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Abstract. The aim of this paper is to demonstrate the suitability of the novel Local Radial 

Basis Function Collocation Method (LRBFCM) [1] in a coupled thermo-mechanical problem 

of hot shape rolling of steel. The physical concept of such a large deformation problem is 

based on a two dimensional traveling slice model [2], which assumes deformation and heat 

flow only in the perpendicular direction to rolling. The solid mechanics is, respectively, based 

on the steady Navier’s equation and the thermal field on the transient heat conduction 

equation. The displacement and traction boundary conditions are assumed in the mechanical 

model and Dirichlet and Neumann boundary conditions in the thermal model, both specific 

for hot shape rolling. The solution procedure is based on local collocation on a five noded 

influence domain with multiquadrics radial basis functions, augmented with the first order 

polynomials. The steel used in the calculations is assumed to have an ideal plastic behavior 

which obeys von Misses flow rule, defined by effective stress ( , , )T     in terms of 

effective strain  , effective strain rate   and temperature T . The LRBFCM results of hot 

shape rolling of steel for a continuous 5 stand rolling mill in Štore Steel company are 

presented for the case of rolling of a rectangular billet with initial dimension 80 x 95 mm to a 

circular bar with diameter of 60 mm. The advantage of the meshless method is in accuracy 

and straightforward node generation, that does not require any polygonisation. The paper 

presents one of the increasingly emerging examples of the use of the LRBFCM in industrial 

applications. 
 

1 INTRODUCTION 

Hot shape rolling of steel, that usually follows continuous casting of billets and blooms, 

provides different shapes of long products for various applications such as automotive 
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industry, construction, shipbuilding, railway, etc. The demand is constantly changing due to 

newly introduced designs and the production should be quickly adaptable. Respectively, 

computational modeling of the continuous casting and hot rolling gains its importance for 

better understanding, control, and better insight into these processes. It helps to improve the 

quality, productivity, safety and environmental impact of the production. The principal goal of 

rolling simulation is to connect the process variables, such as the rolling speed, temperature, 

rolling stand geometry, to the temperature, strain, strain rate, stress field in the billet, its 

microstructure with static and dynamic recrystallization, and calculation of the rolling torque 

and power. The modeling of rolling started with Hitchcock [3] where he solved the problem 

of the roll deformation. The current state of the rolling technology can be perceived from [4] 

and rolling modeling from [5]. 

The majority of the simulations in solid mechanics are done by using Finite Element 

Method (FEM) [6]. This method requires meshing as pre-processing which might be 

problematic and time consuming, especially in case of rolling, where the shape is constantly 

and drastically changing. 

In the last decade, meshless numerical methods [7] started to represent an appealing 

alternative to the classical numerical methods, such as FEM. Meshless method is a numerical 

technique that uses a set of arbitrary distributed nodes, both on the boundary and within the 

computation domain, to represent the solution of physical phenomena. The main feature of 

meshless methods is omission of the polygonalisation between the nodes which can be 

remarkably demanding, particularly in realistic 3D geometrical situations. One of the simplest 

meshless methods, able to solve the fluid flow problems and solid mechanics problems is 

Local Radial Basis Function Collocation Method (LRBFCM). This method was first 

developed in [8] for elasticity problems and in [1] for diffusion problems. The idea behind 

this method is to approximate the function and its derivatives locally over a set of neighboring 

nodes using RBFs [9] and to use collocation for determining the expansion coefficients. The 

method has been recently applied to numerous scientific and engineering problems, connected 

with fluid mechanics [10-14] as well as solid mechanics [15-17]. In this paper the simulation 

of hot shape rolling is performed by using LRBFCM. 

2 PHYSICAL MODEL 

 

Figure 1: Scheme of slice model of hot shape rolling 
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2.1 Slice model assumptions 

A scheme of the hot rolled billet is shown in Figure 1 with sketch of traveling slices and 

computational nodes. The temperature and the deformation field of the slice can be computed 

from the known time dependent boundary conditions. The slice time is on the other hand 

associated with the position in the rolling mill. The Cartesian coordinate zp  measures the 

length from the beginning of rolling. The billet geometry in z  direction is assumed straight 

and the thermal and mechanical interactions in rolling direction are neglected. The zp  

coordinate can thus be considered parabolic, while the 
xp  and 

yp  coordinates are elliptic. In 

this way all fields at a given zp coordinate depend only on the slice history, including its 

cooling intensity and deformation through the rolls, as a function of time. The slices form at 

the  z startp  longitudinal coordinate of rolling and travel in the direction of the zi  base vector 

with the rolling speed rollV , (see Figure 1). For calculating the cooling intensity of the slice as 

a function of time, a connection between the zp  coordinate of the rolling mill and the slice 

history t  is needed 

( ) ( ') ' ; ( ) ( )

start

t

roll z start roll roll z

t

z t V t dt p V t t     V i ,  ( ') ( ') /roll startV t S t S t , (1) 

where startt  represents the initial time of a slice and ( )startS t  and  'S t  represent the initial and 

the cross-section of the slice at time 't , respectively. In case when the rolling speed is 

constant and there is no deformation, we obtain the following simple connection between the 

zp  coordinate of the rolling mill and the slice history     /start z z start rollt z t p p V   . A quadrant 

symmetry of the geometry and fields of the slice with domain   and boundary   are 

assumed and the north-east quadrant (I-st quadrant) is computationally coped with, described 

by Cartesian coordinates xp  and yp  and base vectors xi  and yi . 

2.2 Thermal model 

The governing equation of the thermal model is 

 p

T
c k T Q

t



  


, (2) 

with , , , , ,pc T t k Q  standing for density, specific heat, temperature, time, thermal conductivity 

and heat generation rate due to deformation, respectively. The boundary temperatures of the 

travelling slice were obtained from the Robin type energy balance equations in point p  

 
   

,
, , ;R

T t
k h T t T t




     

p
p p p

n
 (3) 
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at slice boundaries  , with h  standing for the heat transfer coefficient, 
RT  standing for the 

reference temperature. On the two quadrant symmetry axis, h  is set to 0. The heat source due 

to the deformation is calculated as 

Q d

   , (4) 

where Q  is the heat generated due to plastic work which is defined in terms of effective stress 

  and effective strain  . 

2.3 Mechanical model 

The main aim of the mechanical model is to calculate the displacement field of the slice 

due to deformation by the roll, in order to get the new shape of the slice. The boundary is 

divided into natural u  and essential t  part u t    . The governing equation of the 

mechanical model is 

T L σ+b 0 , (5) 

where L  is the derivative operator, σ  is the vector of stresses, and b  is the body force vector, 

considered b 0 . Two dimensional plane strain model is assumed. The essential boundary 

conditions are considered between the slice and the roll and natural boundary condition are 

assumed at the boundary parts with no contact as well as along the symmetry lines. The 

natural boundary conditions are defined as 

; , ,i ii j ij in n i j x y     , (6) 

where
 
in in

 
is component of unit normals and i  is the prescribed shear stress component, 

equal to 0 . The essential boundary condition is described as 

;  ,i iu u i x y  , (7) 

where iu  is the displacement and 
iu  is the prescribed displacement due to the action of the 

roll. The material is assumed to be ideally plastic which means that all the energy put into 

material turns into plastic deformation at yield stress. The yielding of a solid material is 

defined by von Mises flow rule. A non-linear plastic modulus 
PH  is used instead of elastic 

parameters to relate the stresses with strains 

2

3
ij ij p ijs H  , (8) 

where
 

ijs
 
is the stress deviator tensor, pH      is the plastic modulus [18] which is the 

derivative on the effective stress (  3 2 ij ij   ) – effective strain (  2 3 ij ij   ) 

curve. In metal deforming process, the stress deviator tensor can be assumed to be equal to the 
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components of the stress tensor. The strain vector ε  can be written in terms of displacement 

vector as 

ε = Lu . (9) 

Therefore, the strong formulation of deformation problem gives two individual balance 

equations in each principle direction on a 2D slice in terms of displacement , ,iu i x y  which 

are 

22 2

2 2

2 1
0

3 3

yx x
p p

x y x y

uu u
H H

p p p p

  
          

(10) 
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p p
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u uu
H H

p p p p

  
          

(11) 

3 SOLUTION PROCEDURE 

3.1 Solution strategy 

The coupled thermo-mechanical simulation is structured in the following way. First, nodes 

are generated on the un-deformed slice and temperature and deformation fields are calculated. 

Afterwards, the nodes are newly generated on the new, deformed shape of the slice, based on 

elliptic node generation [19]. The calculated values are interpolated to the new position of the 

nodes and the procedure is repeated, by taking into account that the calculated values of the 

old slice serve as initial values for the next slice. If there is a roll contact, the new shape is 

calculated with the mechanical model. 

0 ;  ,i i ip p u i x y    (12) 

Afterwards, the temperature is calculated whether there is a contact or not. We assume that 

the time discretization is made in explicit Euler way. 

 0
0

T T t k T Q        
(13) 

A detailed description of the LRBFCM solution of the thermal slice model is given in [11]. 

The slice is discretized into N  domain and N  boundary nodes, in total N N N    nodes. 

A five noded sub-domain is associated with each of the nodes. The initial fields are 

interpolated on each of the subdomains by using collocation with radial basis functions, 

augmented with first order polynomials. In order to get the results for the field  , it needs to 

be approximated with interpolation function  n p  and coefficients n  

   
1

PN N

n n

n



  




 p p , (14) 
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where the interpolation function is defined by scaled multiquadrics radial basis functions 

inside five noded influence domains ( 5N  ), and first order polynomials ( 3PN  ). A 

flowchart of the thermomechanical simulation is given in Figure 2. 

 

Figure 2 : Flowchart of the thermo-mechanical simulation 

     

     

22 2 2 2

max max
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/ / ,

1, , ,

n x xn y yn

n n x n y

p p x p p y c

p x p y



    

    
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p

p p p

 (15) 

where maxx , maxy , meax , meay  represent maximum distance between the five nodes in xi  and 

yi  directions, and mean position of the five nodes in xi and yi  directions, respectively. c  is set 

to 32. The calculation of the coefficients n  is elaborated in [20]. The derivatives of the 

functions, needed in the solution, are calculated from the derivatives of the radial basis 

functions 
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   
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 
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



 
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p p ,  (16) 

The solution of the thermal model requires inversion of a matrix of the size PN N   for each 

of the subdomains and no global matrix is formed. 

3.2 Solution of mechanical model 

The mechanical model is solved by expressing the displacements by radial basis functions 

   
1

, ,
PN N

n n

n

u x y


   




 p p  (17) 

The governing equation for node m  becomes 

2 2 2
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1 1 1
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(19) 

The coefficients ; ,n x y    are expressed with the unknown values of the displacements 

; ,mu x y    and a global 2 2N N  sparse matrix is formed for calculation of the unknown 

displacements. The assembling of the respective global matrix is described in [21]. The heat 

generation rate is calculated as 

  1 1

12( )

l l l l

m m m ml

m l l
Q

t t

   


 



 



 (20) 

where   is Taylor-Quinney parameter, defining the ratio of mechanical work turning into 

heat, m  is node number and l  is slice number.  

3.3 Elliptic node generation 

After each deformation step, the nodes on the boundary are redistributed with equal 

distance. After that, the internal nodes need to be distributed as orthogonal as possible with its 

neighboring nodes. The new arrangement of the nodes is done in two steps. First, Trans Finite 

Interpolation (TFI) [19] is used for aligning of the nodes in accordance with the boundary 

nodes. This is followed by Elliptic Node Generation (ENG) [19] which repositions them in an 

iterative way to make them more orthogonal. 100 iterations are allowed for this purpose. The 

performance of described LRBFCM has been assessed for large deformations by comparison 

with the commercial FEM code DEFORM [16]. 
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4 NUMERICAL EXAMPLE 

In the numerical example a continuous rolling schedule with 5 rolling stands is considered. 

The parameters, used in the simulation are given in Table 1 and the characteristics of the 

rolling mill are given in Table 2. The result are shown in terms of displacement field of an 95 

x 80 mm initial billet shape, rolled into circular bar with radius 30r   mm. Figure 3 

represents the increase of the rolling speed due to the deformation, Figure 4 represents the 

node positions at the start of rolling and after each of the rolling stands. Figure 5 represents 

the displacement field after each of the rolling stands. 

Table 1: Thermal and mechanical parameters used in calculations where 4.16A , 0.23b  , 0.214c   

R  is the gas constant and 
KT  is the absolute temperature 

Heat transfer coefficient to 

air  airh   20 2W m K   

Heat transfer coefficient to 

roll rollh   16000 2W m K  

Thermal conductivity of 

steel 
k   29 W mK  

Specific heat of steel pc   630 J kgK   

Initial rolling temperature furT   1250 °C 

Initial rolling speed rollV   0.76 m/s 

Ambient temperature  amT   25 °C 

Roll temperature rollT   500 °C 

Taylor-Quinney parameter    0.9 - 

Time step dt   10
-4 

s 

Effective stress     
38000

, , expb c

K
T A

RT
    

 
  

 
 GPa 

 

 

Table 2: Rolling schedule used in the simulation. 

Stand Number  Position (m) Type 

1 0.45 OVAL 85 (H) 

2 3.45 OVAL 85 (H) 

3 6.05 ROUND 40 (V) 

4 9.65 OVAL 55 (H) 

5 12.65 ROUND 30 (V) 
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Figure 3: Velocity of slices in the rolling direction. 

 

Figure 4: Initial shape of the slice and displacement vectors of the slice at the exit of each of the five rolling 

stands. 
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Figure 5: Displacement field at the exit of the first rolling stand. 

5 CONCLUSIONS AND FURTHER RESEARCH 

In this paper a coupled thermo-mechanical slice model is given for simulation of hot shape 

rolling. The solution procedure is based on a fully meshless LRBFCM. This method can be 

applied to large deformations by using TFI and ENG between the deformation steps. The 

simulation is applied to five consecutive rolling stands of the continuous rolling mill, 

operating in Štore Steel Company, Slovenia. Ongoing research is focused on testing the 

simulations with realistic material properties and comparisons with the thermal measurements 

by infrared thermography and laser true dimensional measurements. A microstructure model, 

based on the point automata formulation [22], which would take into account the deformation 

of the grains and the static and the dynamic recrystalization is underway. It will be coupled to 

the represented macroscopic model. 
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