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Abstract. Fluid-shell interaction modeling is a challenging problem with application to
several engineering fields. In this research we develop a partitioned algorithm for large
displacements fluid-shell coupling with impact. The structure is modeled in a total La-
grangian description, using a novel shell finite element formulation to deal with geometric
nonlinear dynamics of thin or thick shells. This formulation is based on the principle of
minimum potential energy considering positions and generalized unconstrained vectors as
nodal parameters, instead of displacements and rotations. As a consequence, the formu-
lation eliminates the need for large rotation approximations and presents constant mass
matrix, allowing the use of Newmark time integrator for the nonlinear problem. The
Newton-Raphson method is employed to solve the resulting nonlinear system and contact
between structures is modeled by enforcing non-penetration conditions based on a signed
distance function. The flow is assumed to be compressible and the fluid dynamics solver is
explicit with time integration based on characteristics. The fluid governing equations are
written in the Eulerian description generating a fixed mesh method. The coupled prob-
lem is solved by using an embedded boundary technique where the fluid-shell interface
is tracked inside the unstructured fluid mesh by level sets of a signed distance to bound-
ary function. The versatility and efficiency of the proposed approach is demonstrated by
selected three- dimensional examples.
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1 INTRODUCTION

Fluid structure interaction problems are found in various engineering activities, such
as civil buildings, mechanical devices, aeronautics, ocean structures and biomechanics.
Many of these problems can be modeled as shell structures interacting with compressible
flows and are a challenging field, specially if contact/impact may occur.

Mathematical modeling of mechanical problems is traditionally done in a Lagrangian
or in a Eulerian description. Lagrangian description expresses the continuum medium
movement in terms of the initial configuration and time, being very efficient for problems
where finite displacements are the main variables, such as in solid mechanics. On the
other hand, the Eulerian description is defined in terms of final configuration and time,
being well used for problems where the variables are velocities instead of displacements,
such as for fluid mechanics.

Both fluid and solid mechanics are involved in the study of fluid-structure interaction
problems, implying the need to couple Eulerian description to Lagrangian description.
One widely used way to deal with such situations is to solve the solid based on a La-
grangian description and the fluid based on an Arbitrary Lagrangian-Eulerian (ALE)
description, in which an arbitrary velocity may be applied to the reference domain.

Using ALE description for Navier-Stokes equations together with some mesh moving
technique is a methodology able to deal with many fluid-structure interaction problems
[10, 3, 9]. However, some problems of large scale of displacements, such as air-bag or
parachute deployment, will require also a remesh technique if the ALE description is
employed.

Some authors have proposed immersed methods for Eulerian-Lagrangian coupling,
most of them in the finite difference context, considering immersed boundary in a struc-
tured mesh [1, 4, 6].

The technique proposed here for coupling the Lagrangian shell finite element solver to
the Eulerian fluid finite element solver considers the shell boundary moving inside the fluid
unstructured mesh in which it is immersed. The shell position is tracked with level sets
of a boundary signed distance function, and the fluid Dirichlet boundary conditions are
applied by enforcing a ghost flow over the nodes immediately outside the shell boundary
and, at same time, limiting the velocity slope based on the signed distance function.
Shell-Shell multi-body contact is modeled by imposing non-penetration conditions based
on a body to body signed distance function.

The outline of the paper consists in first briefly describe shell and fluid formulations,
then describe the coupling algorithm and the impact algorithm, and finally present ex-
amples of inflatable structure problems giving a qualitative demonstration of feasibility
and quality of the proposed technique.
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2 SHELL FORMULATION

Shell structures are solids with one dimension much larger than the others. Therefore,
the mid surface serves as a reference to the solid mapping. The mappings f 0 and f 1, from
an auxiliary non-dimensional space respectively to the initial and current configurations
may be written as follows:

For any point out of the middle surface, its position at initial and final configuration
may be written as:

f 0
i = Xi = Nj(ξ1, ξ2)Xm

ji +
h0

2
ξ3Nj(ξ1, ξ2)e0

ij, (1)

and

f 1
i = xi = Nj(ξ1, ξ2)xmji +

h0

2

[
ξ3 + ajNj(ξ1, ξ2)ξ2

3

]
Nj(ξ1, ξ2) Ḡij, (2)

where Ḡij are the nodal values (unknowns) for the generalized vector at node j at final
configuration, h0 is the initial thickness, e0

i is the i− th component of the unitary vector
−→
e0 , normal to the midle surface at initial and a is the strain rate along thickness.

Finally, change of configuration from initial to current is represented by:

f = f (X) =
(
f1
)
◦
(
f0
)−1

. (3)

The gradient A of the configuration change function may be expressed by:

A = ∇f =
(
A1
) (

A0
)−1

. (4)

After evaluating the gradient A, the Green strain tensor and the specific strain energy
may be obtained, following [8]:

Eij =
1

2
[AkiAkj − δij] =

1

2
[Cij − δij] . (5)

The variables Cij and δij are the right Cauchy-Green stretch tensor and the Kroenecker
delta, respectively. The following quadratic strain energy per unit of initial volume is
adopted,

ue =
1

2
EijCijklEkl (6)

resulting into a linear elastic constitutive law relating second Piola-Kirchhoff stress and
Green strain, usually called Saint-Venant–Kirchhoff elastic law, i.e.:

Sij =
∂ue
∂Eij

= CijklEkl (7)

where The Cijkl are the components of the elastic constants tensor.
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From preceding developments, one may write the equilibrium equation as the mini-
mization of the energy functional as:

∂Ue

∂x
− F + Mẍ + Cẋ = 0, (8)

where F is the external forces vector, C is the dissipative matrix and M is the mass
matrix.

[2] proved that for a positional total Lagrangian description, the Newmark β with γ =
1/2 presents momentum conservative properties for most of shell dynamics problems and
conserves energy for small strains if the time step is sufficiently large that the asymptotic
energy convergence dominates or small enough that a uniform bound on the energy is
achieved (see [5] for more details with respect to energy conservation for constant mass
matrix nonlinear dynamics with the average acceleration time integration).

From Newmark β method, the equilibrium equation for a given instant s+ 1 becomes:

∂Ue

∂x

∣∣∣∣
S+1

− FS+1 +
M

β∆t2
xS+1 −MQS + CRS +

γC

β∆t
xS+1 − γ∆tCQS = 0, (9)

where QS = xS

β∆t2
+ ẋS

β∆t
+
(

1
2β
− 1
)

ẍS and RS = ẋS + ∆t (1− γ) ẍS.

Equation (9) represents a nonlinear system, which we solve employing Newton-Raphson
method. Each node will have 7 nodal parameters: 3 position vector components xi with
i = 1, 2 or 3, 3 components of the generalized position vector Ḡi with i = 1, 2 or 3 and
the strain ratio along thickness a.

3 FEM FOR FLUID DYNAMICS

If there is no diffusion, the time variation of φ over a characteristic coordinates x′ is
by definition null. For the Navier-Stokes equations we can write:

∂φ(x′, t)

∂t
−Q(x′) = 0, (10)

where Q(x′) contains all the non convective terms.
We assume the following approximation for Eq. (10) [11]:

φ(y)n+1 − φ(x)n
∆t

≈ θ(Q(y)n+1) + (1− θ)(Q(x)n), (11)

where x and y means respectively the characteristic positions at t = n and t = n + 1, θ
is a constant with value 0 for explicit solution and may be chosen larger than zero 0 and
smaller than 1 for semi-implicit or implicit solution.

The product uφ and the term Q(x) may be approximated by Taylor resulting the
following expressions:
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uφ(x)n = uφ(y)n − (y − x)
∂(uφ(y))n

∂x
+

(y − x)2

2

∂2(uφ(y)n)

∂x2

+O(∆t3),
(12)

Q(x)n = Q(y)n − (y − x)
∂Q(y)n
∂x

+O(∆t2). (13)

Assuming ∆t = (y−x)/u, from Eqs. (12), (11) and (13), and assuming θ = 0 (explicit
form), we have:

φ(y)n+1 = φ(y)n −∆t

(
∂(uφ(y))n

∂x
−Q(y)n

)
+

(∆t)2

2
u
∂

∂x

(
∂(uφ(y)n)

∂x
−Q(y)n

)
+O(∆t2).

(14)

One important point about this procedure is that the high order terms of Eq. (14),
obtained due to time integration along characteristics, introduce dissipation on stream
lines direction, which as shown by [11] are equivalent to the Petrov-Galerking schemes
when the time interval tends to the critical time interval, and gets smaller effects as the
time interval get larger.

Applying the procedure of Eq. (14) to the Navier-Stokes equations, one may write for
momentum and energy equations one may write:

∆(ρui)n+1 = ∆t

(
−∂(ujρui)

∂xj
+
∂τij
∂xj
− ∂p

∂xi
+ ρgi

)
n

+

∆t2

2

(
uk

∂

∂xk

(
∂(ujρui)

∂xj
− ∂τij
∂xj

+
∂p

∂xi
− ρgi

))
n

(15)

and

∆(ρE)n+1 = ∆t

(
−∂(uiρE)

∂xi
+

∂

∂xi

(
k
∂T

∂xi

)
− ∂(uip)

∂xi
+
∂(τijuj)

∂xi
− ρgiui

)
+

∆t2

2
uk

∂

∂xk

(
∂(uiρE)

∂xi

)
+

∆t2

2
uk

∂

∂xk

(
− ∂

∂xi

(
k
∂T

∂xi

)
+
∂(uip)

∂xi
− ∂(τijuj)

∂xi
+ ρgiui

)
n

,

(16)

where all the right hand side terms are known at the instant t = n.
Based on the Eulerian mass conservation equation, [11] suggest the following expression

for explicit solution:

∆ρn+1 = −∆t
∂ (ρui)n+θ

∂xi
= −∆t

(
∂

∂xi
(ρui)n + θ

∂ (∆ (ρui))n+1

∂xi

)
, (17)
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where θ is a arbitrary constant with value between 0.5 and 1.
Applying the Galerkin method to Eq. (15), (17) and (16), we obtain the spatial

discretization and solve the resulting system getting the week solution.
We still need to deal with the discontinuities due to the presence of shock waves, as

the standard Galerkin method is unable to deal with strong discontinuities. Therefore,
the artificial diffusion term based on pressure second derivative is added:

fµa = ∆tµa
∂

∂xi

(
∂φ

∂xi

)
, (18)

where φ is the variable to be smoothed and µa is the artificial viscosity given by:

µa = qdifh
3 (|u|+ c)

pav

∣∣∣∣ ∂∂xi
(
∂p

∂xi

)∣∣∣∣
e

, (19)

where |u| is the velocity absolute value, pav is the pressure average over the element, qdif
is an user specified coefficient taken between 0 and 2, c is the sound speed and h is the
element size [11, 7].

4 IMMERSED FLUID-STRUCTURE COUPLING PROCEDURE

The proposed method for enforcing boundary conditions on the vicinity of a shell
immered in an unstructured fluid mesh requires all the fluid elements close to the boundary
Γs to be identified, and to know if they are inside or outside the physical domain Ωf . To
this end, a computationally efficient and scalable approach is to use a signed distance
function (or, level set function):

Φ(x,Γ) =


distance(x,Γ) if x ∈ Ω

0 ifx ∈ Γ

−distance(x,Γ) otherwise

(20)

whose zero-th level set determines the resulting body shape.
In contrast to the usual parametric mesh based boundary representations (using seg-

ments or facets), level set based representations are more suitable for problems with large
deformations and topology changes. There are efficient and scalable algorithms for con-
verting a mesh based representation into an implicit representation.

Next, all the fluid elements are tagged as physical, fictitious or boundary depending
on their position with respect to the physical domain. This classification is performed
by computing for each fluid element Ωef the minimum and maximum signed distance
min Φ(Ωef ) and max Φ(Ωef ), respectively, then the classification is applied as (see Fig. 1):

• physical element: min Φ(Ωe) > 0;

• fictitious element: max Φ(Ωe) ≤ 0;
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Figure 1: Elements tags

• boundary element: neither a physical nor a fictitious element.

The purpose of the element tag is to identify which nodes and elements should be deac-
tivated from the analysis as well as the ghost nodes. To this purpose, all the fluid mesh
nodes are tagged as active or inactive. A node k is active if Φ(k) > 0 or if k bellows
to some boundary fluid element, and inactive otherwise.This tags are computed for each
time step and the inactive nodes as well as the fictitious elements are deactivated from
the analysis.

For each fluid node k, we find the closest point l on shell mesh, and store the shell
element Ωse for which l ∈ Ωse and the non-dimensional shell coordinates (ξ1, ξ2) for point
l.

The active nodes k outside the physical domain (Φ(k) < 0) need to be populated. For
this purpose we project the point k to the closest physical element determining a new
point m from where the values of density, specific energy and momentum are linearly
extrapolated.

A way to prescribe the velocity at the boundary position would be to change the
velocity nodal values of the active nodes k with Φ(k) < 0 (ghost nodes) in order to
modify the values over the boundary. However this procedure may imply on very large
velocity values as Φ(k) becomes close to the element size.

To avoid this problem, we modify the velocity nodal values for the active nodes outside
the boundary and also the velocity nodal inside a strip of width δ according to the following
equation if the flow is inviscid:

uf = uf + (1− Φ

δ
)[(us − uf ) · n]n. (21)

or, for a viscous flow:

uf = uf + (1− Φ

δ
)[us − uf ] (22)

where uf is the fluid nodal fluid velocity vector, us is the shell velocity vector evaluated
at the shell closest point to the fluid node. The term (1− Φ

δ
) limits the slope of velocity on
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direction normal to the boundary but also introduces an artificial stiffness to the problem.
However if we adopt a δ equal to the element size, this artificial stiffness is equal to the
one naturally produced by an mesh of same elements size adapted to the boundary.

Taking advantage of the fluid shape functions, the stress tensor may be evaluated di-
rectly over the position of the embedded shell nodes k or directly over the shell quadrature
points. the shell loads with respect to the Cartesian axes are given by:

qkj = [−τjlnl − pnl]Pfk , (23)

where the indexes j and l represent Cartesian direction and nl is the l component form
the normal vector to Γs.

5 SHELL-SHELL CONTACT

Contact between structures is modeled by enforcing non-penetration conditions based
on a body-body signed distance function.

Each Newton-Raphson iteration, over each body i, we calculate the signed distance to
the other bodies k nodal values Φsi(k). This value is positive if the node did not cross
other bodies, regarding its initial position, or negative if it crossed.

If the value is negative, the node position is projected back a distance of Φsi

2
along

its normal direction (slip wall contact). this procedure is repeated after each Newton-
Raphson iteration until reach the prescribed error.

F
s1
/2

F
s2
/2

Figure 2: Contact

6 NUMERICAL EXAMPLE

In this example a simulation of an airbag deployment and crash with an half sphere
moving on the airbag direction. We consider it as a qualitative example, once due to
computational the airbag mesh is not fine enough to represent the wrinkles that appears
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in high frequency and also because the formulation is not yet ready to simulate self contact,
what is common in a problem like this. The airbag on its flat initial condition is filled

Figure 3: One quarter of the airbag

with an ideal gas at rest with density ρf = 1.3kg/m3 pressure p = 107, 34kPa and specific
heat ratio γ = 1.4. A gas with ρfi = 10kg/m3, sound speed c = 370m/s and γ = 1.4
enters the airbag producing a shock wave.

The input condition is kept constant until t = 0.06 s, when the input is closed and
the applied boundary condition is that of slip wall. The fluid mesh where the airbag is
immersed has 263667 elements and 47491 nodes.

We discretize 1/4 of the problem assuming that the problem is symmetric according
to the planes xz and yz and. The airbag is discretized by 258 elements and 1237 nodes
and its material has Young’s modulus E = 3GPa and specific mass ρs = 1000kg/m3

and thickness h = 0.5mm. The aibag is clamped over all the input area and simmetry
boundary conditions are applied to the planes xz and yz.

A half sphere with specific mass ρs2 = 3000kg/m, thickness h = 15mm and Young’s
modulus E = 20GPa is initially positioned at z = and moves on the airbag direction with
a speed w = −25m/s. The 1/4 of the half sphere is discretized by 6 curved elements and
37 nodes.

The simulation produced results according to the expectations. Figure 4 plots the top
displacement versus time and figure 5 presents a snapshots of pressure distribution and
the airbag deformation for some instants.

From these results we conclude that the present procedure is a robust method for
analysis of inflatable structures and should further be improved to enlarge computing
capabilities and shell self contact.

7 CONCLUSION

We have proposed one numerical model for analysis of shell high-speed flows coupling
and for impact between shell structures. We presented the shell solver, which is able
to deal with geometrical nonlinear dynamics of shells and uses a methodology based on
the minimum potential energy theorem written regarding nodal positions and generalized
unconstrained vectors, not displacements and rotations, avoiding the use of large rotation
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Figure 4: Top vertical displacements vs. time

approximations. The resulting time integration is stable for problems like the example
presented here and based on the Newmark method due to the presence of constant mass
matrix. Finally we developed the coupling procedure. The immersed approach furnishes
a general algorithm for explicit coupling of Lagrangian shell solvers with unstructured-
mesh-based Eulerian fluid solvers considering the shell immersed in a block of unstructured
fluid mesh.The coupled algorithms are tested by one selected example. The employed fluid
and shell solver showed to be robust and completely adequate for simulating fluid-shell
interaction with impact. Further improvements on computer capability and shell self
contact are recommended.
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