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Abstract. The problem of unsteady coupled moisture and heat energy transport through
porous solid is studied numerically using singular boundary integral representation of the
corresponding governing equations. Bench mark example moisture uptake in a semi-
infinite region is studied numerically.

1 INTRODUCTION

Building materials are in general porous, composed of solid matrices and pores. Within
the pores, moisture can exist in any of three thermodynamic states of matter, i.e. va-
por, liquid, and solid [1, 2]. However, moisture transport is possible only in the case
of gaseous/vapor and liquid states. The main moisture transport mechanisms are vapor
diffusion, capillary suction or a combination of both, depending on the moisture content
of the material.

In the paper, the numerical model based on boundary element method (BEM) is consid-
ered to solve coupled nonlinear heat energy and moisture transport through porous media
[8]. Since the singular integral representation is based on the use of an appropriate fun-
damental solution which incorporates more or less physics of the transport phenomenon
such as accomulation and diffusion of the field function, the accurate description of dif-
ferent time and length scales can be accomodated and treated much more accurately in
a physically and mathematically justified manner. One serious drawback of the BEM is
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that it leads to a fully populated system of equations. However, this can be overcome
efficiently by the sub-domain or macro element approach, yielding a sparse system similar
to FEM and FDM schemes [7].

The first part of the present work describes the problem. Relevant governing energy
and moisture transport differential equations are considered [1, 2]. Next, the correspond-
ing singular integral representation is developed describing nonlinear heat and moisture
diffusion in an integral form. The nonlinearity of the coupled diffusion problem is ac-
complished using an iterative solution strategy, based on an under-relaxation procedure.
One bench mark example, e.g. moisture uptake in a semi-infinite region, is given to
demonstrate the efficiency and accuracy of the proposed solution strategy [2, 3].

2 Governing equations for two-phase system

Let us consider a two-phase thermodynamic system in a control volume Ω bounded by
a control surface Γ, where the indices l and v represent the two phases. For example, l
may refer to the liquid water and v to the vapor water in a liquid/vapor moisture system.

2.1 Moisture transport equation

The mass balance equation describing accumulation within the control volume, mass
flux in and out of the control volume and generation of a species via reaction/phase change
written for the water vapor and liquid water [1, 2]

ρm
∂Yv

∂t
= −�∇ ·�jv − ṁC and ρm

∂Yl

∂t
= −�∇ ·�jl + ṁC , (1)

where the dimensionless field functions Yv = mv/mm and Yl = ml/mm represent mass
fraction or moisture ratio of water vapour and liquid water, respectively, and mm rep-
resents mass of the dry porous material. The vector quantities �jv and �jl denote the
nonconvective water vapour and liquid water mass fluxes, respectively, and ṁC represents
moisture condensation/evaporation mass rate. The basic governing conservation equation
for the moisture flow through a porous solid can now be derived by adding the individual
species conservation eqs.(1), yielding

∂W

∂t
= −�∇ ·�j = −�∇ ·�jv − �∇ ·�jl, (2)

where the derived potential field function W = ρmYv+ρmYl = mw/Vm represents moisture
content mw = mv + ml per volume of dry material Vm. The model is based on the
assumption that the water transport can be divided into vapor and liquid flows [1].

Using Fick and Darcy constitutive models for expressing the vapour diffusion mass
flux �jv and liquid conduction mass flux �jl due to capillary suction and gravity effect,
respectively, one can write

�jv = −δp(W, T )�∇pv and �jl = −Dl(W, T )�∇pl + Dl(W, T )ρl�g, (3)
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where the transport coefficients δp and Dl are vapour permeability and liquid conductivity
of the material, respectively, and the quantity �g is the gravity acceleration. The transport
coefficient Dl is given as follows

Dl(W, T ) =
kl(W )ρl

ηl(T )
, (4)

where kl is the permeability of the material, ηl and ρl are the dynamic viscosity and mass
density of the liquid water, respectively. The liquid flux �jl can be rewritten in the form
for the suction pressure, psuc = pa − pl, where pa is the atmospheric pressure, yielding

�jl = Dl
�∇psuc + Dlρl�g, (5)

where psuc = psuc[T, pv, ps(T )] and ps is the saturation vapour pressure.
One may apply moisture content W for the driving potential and the relation for the

water retention curve W = W (pl). The moisture content gradient can be written as

�∇W =
dW

dpl

�∇pl or �∇pl =
1

dW/dpl

�∇W, (6)

where dW/dpl is the slope of the water retention curve, yielding

�jl = −DW
�∇W + Dlρl�g and DW =

Dl

dW/dpl
=

klρl

ηldW/dpl
. (7)

The eq.(5) or eq.(7) can be rewritten for the pv and T field functions. The vapour/liquid
water two-phase system is in equlibrium when the pore water pressure pl or the suction
pressure psuc and the relative humidity ϕ satisfies the Kelvin moisture state relation [1]

pl ≈ RTρl

Mw
ln(ϕ) or psuc ≈ pa − RTρl

Mw
ln(ϕ) (8)

with Mw, R and pa being the water molecular mass, the universal gas constant and
atmospheric pressure, respectively. Thus, an expression for suction pressure gradient as a
function of temperature T and vapour pressure pv can be obtained by making use of the
partial differentiation of eq.(8) as follows

�∇psuc = −�∇
(

RTρl

Mw
ln

(pv

ps

))
= −Rρl

Mw
ln(ϕ)�∇T +

RTρl

Mw

1

ps

dps

dT
�∇T − RTρl

Mw

1

pv

�∇pv

= −Rρl

Mw

[(
ln(ϕ) − T

ps

dps

dT

)
�∇T +

T

pv

�∇pv

]
, (9)

resulting in the following form of the constitutive model

�jl = −Dl
Rρl

Mw

[(
ln(ϕ) − T

ps

dps

dT

)
�∇T +

T

pv

�∇pv

]
+ Dlρl�g. (10)
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Substituting mass flux eqs.(5) into conservation eq.(2) yields the governing moisture trans-
port equation due to water vapour diffusion, liquid water conduction and gravity

∂W

∂t
= �∇ ·

(
δp

�∇pv

)
− �∇ ·

(
Dl

�∇psuc

)
− �∇ · (Dlρl�g) . (11)

The moisture transport eq.(11) is comprised of various moisture driving potentials, e.g.
moisture content W , partial water vapour pressure pv and the suction pressure psuc. These
driving potentials can be expressed in terms of a single transport potential. Let us first
formulate the moisture transport eq.(11) for the driving potentials relative humidity ϕ
and temperature T [2]. The chosen potentials are continuous field functions at the inter-
face of two layers of materials having different moisture storage properties (sorption and
retention), therefore they are continuous field functions throughout the solution domain.
Consequently, all terms in eq.(11) have to be mathematically transformed using relative
humidity ϕ and temperature T as primitive driving potentials.

Let us consider first the transient term on the right hand side of the eq.(11), when the
following expressions may be written

∂W

∂t
=

dW

dϕ

∂ϕ

∂t
= θ

∂ϕ

∂t
, (12)

where θ = dW/dϕ is the slope of the sorption isotherm W = W (ϕ). The vapour pressure
gradient can be transformed as

�∇pv = �∇ (ps(T )ϕ) = ϕ�∇ps + ps
�∇ϕ = ϕ

dps

dT
�∇T + ps

�∇ϕ. (13)

Using Kelvin eq.(8) the suction pressure gradient in liquid conduction term can be treated
as follows

�∇psuc(T, ϕ) =
∂psuc

∂T
�∇T +

∂psuc

∂ϕ
�∇ϕ = −Rρl

Mw

[
ln(ϕ)�∇T +

T

ϕ
�∇ϕ

]
. (14)

Finally, substituting eqs.(12)-(14) into eq.(11) gives

θ
∂ϕ

∂t
= �∇ ·

(
Dϕ

�∇ϕ
)

+ �∇ ·
(
DT

�∇T
)
− �∇ · (Dlρl�g) , (15)

where the primitive variable in eq.(15) is the relative humidity ϕ while the second and third
term on the right side act as nonhomogeneous nonlinear source terms due to temperature
gradient and gravity force. Notice that due to the second term the eq.(15) is coupled to
the heat energy transport equation. The transport coefficients Dϕ and DT are given as:

Dϕ = δpps + Dl
Rρl

Mw

T

ϕ
and DT = δpϕ

dps

dT
+ Dl

Rρl

Mw

ln(ϕ). (16)
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If a moisture content W is used as a flow driving potential, using relations

W = W (ϕ) and �∇W =
dW

dϕ
�∇ϕ = θ�∇ϕ, (17)

the eq.(15) can be rewritten as follows

∂W

∂t
= �∇ ·

(
D�∇W

)
+ �∇ ·

(
DT

�∇T
)
− �∇ · (Dlρl�g) and D = Dϕ/θ. (18)

2.2 Heat energy transport equation

The heat energy balance equation considers accumulation within the control volume,
energy flux (sensitive and latent) in and out of the control volume and heat source/sink
term [1, 2, 3], as follows

(cpmρm + cplW )
∂T

∂t
= −�∇ · �q = −�∇ · �qsens − �∇ · �qlat + I, (19)

where the specific capacities cpm and cpl per mass refer to the dry porous material and
to liquid water, respectively. The heat capacity of the air/water vapour mixture in the
pores is neglected. The sensible heat energy flux �qsens can be given by Fourier model

�qsens = −λeff (W )�∇T, (20)

while for the latent heat flux �qlat one writes the following expression

�qlat = [he + T (cpv − cpl)]�jv = −hlatδp
�∇pv, (21)

where the quantities hlat, he, cpv and cpl denote specific latent enthalpy, specific latent
enthalpy of evaporation or condensation, specific heat of water vapour and specific heat
of liquid water, respectively. Substituting heat flux eq.(20) and (21) into conservation
eq.(19) results in the governing heat energy transport equation

ceff
∂T

∂t
= �∇ · (λeff

�∇T ) + �∇ · (hlatδp
�∇pv) + I, (22)

where coefficients ceff and λeff are the effective specific heat per unit volume and effective
thermal conductivity, respectively.

3 Boundary-domain integral equations

3.1 Integral representation of heat energy kinetics

Let us first consider the nonlinearity in unsteady energy transport eq.(22) caused by
nonlinear transport properties, e.g. specific heat per volume ceff = ceff(W, T ) and heat
conductivity λeff = λeff (W, T ) [6, 9]. They can be partitioned into a constant and a
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variable part, e.g. ceff = co + c̃ and λeff = λo + λ̃, enabling to partition the eq.(22) into
a linear and nonlinear part in the following manner

∂T

∂t
= ao

∂2T

∂xj∂xj
+

1

co

[
∂

∂xj

(
λ̃

∂T

∂xj
+ hlatδp

∂pv

∂xj
)

)
− c̃

∂T

∂t
+ I

]
, (23)

with ao = λo/co. The integral representation of the nonlinear energy diffusion equation
can now be derived considering the linear parabolic diffusion differential operator [6]

L [ T ] + b = ao
∂2T

∂xj∂xj
− ∂T

∂t
+ b = 0, (24)

with the corresponding integral equation written for a time step Δt = tF − tF−1

c (ξ)T (ξ, tF ) + ao

∫
Γ

∫ tF

tF−1

Tq�dtdΓ = ao

∫
Γ

∫ tF

tF−1

qu�dtdΓ

+

∫
Ω

∫ tF

tF−1

bu�dtdΩ +

∫
Ω

Ti,F−1u
�
F−1dΩ, (25)

where q = ∂T/∂n = qjnj and u� is the parabolic diffusion fundamental solution [8].
The domain integral of the pseudo-body forces includes the effects nonlinear transport
properties, latent heat and the heat source term, namely

b =
1

co

[
∂

∂xj

(
λ̃qj + hlatδp

∂pv

∂xj

)
− c̃

∂T

∂t
+ I

]
=

1

co

[
∂bj

∂xj
− c̃

∂T

∂t
+ I

]
, (26)

therefore the following integral representation can be obtained

c (ξ)T (ξ, tF ) + ao

∫
Γ

∫ tF

tF−1

Tq�dtdΓ = ao

∫
Γ

∫ tF

tF−1

qu�dtdΓ +
1

co

∫
Γ

∫ tF

tF−1

bjnju
�dtdΓ

− 1

co

∫
Ω

∫ tF

tF−1

bjq
�
j dtdΩ +

1

co

∫
Ω

∫ tF

tF−1

(
−c̃

∂T

∂t
+ I

)
u�dtdΩ +

∫
Ω

TF−1u
�
F−1dΩ. (27)

For the solution of eq.(27), the boundary Γ and domain Ω are discretized into a series
of boundary elements and series of internal cells, respectively. Furthermore, functions
and their derivatives are assumed to vary within each element or cell and each time step
according to the space {Φ} or {φ} and time {Ψ} interpolation functions such that

T (S, t) = {Φ}T{Ψ}{T}n
m, q(S, t) = {Φ}T{Ψ} {q}n

m ,

bj(S, t) = {Φ}T{Ψ}{bj}n
m, bj(s, t) = {φ}T{Ψ}{bj}n

m, etc., (28)

where index n refers to the number of nodes within each element or cell, and the index
m refers to the degree of variation of the function {Ψ}.
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L. ŠKERGET, A. TADEU

3.1.1 Linear time interpolation

Assuming linear variation of all functions within the individual time increment τ =
tF − tF−1, i.e. m = 1, 2 and

Ψ1 =
tF − t

τ
and Ψ2 =

t − tF−1

τ
(29)

the analytical expressions for the time integrals can be derived, i.e. for the plane geometry

U�
1 = ao

∫ tF

tF−1

Ψ1u
�dt =

1

4π
[exp(−xF−1) − xF−1E1(xF−1)] ,

U�
2 = ao

∫ tF

tF−1

Ψ2u
�dt =

1

4π
[E1(xF−1) − exp(−xF−1) + xF−1E1(xF−1)] ,

Q�
1 = ao

∫ tF

tF−1

Ψ1q
�dt =

[xi(ξ) − xi(s)]ni(s)

8πaoτ
E1(xF−1), (30)

Q�
2 = ao

∫ tF

tF−1

Ψ2q
�dt =

[xi(ξ) − xi(s)]ni(s)

8πaoτ

[
1

xF−1

exp(−xF−1) − E1(xF−1)

]
.

where E1 is the exponential integral function and xF−1 = r2/4aoτ ; the eq. (27) can be
rewritten as follows

c (ξ)T2 (ξ) +
2∑

m=1

E∑
e=1

[∫
Γe

{Φ}T Q�
mdΓ

]
{T}n

m =
2∑

m=1

E∑
e=1

[∫
Γe

{Φ}T U�
mdΓ

]
{q}n

m

+
2∑

m=1

E∑
e=1

[∫
Γe

{Φ}T U�
mnjdΓ

]{
bj

λo

}n

m

−
2∑

m=1

C∑
c=1

[∫
Ωc

{φ}TQ�
jmdΩ

] {
bj

λo

}n

m

(31)

+

C∑
c=1

[∫
Ωc

{φ}T u�
F−1dΩ

]
{T}n

F−1.

In the discretized eq.(31) there are the following boundary and domain integrals, which
are the functions of geometry, time step and material properties

hn
em =

∫
Γe

{Φ}T Q�
mdΓ, gn

em =

∫
Γe

{Φ}T U�
mdΓ, cn

ejm =

∫
Γe

{Φ}T U�
mnjdΓ,

dcjm =

∫
Ωc

{φ}T Q�
jmdΩ, bc =

∫
Ωc

{φ}T u�
F−1dΩ, (32)

yielding the following discretized form of eq.(31)

c (ξ)T2 (ξ) +

2∑
m=1

E∑
e=1

{h}T
m{T}n

m =

2∑
m=1

E∑
e=1

{g}T
m{q}n

m +

2∑
m=1

E∑
e=1

{cj}T
m

{
bj

λo

}n

m

−
2∑

m=1

C∑
c=1

{dj}T
m

{
bj

λo

}n

m

+
C∑

c=1

{b}T{T}n
1 . (33)
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If the above statement is now applied, using the collocation method, to all boundary and
domain nodes, and applying the notation, e.g. [H ] = [c(ξ)] + [Ĥ] and [Ej ] = [Cj] − [Dj],
yielding a nonlinear system of equations

[H ]2{T}2 + [H ]1{T}1 = [G]2{q}2 + [G]1{q}1 + [Ej ]2{ bj

λo

}2+ [Ej ]1{ bj

λo

}1+ [B]{T}1. (34)

3.2 Integral representation of moisture kinetics

The integral representation of the moisture parabolic diffusion transport eq.(18) can be
derived in a manner as it was obtained for the parabolic diffusion heat energy transport
equation, e.g. using linear diffusion differential operator with D = Do + D̃, therefore
eq.(18) may be reformulated as

L [ W ] + b = Do
∂2W

∂xj∂xj

− ∂W

∂t
+ b = 0, (35)

with the following integral representation

c (ξ)W (ξ, tF ) + Do

∫
Γ

∫ tF

tF−1

Wq�dtdΓ = Do

∫
Γ

∫ tF

tF−1

∂W

∂n
u�dtdΓ

+

∫
Ω

∫ tF

tF−1

bu�dtdΩ +

∫
Ω

Wi,F−1u
�
F−1dΩ. (36)

The domain integral incorporates two terms, e.g. the first one describes the mass flux
due to nonlinear transport diffusivity while the second one describes mass flux due to
temperature gradient

b =
∂

∂xj

(
D̃

∂W

∂xj

+ DT
∂T

∂xj

)
=

∂bj

∂xj

, (37)

yielding the following integral representation

c (ξ)W (ξ, tF ) + Do

∫
Γ

∫ tF

tF−1

Wq�dtdΓ = Do

∫
Γ

∫ tF

tF−1

qu�dtdΓ

+

∫
Γ

∫ tF

tF−1

bjnju
�dtdΓ −

∫
Ω

∫ tF

tF−1

bjq
�
j dtdΩ +

∫
Ω

WF−1u
�
F−1dΩ. (38)

3.2.1 Linear time interpolation

Assuming linear variation of all field functions within the individual time increment,
the eq. (38) is written as follows

c (ξ)W2 (ξ) +

2∑
m=1

E∑
e=1

{h}T
m{W}n

m =

2∑
m=1

E∑
e=1

{g}T
m{q}n

m

+
2∑

m=1

E∑
e=1

{cj}T
m

{
bj

Do

}n

m

−
2∑

m=1

C∑
c=1

{dj}T
m

{
bj

Do

}n

m

+
C∑

c=1

{b}T{W}n
1 . (39)
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Based on the development of the final discretized eq.(34) for the energy transport, on may
state the following discretized representation of the moisture transport

[H ]2{W}2 +[H ]1{W}1 = [G]2{q}2 +[G]1{q}1+[Ej]2{ bj

Do
}2 +[Ej]1{ bj

Do
}1 +[B]{W}1. (40)

4 Numerical algorithm

To decrease storage and CPU time requirements of the single domain BEM we employ
the macro element approach [5, 7]. The idea is to use a collocation scheme for integral
equation for each domain cell separately and require that the field functions and their
normal derivatives must obey some restriction conditions over the domain cell bound-
aries. Since every domain cell is neighbour only to a few cells we end up with a sparse
system of equations. In a nutshell, we are using single domain BEM on every domain
cell separately and connect them via compatibility and equilibrium conditions. The heat
energy transport equation and moisture transport equation represent coupled nonlinear
system of equations which can only be solved iteratively.

5 Numerical example - moisture uptake in a semi-infinite region

The benchmark test example, shown in fig.(1), deals with a L = 6.0m or L = 18.0m
long and H = 2.0m width single homogeneous material in equlibrium with a constant
surrounding environment [3]. The material is perfectly air tight. At a certain moment
the temperature and the relative humidity undergoes a step change.

y[m]

L = 6; L = 18

x[m]

0

∂ϕ
∂n = 0∂T

∂n = 0

∂T
∂n = 0 ∂ϕ

∂n = 0

∂ϕ
∂n = 0

∂T
∂n = 0TS = 30◦C

ϕS = 0.95 ϕ0 = 0.5
T0 = 20◦C

H = 2

Figure 1: A semi-infinite homogeneous structure: geometry, boundary and initial conditions

One non-uniform non-symmetric mesh of M = 400 × 2 macro elements is used, with
the ratio Rx = 10 between the largest and the smallest boundary element. Convergence
criterion was selected as ε = 10−7. The time-dependent analysis was performed by running
the simulation from the initial state with a time step value of �t = 1.0. The objective
is to calculate the moisture and temperature distribution after t = 7, 30 and 365 days.
The short solution domain, e.g. L = 6.0m, is used to simulate time dependent behaviour
for 7 and 30 days, while the long solution domain, e.g. L = 18.0m is applied for the 365
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days simulation. The initial hygrothermal conditions of the structure are temperature
To = 20oC and relative humidity ϕo = 0.50. After the step change the left surface of
the structure is exposed to ϕS = 0.95 relative humidity and temperature TS = 30oC,
respectively, while on the right surface the normal derivatives of the corresponding field
functions are prescribed to be zero. Therefore, the following boundary conditions of the
first kind can be prescribed on the left boundary at x = 0

WS = W (ϕS) and Ts = TS on x = 0 and 0 ≤ y ≤ H for t > 0, (41)

and on all other boundaries the zero boundary conditions of the second kind are prescribed

∂W

∂n
= 0 and

∂T

∂n
= 0 for t > 0, (42)

while the initial conditions are

W = Wo(ϕo) and T = T o in Ω at t = 0,

∂W

∂n
=

∂Wo

∂n
and

∂T

∂n
=

∂To

∂n
on Γ at t = 0. (43)

The sorption isotherm is given by an expression [3]

W (ϕ) =
146[

1 + (−8.0 · 10−8RwTρl ln(ϕ))1.6]0.375 . (44)

The vapour diffusivity/permeability δp and liquid water diffusivity/conductivity Dl trans-
port coefficients are given by the expressions [3]

δp =
Mw

RT

26.1 · 10−6

200

1 − W
146

0.503(1 − W
146

)2 + 0.497
, (45)

Dl = exp
(−39.2619 + 0.0704(W − 73) − 1.7420 · 10−4(W − 73)2

−2.7952 · 10−6(W − 73)3 − 1.1566 · 10−7(W − 73)4 + 2.5969 · 10−9(W − 73)5
)
. (46)

Effective thermal conductivity and specific heat per volume for dry material, respectively,
are given by the relations [3]

λeff = 1.5 +
15.8

1000
W and cpmρm = cm = 1.824 · 106. (47)

The numerical simulation results are shown in fig.(2) and fig.(3) for the moisture and
temperature distributions, respectively, for a time increment �t = 1.0 day for the moisture
and temperature distributions in 7 , 30 and 365 days. The numerical results obtained are
in excellent agreement with a bench mark results given with the limit values [3] which are
marked with ◦, �, � in the figures.
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Figure 2: The moisture distribution at 7, 30 and 365 days: mesh M = 400 × 2; time step �t = 1.0 day;
◦, �, � - limits of validity for numerical results [3]

6 Conclusions

The boundary element method has been formulated and implemented to solve two-
dimensional time dependent coupled nonlinear heat and moisture transfer through porous
solid. Quadratic basis functions to approximate field functions and constant interpolation
for fluxes are used, while linear variations of all functions over each individual time step
is considered. The test bench mark example is highly nonlinear coupled moisture and
heat transport, numerical solution of which is severe due to very different time and length
scales caused by the difference of several order in the magnitude of heat and mass diffusion
coefficients. The linear variation of functions over time step model proved to be very
accurate and stabile numerical model.
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