpenFOAM solver DPMfoam, with a semi-implicit treatment of the drag with an implicit part included in the momentum equation and an explicit part in the pressure equation of the so-called PISO-loop, resulting in a stable coupling.

REFERENCES

[1] von Boetticher, A., Turowski, J., McArdell, B. W., Rickenmann, D., Kirchner, J. W. (2016): DebrisInterMixing-2.3: a finite volume solver for three-dimensional debris-flow simulations with two calibration parameters – Part 1: Model description. - *Geoscientific Model Development*, 9, pp. 2909—2923.

DOI: http://doi.org/10.5194/gmd-9-2909-2016