A Comparison of various Quasi-Newton Schemes for Partitioned Fluid-Structure Interaction

Florian Lindner†, Miriam Mehl†, Klaudius Scheufele† and Benjamin Uekermann*

† Institute for Parallel and Distributed Systems
Universität Stuttgart
Universitätsstr. 38, 70569 Stuttgart, Germany
e-mail: {florian.lindner, miriam.mehl}@ipvs.uni-stuttgart.de

* Institute for Advanced Study
Technische Universität München
Lichtenbergstraße 2a, 85748 Garching b. München, Germany
e-mail: uekermann@in.tum.de

ABSTRACT

During the last 5 years, quasi-Newton schemes have proven to be a robust and efficient way to couple partitioned fluid-structure interaction. We showed in previous work that they also allow to perform a parallel coupling [1]. Bogaers et al. introduced a new variant based on a multi-vector update [2]. This variant renders a tuning of the reuse of old information unnecessary as all old iterations are implicitly covered in a Jacobian update. In this work, we compare this multi-vector variant in an inverse formulation to the classical IQN-ILS algorithm for serial as well as parallel coupling.

REFERENCES
