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PREFACE

PREFACE

This volume contains the full papers accepted for presentation at the XIV 
International Conference on Computational Plasticity (COMPLAS 2017), 
held in Barcelona on 5-7 September, 2017. The first thirteen conferences 
of the series were also held in Barcelona; in April 1987, September 1989, 
April 1992, April 1995, March 1997, September 2000, April 2003, 
September 2005, September 2007, September 2009, September 2011, 
September 2013 and September 2015.

COMPLAS 2017 will be a special occasion as we will be celebrating the 
30th anniversary of the first COMPLAS conference.

The ever increasing rate of development of new engineering materials 
required to meet advanced technological needs poses fresh challenges in 
the field of constitutive modelling. The complex behaviour of such 
materials demands a closer interaction between numerical analysts and 
material scientists in order to produce thermodynamically consistent 
models which provide a response, while keeping with fundamental 
micromechanical principles and experimental observations. This necessity 
for collaboration is further highlighted by the continuing remarkable 
developments in computer hardware which makes the numerical 
simulation of complex deformation responses increasingly possible.

The developments that have taken place in these directions are 
illustrated by the contents of the papers included in these Proceedings. A 
stronger interaction between the phenomenological and micromechanical 
modelling of plasticity behaviour is apparent. The development of 
efficient and accurate computational methods for plasticity problems 
continues to be challenging goal, while it is interesting to note the 
permanence of element modelling as a research issue. The blending of 
classical FEM with new particle-based and discrete element methods 
appears as one of the more prominent areas of research. Industrial 
forming processes, geo-mechanics, bio-mechanics, steel, concrete and 
masonry structures form the core of the applications of the different 
numerical methods presented.

The organizers would like to thank all authors for submitting their 
contributions, as well as the supporting organizations for their help in 
making COMPLAS XIV possible.

Eugenio Oñate

Michele Chiumenti

Universitat Politècnica de Catalunya
Barcelona, Spain

Roger Owen

Djordje Peric

Swansea University
Swansea, Wales
United Kingdom
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Simulation of penetration problems in geomechanics 

XIV International Conference on Computational Plasticity. Fundamentals and Applications 
COMPLAS 2017 

E. Oñate, D.R.J. Owen, D. Peric and M. Chiumenti (Eds) 

SIMULATION OF PENETRATION PROBLEMS IN GEOMECHANICS 

ANTONIO GENS*, MARCOS ARROYO*, JOSEP M. CARBONELL*, MATTEO 
CIANTIA†, LLUÍS MONFORTE* 

*Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE) 
Departament d’Enginyeria Civil i Ambiental 
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Key words: Discrete Element Method, Particle Finite Element Method, Cone penetration, 
Crushable sands, Clays. 

Abstract. The simulation of penetration problems in geomaterials is a challenging problem as 
it involves large deformations and displacements as well as strong non-linearities affecting 
material behaviour, geometry and contact surfaces. The paper presents examples of modelling 
of the cone penetration test using two procedures: a discrete approach and a continuum 
approach. The discrete approach is based on the Discrete Element Method where a granular 
material is represented by an assembly of separate particles. Cone penetration has been 
successfully simulated for the case of crushable sands. For the continuum approach, the 
Particle Finite Element Method has been adopted. The procedure has been effectively applied 
to the modeling of undrained cone penetration into clays. Although not exempt of problems, 
both approaches yield realistic results leading to the possibility of a closer examination and an 
enhanced understanding of the mechanisms underlying penetration problems in 
geomechanics.

1 INTRODUCTION 
Penetration problems are encountered very frequently in geotechnical engineering and 

other geomechanical applications. Some examples are the use of tube samplers to recover soil 
specimens, the installation of driven piles in the ground or a variety of penetration probes for 
site investigation purposes. A realistic numerical simulation of those type of problems would 
yield important advantages concerning the understanding of the processes involved during 
penetration possibly leading to a more rational approach for, among others, in-situ test 
interpretation, assessment of sampling disturbance and pile design.

However, the numerical simulation of penetration problems faces significant challenges as 
it involves large deformations and displacements as well as strong non-linearities affecting 
material behaviour, geometry and contact surfaces. A variety of computational techniques are 
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available to tackle this kind of problems [1]. They can be classified into two main categories: 
discrete and continuum. 

In this paper, both types of numerical modelling are applied to the same penetration 
problem: the cone penetration test (CPT). The CPT is a widely used site investigation tool for 
geomechanical applications. The test consists of the introduction of a cone, of standard 
dimensions, into the ground at a constant rate of penetration. The unit cone resistance is 
measured in a quasi-continuous manner during penetration. Normally, lateral friction and pore 
pressures are also measured but here attention is mainly focused on cone resistance. In this 
contribution, two examples of application are presented: the Discrete Element Method (DEM) 
for cone penetration in crushable sands and the Particle Finite Element Method (PFEM) for 
the undrained analysis of cone penetration in clays. 

2 DEM MODELLING OF CONE PENETRATION IN CRUSHABLE SANDS 
In the DEM modelling, the granular soil is represented by a number of finite size particles 

that interact through their contacts. The method tracks the motion of those particles subjected 
to a series of forces transmitted by the adjacent particles through the contacts [2]. The method 
has certainly important limitations bus also a considerable number of advantages [3]. Among 
the limitations are the generally oversimplified geometrical representation of the particles 
(often assumed to be spheres) and the need to scale up their size, especially in boundary value 
problems such as the cone penetration analyses. The main advantage is that large strains, 
displacements and rotations are readily accommodated in the analyses. Also, it is possible to 
bypass the need for quite sophisticated constitutive models for sands; instead, only the contact 
law between pairs of individual particles is usually required. It should be noted, however, that 
there is considerable uncertainty over the precise form of those contact laws and their 
parameters are generally calibrated comparing the macroscopic response of a DEM model and 
the results of analogous laboratory tests.

The modeling of cone penetration in materials made up of weak grains (e.g. calcareous 
sands) is especially interesting because it has been observed [4] that the pattern of cone 
resistance increase with relative density is notably different in calcareous crushable sand 
compared to non-crushable silica sand. This difference results in difficulties when correlations 
developed for silica sands are applied to materials with crushable grains [5-6]. In this context, 
the application of DEM analysis is appealing because it allows the isolation of the effects of 
grain strength and crushability. It is applied to an extreme case, reported in [7], where the 
cone resistance observed in calibration chamber tests was insensitive to relative density 
(Figure 1). The material is volcanic pumice sand the grains of which are porous themselves. 

To model such materials, it is necessary to introduce particle crushing into the DEM 
formulation. Here, an efficient formulation recently developed has been adopted [8-9]. The 
main features of this approach can be summarized as follows: a particle failure criterion 
inspired by the analytical work of [10-11], a particle spawning procedure based on Apollonian 
packing and upscaling rules for particle strength and contact stiffness parameters. As in many 
multigenerational approaches, mass is not conserved after particle splitting but the missing 
mass of broken particles is allocated, during post-processing, to finer fractions according to a 
fractal distribution. In this way, it is possible to track evolving porosity and grain size 
distribution.
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Figure 1: CPT results observed in cone penetration tests on pumice sand performed in a calibration chamber [7] 

The corresponding virtual calibration chamber (Figure 2) has been constructed with the 
same procedure and scaling reported in [12]. The zero-strain radial lateral condition of the 
physical chamber was replicated by the model. The DEM model has been calibrated against 
oedometer and triaxial tests on the pumice sand used in the calibration chamber tests [7]. 
Selected results of the DEM analyses are presented in Figure 3 where it is apparent that the 
cone penetration values are quite insensitive to the density of the sand, as observed in the 
physical experiments. 

Parallel DEM calculations assuming uncrushable grains were also performed so that the 
effects of particle crushability could be readily identified. Results in terms of ratio of cone 
penetration resistance of uncrushable and crushable granular materials are collected in Figure 
4. It can be noted that the pattern of variation with relative density agrees well with reported 
experimental results. No DEM results are available for densities below about 40% due to the 
difficulty of constructing very loose virtual specimens. In any case, it appears that the use of 
the new DEM formulation for crushable materials provides a good tool to further explore 
penetration problems in this type of materials. More information on this study is given in [13]. 
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Figure 2: Scheme of DEM analysis: virtual calibration chamber and cone 

   
                                               a)                   b) 

Figure 3: Computed cone resistance in simulated cone penetration on pumice sand at different stress values      
a) Loose specimen, b) Dense specimen  
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Figure 4: Effect of crushability on cone resistance for different relative densities. Experimental and DEM results  

3 PFEM MODELLING OF UNDRAINED CONE PENETRATION IN CLAYS 
The continuum modelling of the cone penetration test has been performed using the 

Particle Finite Element Method, PFEM [14-16]. The method uses a Finite Element 
approximation to compute the movement of the particles within an updated Lagrangian 
framework. In this method, particles and nodes coincide and the mesh is updated when 
required to prevent excessive distortions; Delaunay tessellation is used for this purpose. The 
mesh nodes are considered particles that carry mass and the state variables and, being 
particles, they can separate from the main domain giving rise to new boundaries. Although the 
method was initially developed for fluid-solid interaction problems, there have already been 
some applications to geotechnical problems [17-19]. 

Figure 5 shows a scheme of the method that can be summarised in the following steps: i) A 
cloud of particles, Cn, is defined at a time t=tn, ii) identify the boundaries defining the analysis 
domain, iii) discretise the domain with a finite element mesh, iv) solve the governing 
equations within a Lagrangian formulation and compute the state variables at the next up-
dated configuration at tn+1, v) move the nodes to the new position Cn+1, vi) go back to step i). 

In a purely undrained case the soil can be considered as a single phase medium and only 
the linear momentum balance equation (equilibrium) needs to be solved. Accordingly, a total-
stress Tresca constitutive model has been adopted to represent the soil whereas the tangential 
contact with the rigid cone has been simulated with a von Mises yield criterion. The analyses 
presented here have been performed with a rigidly index, Ir = 100. The geometry of the 
problem and the computation domain are shown in Figure 6a. 

The cone penetration analyses have been carried out using values of cone-soil adhesion 
ratio (adhesion/undrained shear strength) ranging from 0 to 0.7. The results in terms of 
cone penetration (normalized as cone factor Nkt) and friction sleeve resistance are plotted in 
Figure 6b. As expected, the friction sleeve resistance coincides with the specified adhesion 
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and the cone resistance increases modestly with the value of adhesion. Figure 7 shows more 
explicitly the variation of cone factor with the value of adhesion. The gradient of the variation 
of the cone factor as roughness increases is 1.8; this value is within the range of other 
analyses. 

Figure 5: Scheme of a PFEM computational step 

   
   a)           b) 

Figure 6: a) Geometry and computational domain of the PFEM analysis of cone penetration. b) Cone factor and 
friction sleeve resistance for different values of adhesion 
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Figure 7: Influence of contact roughness on cone factor Nkt

To illustrate further the performance of the method, Figure 8 shows the PFEM meshes (and 
mean stress contours) at the start and the end of the analysis. It can be readily noted how the 
mesh refinement has adapted to the advance of the cone accommodating, without undue 
element distortions, the large displacements associated with the penetration of the cone. More 
information on this analysis is given in [20]. 

4 CONCLUDING REMARKS 
Two different approaches have been presented for the modelling of the cone penetration 

test that attempt to overcome the considerable difficulties associated with the simulation of 
penetration problems, i.e. large displacements, large strains and rotations, severe domain 
distortion as well as geometrical, material and contact nonlinearities. Both the DEM and 
PFEM procedures have shown their capabilities in this respect although some significant 
challenges and shortcomings remain. They constitute, however, areas of intense development 
and research that should lead to an increasingly realistic description of the process of cone 
penetration in all its complexity. Consequently, it can be envisaged that more rational-based 
procedures for the interpretation of the test should ensue. More generally, these numerical 
procedures open up the prospect of efficient simulations of a wide range of penetration 
problems in geomechanics. 
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Figure 8: PFEM meshes and mean stress contours at the start (left) and at the end (right) oh the analysis 
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Abstract. The aim of this presentation is to highlight the role that Particle-based
simulations and Radial Basis Functions (RBFs) have played in the development of
a computationally efficient, level-set, Finite Element method for the simulation of
Newtonian and non-Newtonian interface flows. First, we introduce the mathemat-
ical formulation and the interface-capturing technique used in the simulation of
multiphase flows, underscoring the influence of marker particles on the enhanced
definition of the interface. Then, we explore the effect of adding polymer parti-
cles to the domain to perform Brownian Dynamics Simulations of polymer flows.
Finally, we leverage RBFs to reconstruct, in an almost free-independent way the
polymer stress tensor retrieved from the polymer particles.

Numerical simulations of pure advection flows and bubble dynamics simulations
of complex flows on two-dimensional configurations emphasize the improvements
offered by this hybrid, Finite Element/RBF/Particle-based method.

1 INTRODUCTION

From its inception, the contribution of meshfree methods to the solution of
complex scientific and engineering problems has proven remarkable; at this point
in its history, particle and meshless methods offer a viable alternative to more
traditional methods [1, 2, 3, 4, 5]. The purpose of this work is to highlight some
recent advances made in the field of Multiphase Flows and non-Newtonian Fluid

1
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Dynamics by combining particle methods and Radial Basis Functions with the
Finite Element Method in a semi-Lagrangian approach.

2 MATHEMATICAL FORMULATION

Since we aim with this work to illustrate the role of particles in multiphase flows,
and more precisely, in bubble dynamics simulations, we succinctly describe here
the numerical tools used, referring the reader elsewhere for additional details.

2.1 Marker particles for free-surface representation

As an improvement over the level set method, marker particles can be added
to better represent the interface between the two fluids. The idea is to advect
the massless particles and provide each of them with a variable radius rmin ≤
rp ≤ rmax so that the particle surface, whenever possible, remains in contact with
the free-surface; otherwise, the particle will have a minimum or maximum radius.
Then, we carry out a three-stage procedure based on error identification, error
quantification and error correction, with local level set functions φp defined at each
of the massless particles according to:

φp(xi) = snp
(∣∣xi − xn

p

∣∣− rnp
)
,

with snp ≡ sign
{
φn
h(x

n
p )
}
. These particles help in correcting the global level set

function φ whose zero isocontour represents the interface. For details, see [6].

2.2 Polymer particles in Brownian Dynamics simulations

As an alternative to the constitutive modeling of non-Newtonian fluids, the
micro-macro (stochastic) approach uses polymer particles that carry the internal
degrees of freedom of the viscoelastic fluid; these particles are advected by the flow,
contributing to the incompressible, Navier-Stokes equations through the extra-stress
tensor computed by taking moments of the configurations. In this work, we use the
Hookean and FENE (‘Finitely Extensible, Nonlinear Elastic’) kinetic models, each
of them represented by two dumbbells connected by a spring of force F, so that
the stochastic differential equation ruling the configurations Q of the dumbbells
are integrated by a (weak) second-order algorithm, as in [7, 8]. Further, the cubic
equation for the FENE model is efficiently solved with the method proposed in
[9]. Variance-reduction techniques are applied using Nens ensembles each of them
containing Nd dumbbells, as described in [6].

2.3 CSRBFs for polymer stress tensor reconstruction

Compactly-Supported Radial Basis Functions offer a way of handling, in an
efficient and mesh-independent manner, the problem of image reconstruction

2
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from a set of points [10]. In our context, their usefulness directly relates to the
reconstruction of the polymer stress tensor: as data set we have the values of each
of the components of the polymer stress tensor τ ipij at a certain ensemble i, along
with the position of the ensembles themselves {xi}. We choose to use the CSRBFs
of minimal degree obtained by Wendland [11], solving the linear systems resulting
after imposing the orthogonality conditions using the techniques described in [12].

3 ILLUSTRATIVE EXAMPLES

In this section, we highlight the usefulness of particles and RBFs for improving
interface shape, modeling non-Newtonian fluids, and reconstructing the polymer,
extra-stress tensor, by a series of numerical tests.

3.1 Star-shaped droplet in vortex flow

We consider the pure advection test recently proposed in [13] to check the
ability of the method to deal not only with stretching filaments and quite possibly
with topological changes, but also with a multi-layered structure that must be
recovered at the end of the periodic simulation. A star-shaped droplet is placed
at the center of a square [0, 1] × [0, 1] domain, with the interface given in polar
coordinates by r (θ) = a + b cos(mθ), with a = 0.3, b = 0.1 and m = 5. The
imposed, periodic (Tp = 4) vortex flow is defined by the stream function ψ =
1
π
sin2 (πx) sin2 (πy) cos (πt/Tp), so that the velocity field is obtained as

{
u = − sin2 (πx) sin (2πy) cos (πt/Tp) ,

v = sin2 (πy) sin (2πx) cos (πt/Tp) .
(1)

Next, we use our SLEIPNNIR method [6] to retrieve the interface at the final
instant of the simulation, for a variable number of marker particles scattered in the
domain Np = {0, 104, 5× 104, 105}; a second-order, eikonal-based reinitialization
procedure is used every other time step to ensure that no numerical instabilities
propagate away from the interface; the fixed time step size is ∆t = 0.01. A uniform,
unstructured mesh refinement was carried out to ascertain the influence of the mesh
size h, with h successively halving from h = 8× 10−2 down to h = 5× 10−3. The
shapes of the droplet are pictured in Fig.1: we observe how the addition of marker
particles notably improves shape preservation, strikingly so for the coarsest mesh
(h = 8× 10−2) in which the addition of even a small amount of marker particles
(Np = 104) enhances the final shape from a rather amorphous interface when no
marker particles are used, to a quite precise final shape.

Table 1 conveniently collects the mesh size h, number of elements NE, number
of mesh nodes NC, and number of particles Np used in each simulation, along with
the errors measured in the L2 and L∞-norms, percentage of mass loss at the end

3
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Figure 1: Shape of a star-shaped droplet in a square [0, 1] × [0, 1] domain under a periodic
(Tp = 4) vortex flow, under uniform mesh refinement. Panels from left to right, and from top to
bottom: h =

{
8× 10−2, 4× 10−2, 10−2, 5× 10−3

}
. For each panel, a variable number of marker

particles is used: Np = 0 (green), Np = 104 (orange), Np = 5× 104 (blue) and Np = 105 (purple);
the initial solution is represented in black.

of the simulation and maximum memory demanded during the simulation. For a
fixed mesh size, increasing the number of particles results in a behavior resembling
the law of diminishing returns: the benefits of the addition of marker particles are
remarkable, while increasing the number offers increasingly small improvements.
Nevertheless, the computational cost of the marker particles in terms of memory
spent during the simulation, is modest in the coarser meshes and negligible in the
finer meshes.

In Fig.2 we plot the evolution of the eL2 error for the three finer meshes and
an increasing number of marker particles. As we can observe, the maximum value
is reached at the moment of the largest deformation of the flow, decreasing again
when particles are added, and slowly increasing in time if no marker particles are
used. Again, the same trend of diminishing returns is observed throughout the
simulations.

4
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Table 1: Average size h of the unstructured, uniform mesh; number of marker particles Np;
number of elements NE; number of mesh-points NP ; error in the Euclidean norm eL2 ; error in
the infinity norm eL∞ ; mass loss percentage; and maximum memory used during the simulation
of a periodic (Tp = 4) star-shaped droplet under a vortex flow. Values collected at the end of the
simulation (t = 4).

h Np NE NC Error eL2 Error eL∞ Aloss(%) Mem (MB)

8E−2 0 360 773 3.1647E−1 1.1128E−1 3.81E−2 39.86
8E−2 10000 362 777 5.4471E−2 3.2967E−3 1.30E−2 40.38
8E−2 50000 362 777 6.3726E−2 4.5122E−3 6.32E−2 46.87
8E−2 100000 360 773 6.9271E−2 5.3317E−3 4.02E−2 55.98
4E−2 0 1484 3069 2.9478E−1 9.6547E−2 2.53E−1 63.44
4E−2 10000 1484 3069 3.1659E−2 1.1137E−3 3.77E−3 63.39
4E−2 50000 1484 3069 2.9832E−2 9.8883E−4 9.81E−3 67.47
4E−2 100000 1484 3069 2.4658E−2 6.7557E−4 8.59E−3 77.23
2E−2 0 5846 11893 2.8022E−1 8.7248E−2 2.51E−3 142.08
2E−2 10000 5846 11893 4.4221E−2 2.1728E−3 6.76E−2 142.06
2E−2 50000 5846 11893 1.2143E−2 1.6383E−4 4.42E−4 142.10
2E−2 100000 5846 11893 1.1652E−2 1.5085E−4 6.64E−4 142.17
1E−2 0 23384 47169 2.1471E−1 5.1223E−2 3.61E−2 514.41
1E−2 10000 23384 47169 2.0051E−2 4.4672E−4 1.88E−4 514.31
1E−2 50000 23384 47169 1.1636E−2 1.5043E−4 2.27E−4 514.38
1E−2 100000 23384 47169 1.0572E−2 1.2418E−4 7.75E−5 514.41
5E−3 0 94330 189461 9.1740E−2 9.3514E−3 3.57E−3 2,029.47
5E−3 10000 94330 189461 1.9352E−2 4.1612E−4 2.16E−4 2,029.37
5E−3 50000 94330 189461 1.0243E−2 1.1657E−4 5.29E−5 2,029.48
5E−3 100000 94330 189461 8.3215E−3 7.6941E−5 5.62E−5 2,029.46

3.2 Viscoelastic droplet in shear flow

We now proceed with a problem in which the viscoelastic effects are present,
namely, the behavior of a viscoelastic droplet in a Newtonian, viscous fluid. This
situation has been thoroughly investigated (see e.g. [14, 15, 16]) in studies strongly
suggesting that droplet viscoelasticity prevents deformation to a certain degree
The schematics are showed in Fig.3, in which a droplet of radius a is placed at the
center of a domain [2L × 2H], with H = 4a and L = 8a. The no-slip boundary
condition is imposed at the bottom and top lids of the domain, which move at a
velocity V in opposite directions, giving rise to a shear rate γ̇ = V/H, here taken as
γ̇ = 1. For details on the numerical model, refer to the uncorrelated computations
found in [6] and [17].

The viscoelastic drop is modeled by Hookean dumbbells (equivalent to the
Oldroyd-B constitutive equation), and is immersed in a Newtonian, ambient fluid.
The flow is suddenly started at t = 0 with shear rate γ̇ = 1, using a mesh
with 80× 40 elements and Np = 107 uncorrelated, polymer particles (dumbbells)
uniformly placed inside the droplet; the flow is continued until dimensionless time

5
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Figure 2: Evolution of the eL2 error during the simulation of a star-shaped droplet in a square
[0, 1]× [0, 1] domain under a periodic (Tp = 4) vortex flow, under uniform mesh refinement h ={
2× 10−2, 10−2, 5× 10−3

}
and variable number of marker particles Np =

{
0, 104, 5× 104, 105

}
.

t∗ = tγ̇ = 10, with a small time step to accurately solve the internal configurations of
the dumbbells (dt = 1/200), taking Nt = 2000 time steps to finish each simulation;
the number of marker particles to improve the definition of the interface is Nmp =
2.5 · 105. The effects of the Reynolds prove to be of utmost importance, in the sense
that, if the method is not able to deal with extremely low Re (creeping flows), the
inertial effects become relevant when small time steps are used, thus affecting the
history of the flow and, consequently, that of the dumbbells: it is for this reason
that Re = 10−5 is chosen. The rest of the dimensionless parameters are those found
in [14] (also referenced henceforth as “Yue et al. PoF05”): Fr → ∞, We = 10−6

so that the Capillary number Ca = 0.1; our concentration parameter c, according
to the characteristic scales chosen in that article, corresponds to c = 1− β, with
β = 0.5 the retardation parameter of the Oldroyd-B fluid; the Deborah numbers
studied are De = {0.25; 0.5; 1; 2}; and the density and viscosity ratios between the
droplet and the outer ambient fluid (matrix) are ρ2/ρ1 = µ2/µ1 = 1.

We perform a set of simulations to obtain the evolution of the droplet deformation,
and compare the results with those by Yue et al. in their Fig.1; the results are
collected in Fig. 4. Despite the rather coarse mesh used, the not-so high number
of dumbbells, and the totally different approach taken by the two techniques
compared (their diffuse-interface method along with a phase-field approach ruled
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Figure 3: Viscoelastic droplet in Newtonian matrix under a shear flow. Sketch.

by Cahn-Hilliard dynamics to study the Newtonian/non-Newtonian problem in
a unified way; and our micro-macro, semi-Lagrangian, Particle Level-Set Finite
Element method) the results are in remarkably good agreement, especially the steady
state values of the deformation parameter D, defined as D = (L− B) / (L+ B),
with L and B being the longest and shortest lengths from the center of the droplet
to the interface (corresponding also to the major and minor axes of the ellipse),
respectively. The transient behavior shows a noteworthy resemblance as well, with
the overshoot appearing for sufficiently high De values, and the evolution of De = 2
being for t � 4 being higher than those for De = 1. In any case, we notice the
effect of the droplet viscoelasticity as a means to reduce the deformation of the
interface; plots of the actual shape of the interface (not included here) show this
same trend. Finally, we would like to point out that more refined meshes would
be needed to prevent some of the oscillation from appearing in the Figure; apart
from the stochastic noise (we are using here totally uncorrelated dumbbells), the
modification of the interface by the correction stage of the marker particles and
the mass conservation step add somewhat to this oscillatory behavior in D, which
is explicitly computed from the discrete interface; additional results with a better
mesh indeed confirm this fact.

3.3 Reconstruction of polymer stress tensor

Finally, to show the ability of the CSRBFs to reconstruct the extra-stress tensor
in non-Newtonian fluids, we perform some numerical tests in a two-dimensional
configuration using SLEIPNNIR [6] where a Newtonian bubble rises in a non-
Newtonian ambient fluid. A very fine, uniform mesh with grid size h = 1/320
is used, with Nens = 3 × 104 ensembles being scattered in the viscoelastic fluid,
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Figure 4: Evolution of the deformation parameter D for a viscoelastic droplet in a Newtonian
matrix under a shear flow, for increasing values of the Deborah number De. Comparison with
Fig. 1 of [14].

each of them carrying Nd = 25 × 103 dumbbells for variance-reduction effects.
The dimensionless numbers defining the problem are: Reynolds Re = 35, Weber
We = 10, concentration parameter c = 5, Deborah number De = 3, density and
viscosity ratios ρ1/ρ2 = 10 = µ1/µ2; the kinetic FENE (b = 50) model is used,
with the efficient solution to the resulting cubic equation proposed in [9], and the
simulation is continued until dimensionless time t = 3 is reached. Four different
Compactly-Supported Radial Basis Functions proposed by Wendland are used, with
different degree of smoothness represented by the number of continuous derivatives,
ϕsk ∈ C2k (R) with convergence rate hs/2+k+1/2, and a support size χ = 65. We
observe that increased smoothness is beneficial to the reconstruction of well-defined
surfaces, with a sufficiently high number of ensembles; see Fig. 5 for the final
shapes of the bubbles, in which a nice convergence is noticed for ϕ31, ϕ32 and ϕ33.
Additionally, Fig. 6 plots the reconstruction of the shear component of the polymer
stress tensor at the end of the simulations; the previous comments may be applied
here as well. For additional details about the effect of ensembles and dumbbells
per ensemble, see [12].
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Figure 5: Final shape of bubble using differents CSRBFs: ϕ30, ϕ31, ϕ32, ϕ33.

4 CONCLUSIONS

The purpose of this work has been to underscore the role of particles in the
context of numerical methods for multiphase flow problems, showing their relevance
in a three-fold way:

• Improvement of mass conservation and enhancement of shape preservation,
by means of marker particles.

• Modeling of non-Newtonian fluids in complex, multiphase flows, using poly-
mer particles along with Brownian Dynamics simulations.

• Reconstruction the polymer, extra-stress tensor, leveraging smooth Compactly-
Supported Radial Basis Functions.

All these effects have been addressed in a series of numerical simulations that
prove the potential of such an approach. Future work involves Adaptive Mesh
Refinement techniques, with preliminary results recently communicated in [18].
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Figure 6: Reconstruction of the shear component τp12 of the polymer stress tensor at the end of
a bubble dynamics simulation, for different Wendland’s CSRBFs. Panels from left to right, and
from top to bottom: ϕ30, ϕ31, ϕ32, ϕ33.
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[7] Öttinger, H.C. Stochastic Processes in Polymeric Fluids. Springer, (1996),
ISBN: 978-3-642-58290-5.

[8] Prieto, J.L., Stochastic particle level set simulations of buoyancy-driven
droplets in non-Newtonian fluids. J. Non-Newtonian Fluid Mech. (2015)
226:16–31.

[9] Prieto, J.L., Multi-scale Simulation of Newtonian and Non-Newtonian Multi-
phase Flows. In: Ibrahimbegovic, A. (Ed.). Computational Methods for
Solids and Fluids: Multiscale Analysis, Probability Aspects and Model Reduc-
tion. Springer, Computational Methods in Applied Sciences series, Vol. 41
(2016):379–398. ISBN: 978-3-319-27996-1.

[10] Ohtake, Y., Belyaev, A. and Seidel, H-P. 3D scattered data interpolation and
approximation with multilevel compactly supported RBFs. Graphical Models
(2005) 67:150–165.

[11] Wendland, H. Scattered Data Approximation. Cambridge University Press,
(2005), ISBN: 0521843359.

[12] Prieto, J.L., An RBF-reconstructed, polymer stress tensor for stochastic,
particle-based simulations of non-Newtonian, multiphase flows. J. Non-
Newtonian Fluid Mech. (2016) 227:90–99.

[13] Chenl, X. and Yang, V., Thickness-based adaptive mesh refinement methods
for multi-phase flow simulations with thin regions. J. Comput. Phys. (2014)
269:22–39.

[14] Yue, P., Feng, J.J., Liu, C. and Shen, J. Transient drop deformation upon
startup of shear in viscoelastic fluids. Phys. Fluids (2005) 17:123101.

[15] Aggarwal, N. and Sarkar, K. Effects of matrix viscoelasticity on viscous and
viscoelastic drop deformation in a shear flow. J. Fluid Mech. (2008) 601:63–84.

[16] Verhulst, K., Cardinaels, R., Moldenaers, P., Afkhami, S. and Renardy, Y.
Influence of viscoelasticity on drop deformation and orientation in shear flow.
Part 2: Dynamics. J. Non-Newtonian Fluid Mech. (2009) 156(1-2):44–57.

[17] Prieto, J.L., Numerical simulations of buoyancy-driven droplets in non-
Newtonian media using a variance-reduced, micro-macro, particle-level set

11

44



Juan Luis Prieto

method. In: Kádár, R. (Ed.). Annual Transactions of the Nordic Rheology So-
ciety (2017) 25:233–235.

[18] Prieto, J.L. and Carpio, J. Accurate and Efficient, Multiscale Simulations of
Newtonian and non-Newtonian Free-Surface Flows. In: Papadrakakis, M. and
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Abstract. Recent increasing application of advanced high-strength metals causes grow-
ing demand for accurate fracture prediction in metal forming simulation. However, since
the construction of objective and reliable fracture prediction method is generally difficult,
essential progress in fundamental theory that supports evolution of fracture prediction
framework is required.

In this study, a fracture prediction framework based on the bifurcation theory is pre-
sented. The main achievement is a novel material model based on stress-rate dependency
related with non-associate flow rule. This model is based on non-associated flow rule
with independent arbitrary higher-order yield function and plastic potential function for
any anisotropic materials. And this formulation is combined with the stress-rate depen-
dency plastic constitutive equation, which is known as Ito-Goya model, to construct a
generalized plastic constitutive model in which non-normality and non-associativity are
reasonably considered. Then, by adopting the three-dimensional bifurcation theory, which
is known as the 3D localized bifurcation theory, more accurate prediction of the initiation
of shear band is realized, leading to general and reliable construction of forming limit dia-
gram. Then, by using virtual material data, numerical simulation is carried out to exhibit
fracture limit diagram for demonstrating the generality and reliability of the proposed
methodology. In particular, the effect of stress-rate dependency on the bifurcation analy-
sis is investigated, and the order of the yield function is used to investigate the influence
on the forming limit prediction.
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1 INTRODUCTION

Recent increasing application of advanced high-strength metals causes growing demand
for accurate fracture prediction in metal forming simulation. However, since the construc-
tion of objective and reliable fracture prediction method is generally difficult, essential
progress in fundamental theory that supports evolution of fracture prediction framework
is required. For example, many fracture prediction criteria have been proposed based on
the concept of the ductile fracture model. This methodology uses criteria on the basis
of physical observation by subjective or intuitive way. This is the reason why there are
many criteria to predict the onset of fracture for various materials and forming types.
However, the mechanism of the onset of fracture should be constructed free from material
type and forming type to achieve accurate, physically reasonable and objective, and user-
friendly fracture prediction framework. To realize this aim, because fracture is a terminal
phenomena happens at the end of large plastic deformation, the authors considered that
reliable and useful fracture prediction scheme should be invented faithfully based on the
theory of plasticity.

For constructing reliable fracture prediction model, the bifurcation theory has been
adopted in this research, and a novel material model to conduct bifurcation analysis was
developed. Although the onset of localized bifurcation is not equivalent to the rapture
of a material, this phenomena is closely related with material fracture particularly in
sheet metal. Therefore, building an analytical methodology for fracture prediction based
on the bifurcation theory is meaningful. The bifurcation theory as a fracture prediction
method is advantageous in terms of generality and objectivity, but it is known that the
bifurcation analysis using conventional material models sometimes exhibit poor result.
General bifurcation theory was established by Hill [1] for plastic materials, followed by
many researches based on it. These were based on plane-stress condition and on normality
rule; under these assumptions, accurate prediction of the initiation of shear band, which
is considered as a sign of fracture, is almost impossible. Even with the S-R (Stören-Rice)
theory [2] in which stress-rate dependency is considered, there is still a restriction of plane-
stress condition. Thus, to conduct bifurcation analysis appropriately, a new framework
that can deal with three-dimensional bifurcation mode and abrupt change in stress field
should be created.

In this study, a material model based on stress-rate dependency related with non-
associate flow rule is presented. This model is based on non-associated flow rule with
arbitrary higher order yield function and plastic potential function for any anisotropic
materials [3][4]. And this formulation is combined with the stress-rate-dependency plas-
tic constitutive equation, which is known as the Ito-Goya plastic constitutive equation
[5], to construct a generalized plastic constitutive model in which non-normality and
non-associativity can be reasonably included. Then, by adopting the three-dimensional
bifurcation theory [5], more accurate prediction of the initiation of shear band is realized,
leading to general and reliable construction of forming limit diagram.

In this paper, the above-mentioned theoretical framework is described. Then, by using
virtual material data, numerical simulation is carried out to exhibit fracture limit diagram
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for demonstrating the effectiveness of the proposed methodology.

2 PROPOSED MODEL AND FRAMEWORK FOR FRACTURE PREDIC-
TION

2.1 Material model

First, the material model proposed by the authors[3][4], which plays an essence role in
this research, is described. This model is constructed to express deformation anisotropy
and yield stress anisotropy by using non-associated flow rule formulation with the number
of material constants same as that of Hill’s 1948 model. The following is the definition
of the yield function and the plastic potential function and the equivalent plastic strain
increment.

In the proposed model, we defined the yield function f(σ) as being equal to the equiv-
alent stress; namely, the expression is

f(σ) = σ̄ = 2my

√
3

2(F +G+H)

(
smy ·A · smy

)
. (1)

Here, the matrix A has the anisotropic parameters in its diagonal terms; and the pseudo-
vector smy is a set of deviatoric stress components to the power of my. This higher-order
function preserves the form of Hill’s quadratic yield function, that is, it contains the
same anisotropic parameters F,G,H,L,M , and N . This feature is important because
it is possible to construct a higher-order yield function by changing the power value my

without increasing the number of undetermined variables.
In our non-associated flow rule-based formulation, a function different from the yield

function is adopted as a plastic potential function, which provides the direction of the
plastic strain increment of the subsequent state of current stress. In this study, the
previously introduced function f(σ) is used as the yield function, and another func-
tion g(σ) that takes the same form as f(σ) but has different anisotropic parameters
F ∗, G∗, H∗, L∗,M∗, and N∗ is adopted as the plastic potential function. In this expres-
sion, asterisks are used to distinguish f(σ) from g(σ). For example, the anisotropy
matrix A is changed to A∗, in which the original parameters F,G,H,L,M , and N are
also changed to F ∗, G∗, H∗, L∗,M∗, and N∗, respectively. To express another order of the
function, the power variable mp is used instead of my. Thus, the plastic potential function
of the proposed model takes the form of

g(σ) = σ̄∗ = 2mp

√
3

2(F ∗ +G∗ +H∗)

(
smp ·A∗ · smp

)
. (2)

From the definition of the plastic work, an explicit expression for the equivalent plastic
strain increment is obtained as

dε̄p =
mpσ

∗mp

σ

√
2(F ∗ +G∗ +H∗)

3

(
D′∗

mp
· dep

)T

·
{
A∗ ·

(
D′∗

mp
· dep

)}
. (3)
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The main disadvantage of the non-associated flow rule models would be the increase in the
number of unknown variables. Usually, these variables can be specified from experiments
such as tensile tests; therefore, the use of the non-associated flow rule model could lead
to an increased burden of experiments and measurements. In addition, if a higher-order
function is required, the burden increases, making this approach impractical. Thus, to
enjoy the benefits of the non-associated flow rule model, an increase in the numbers of
unknown variables should be avoided, and this demand is considerably achieved with the
proposed model.

The plastic anisotropy characteristics of materials are classified into two categories;
namely, plastic flow stress anisotropy and plastic deformation anisotropy. The former
and latter should be incorporated in the yield function and the plastic potential function,
respectively. Consider cold-rolled metal sheets under a plane stress state. Under the plane
stress condition, the number of variables is halved. The anisotropic variables that must
be determined are F,G,H, and N and F ∗, G∗, H∗, and N∗. The former set expresses the
yield stress anisotropy and the latter set expresses the deformation anisotropy.

The parameters about stress anisotropy, F,G, and H, are determined by the yield
stresses that are obtained by tensile test in rolling direction, transverse direction, and
equibiaxial test. The parameters about deformation anisotropy, F ∗, G∗, H∗, and N∗, are
determined by the r-values in the direction of rolling, diagonal, and transverse. The
remaining parameter N is determined by optimization using the tensile test data in the
diagonal direction. Note that the diagonal yield stress, usually denoted as σ45, is not used
because the directions except for the rolling and transverse directions are not anisotropic
principal axis and it is difficult to separate with the shear component. The order of
the functions, my and mp, should be determined before these anisotropic parameters are
determined because these values specify the function type, and have own physical meaning
different from the anisotropic parameters.

2.2 Ito-Goya’s plastic constitutive model

Local bifurcation brings abrupt change on the current strain rate direction. Since
the classical J2 theory does not allow the rotation of the strain rate direction caused by
the subsequent stress rate direction, it is not appropriate to the bifurcation problems.
Therefore, in this study, Ito-Goya’s plastic constitutive equation [5] is applied, because
this model can take the dependency of the strain rate direction on the stress rate direction
into account. Ito-Goya’s plastic constitutive equation is represented as

dεp = Λ (nF : lp) |dσ′| [KCl + (1−KC)nN ] , (4)

where nN is an unit tensor called natural direction. This tensor indicates the direction
of the deviatoric stress rate that is identical to that of the plastic strain rate. The unit
tensor nF is the direction of the gradient of the yield function and l is the direction of
current deviatoric stress. In Eq. (4), the parameter KC , which takes a value between 0
and 1, shows the dependency of the direction of the strain rate on stress rate. When KC

is equal to 1, the Ito-Goya’s constitutive equation becomes the J2 flow theory.
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2.3 3D local bifurcation theory

Based on Hill’s general bifurcation theory, bifurcation occurs at when the following
condition is satisfied.

I[∆v] =

∫
∆L : ∆ṠdV = 0, (5)

where ∆v is velocity field, L and Ṡ are velocity gradient tensor and 1st Piola-Kichhoff
stress tensor rate, respectively. Ṡ can be represented by the Cauchy stress tensor as

Ṡ = D : ε̇+ ω · σ − σ · ω −L · σ = A : L, (6)

where ε̇, ω, D are strain rate tensor, spin tensor, and tangent stiffness tensor, respectively.
And A is a fourth rank tensor that relates the nominal stress rate and velocity gradient
tensor L. To characterize the bifurcation mode, the velocity gradient tensor is allowed
to be discontinuous when the velocity gradient tensor crosses the bifurcation border Γ .
L can be represented by the normal vector n on the bifurcation border and the local
deformation mode vector m that is normal to n as

L = m⊗ n. (7)

The mode vector m can be composed of two different vectors in the Γ plane; namely,
mSH and mSV are the vectors in horizontal and vertical direction, respectively. These
vectors are expressed with three angle parameters; ϕ, ψ and θ, as shown in Fig.1. Specific
expressions for these vectors are as follows.

n = (sinϕ cosψ, sinϕ sinψ, cosϕ) , (8)

mSH = (− sinϕ, cosψ, 0) , (9)

mSV = (cosϕ cosψ, cosϕ sinψ, − sinϕ) , (10)

m = mSH cos θ +mSV sin θ. (11)

Substituting Eq. (6) and (7) into (5), we have the following bifurcation criterion

I[m,n;σ] = hH[m,n;α]− σΣ[m,n;α], (12)

where the first and second term of this functional are described as

H[m,n;α] = m · n ·D(s) · n ·m, where D(s) ≡ D(s)/h, (13)

Σ[m,n;α] =
1

2
[m ·α ·m− n ·α · n] . (14)

In an elasto-plastic material subjected to large strain, ignoring elastic deformation, the
tangent stiffness tensor can be assumed to be proportional to the hardening rate h.

Then, the current stress is represented by

σ = σα, σ =
√
σ : σ, α = σ/σ, (15)
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where σ and α are the norm of the current stress tensor and normalization tensor which
gives stress ratios for each stress component, respectively.

Based on these relations, finally have the following local bifurcation criterion.
(σ
h

)
cr

= min

(
H[m,n;α]

Σ[m,n;α]

)
. (16)

The bifurcation criterion represented by Eq.(16) indicates that the local bifurcation, which
is specified by the mode vectors m and n that are based on the current stress ratio tensor
α, should be identified by the ratio σ/h that means the ratio of the stress level to the
work-hardening. Mechanically, stress σ means the intensity of fracture initiation, and the
hardening coefficient h means the material’s resistance against fracture. Therefore, the
formability represented in the σ/h plane is free from the strain-path-dependency that is
usually observed in a typical FLD (Forming Limit Diagram) represented in strain space.
Thus, because exhibiting forming limits on the σ/h plane is mechanically reasonable, this
new expression is called SHFLD.

The fracture limits in the SHFLD can show 3D local bifurcation limits. The probable
fracture would be lie between the lower bound represented by the S-R limit and the upper
bound represented by the 3D local bifurcation limit.

3 BIFURCATION ANALYSIS

By using the theoretical framework described in the previous section, numerical analy-
ses have been conducted to investigate the characteristics of the proposed method. In this
analysis, assuming plane-stress condition, an isotropic material was considered with the
following constants; F = G = H = F ∗ = G∗ = H∗ = 1, L = M = N = L∗ = M∗ = N∗ =
3, Young’s modulus = 210 GPa, Poisson’s ratio ν = 0.3, n = 0.2 and K = 5.0× 108 in
the n-power law for material hardening. The order of the yield function and the plastic
potential function, my and mp, were set to 1. Parameters used in this investigation were
theKC value in the Ito-Goya model, and a strain value εh which determines the evaluation
point of work-hardening coefficient included in the parameter Λ in Equation (4). In the
construction of the tangent stiffness tensor in Equation (13), the component of the origi-
nal tensor D was assumed linear in terms of hardening coefficient h; however, the tensor
D is not actually linear with h. In this study, instead of dealing with the tensor D as
nonlinear one, we assumed this as a linear tensor as for the hardening h for computational
simplicity and investigated the effect of the hardening term on the analysis.

Bifurcation analyses were conducted as follows. The minimum value of the functional
represented in the right-hand-side of Equation (16) was searched by changing the variables
included in the fracture mode vectors, m and n. The simulated annealing algorithm was
adopted in this optimization process. To calculate the yield function in the used equations,
a stress ratio α was used to control the stress condition; for example, α = 0 for uniaxial,
α = 1 for equi-biaxial stress condition. The obtained minimum values were used to
show the bifurcation initiation as the possible fracture onset in the fracture limit diagram
exhibited in the σ/h plane, as shown in the following figures.
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Figure 1: SHFLD for different n values.
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Figure 4: Yield surfaces for different my values.

In Figure 1, the effect of the n value on the fracture limit curve is shown. And in Figure
2, the effect of the work-hardening evaluation strain εh on the fracture limit curve is shown.
In both figures, there are two sets of curves that are calculated with different KC values
(0.1 and 0.2). From these figures, as a apparent tendency, work-hardening properties do
not affect the shape of curves and the only parameter that changes the curve is KC value.
In other words, the fracture limit curve exhibited on the SHFLD is almost independent
from the material’s hardening characteristics. This means the predicted limit is free from
the strain path. Furthermore, this results support our assumption that the hardening
property does not affect the minimum search and show that the linearization procedure
explained above is valid. Then, the influence of the KC value on fracture prediction is
confirmed. Generally, as the KC value increases, fracture limit deteriorates because of the
growing stress-rate dependency. As seen in these figures, the fracture limit lines descend
with the increased KC value. This means the conducted bifurcation analyses were valid
and shows physically reasonable tendency.
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In Figure 3, the effect of the order of the yield surface on the limit curve is investigated.
Since setting my = 2 brings same result with my = 1, the parameter my is varied as 1,
3 and 4. Clear descent of the curves can be observed around the plane-strain situation
(α = 0.5), on the other hand, no difference can be seen at tensile (α = 0) and equi-biaxial
(α = 1.0) conditions. This result is quite reasonable because the stress level drops at the
plane-strain condition, as shown in Figure 4, in the case of higher order yield function.

4 CONCLUSION

This paper has described the proposed fracture prediction framework that consists of
the anisotropic material model based on non-associated flow rule, the Ito-Goya’s stress-
rate dependent constitutive equation, and the 3D bifurcation theory. And a new concept
of fracture limit exhibition, which is called SHFLD, has been introduced. Numerical
investigations have been carried out with virtual material data to show the effectiveness of
the proposed method. Physically reasonable results were obtained from these analyses and
the authors have confirmed that the assumptions made in this study is valid. There are
many possible situations that have not tested yet; therefore, more numerical exploration
and mechanical considerations would be conducted.
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Abstract. This paper presents a new deep drawing process which applies compressive force on 
a flange for forming a deep cup effectively. This method uses a punch with a convex and a die, 
and optimum tool design was investigated using the finite element method (FEM) in order to 
prevent the formation of defects. First, the effect of the punch configuration was investigated. 
As a result, a cup with a uniform side wall thickness was obtained under the condition that the 
punch convex length was greater than the blank thickness and the punch top corner radius was 
appropriate. It was possible to obtain the deep cups by decreasing the clearance between the 
punch convex and the die. However, dimensional accuracy decreased with the decrease in the 
clearance. Based on these results, two-steps process using a backward punch was proposed, and 
deep cups having high dimensional accuracy was formed successfully by this method. 
 
 
1 INTRODUCTION 

Various products are manufactured from sheet metals in the industrial fields, such as for 
automotive components, household electronics, medical instruments and so on. Deep drawing 
is one of the sheet metal forming methods, and cup shaped products are obtained by this method 
[1]. Cup-shaped products are used for beverage cans, automobile body panels, motor or battery 
housings and so on. Although deep drawing is a very popular method, it is difficult to form a 
deep cup with a wide flange. In deep drawing, the material is drawn from a blank holder into a 
die by a punch press. This method breaks material easily because the material is stretched by 
tensional force. Forming a cup becomes difficult when the flange portion is expanded because 
the tensional force increases with an increase in frictional force on the flange. Therefore, deep 
cups are generally manufactured by multi stage process [2]. In addition, the deep drawn cup is 
welded to a holed flange when the flange portion is needed. 

Reduction of the tensional force is important for improvement of the forming limit in deep 
drawing. For example, the tensional force can be reduced by reducing the frictional force on 
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the flange portion. Lubrication is important for reducing the frictional force. Horikoshi et al. 
developed a method using a high-pressure water jet as lubricant [3]. Hatanaka et al. increased 
the forming limit by reducing the frictional force using a blank having a shape similar to a petal 
[4]. Other alternatives for the reduction of the tensional force would be methods which apply 
compressive force on the flange portion. In Maslennikov’s method, a deep cup was formed by 
repetitively compressing the flange using a rubber ring without the punch [5]. Hassan et al. 
performed a deep drawing with incremental flange compression using a tapered blank holder 
divided into four segments [6]. However, much time is wasted because the deep cup is formed 
by iterative compression. In a previous study, the authors developed a new deep drawing 
method applying compressive force on the flange [7]. In this method, a very deep cup was 
formed using simple tools in only one step. However, dimensional accuracy of the formed cup 
was low.  

This study investigated the effects of forming parameters, such as a punch configuration and 
clearance between the punch and die, by the finite element method (FEM) in order to optimize 
the tool design for improvement of the dimensional accuracy of the formed cup. First, the 
optimum punch configuration was investigated for suppression of forming defects. Next, the 
possibility of forming the deep cup was investigated by decreasing the clearance, and 
dimensional accuracy was evaluated. Based on these results, a two-step process was proposed 
for suppression of defects and improvement of the dimensional accuracy. 

2 DEEP DRAWING BY APPLYING COMPRESSIVE FORCE 
Figure 1 shows a schematic illustration of deep drawing by applying compressive force on 

the flange. Main tools are die and punch with convex, as shown in Fig. 1 (a). The blank is 
initially stretched into the die by the punch convex, as shown in Fig. 1 (b). After that, the flange 
portion of the blank starts to be compressed between the punch and the die, then the material in 
the flange portion is drawn into the die, as shown in Fig. 1 (c). Height of the cup could be 
controlled by changing the compression amount of the flange. In this processing method, 
products were formed only by compressive force. Therefore, it is considered that the forming 
limit is high compared to the general deep drawing method.  

In this method, the punch shape is important. For example, when the punch convex length 
Lp was too long, the blank ruptured during the initial stretching. On the other hand, the material 
flow could not be controlled when Lp was too short. The clearance c determines the side wall  
 

 
 

Figure 1: Schematic illustration of deep drawing applying compressive force on flange 
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thickness of the product. A very deep cup with thin side walls could be produced when c is set 
at a small value. 

3 ANALYSIS 
An elastic-plastic analysis was carried out by using commercial code ELFEN for FEM (Rock 

field Software Limited, Swansea). Figure 2 shows the schematic illustration of the model, and 
Table 1 shows the analysis conditions. The model is two dimensional with axisymmetry. The 
von Mises yield criterion was adopted, and the normality principle was applied to the flow rule. 
The constraints were determined by the penalty function method, and an explicit scheme was 
adopted. Three-node triangular elements with three integration points and adaptive meshing 
scheme were adopted. During the analysis, we changed punch shape, such as convex length Lp 
and top corner radius Rpt, and clearance c between the punch convex and die. c was aligned by 
changing the die diameter Dd while the punch convex diameter Dpc remained constant. The 
thicknesses of the side wall ts and the flange tf, and height h were measured for evaluating the 
dimensional accuracy of the formed cup as shown in Fig. 3. Aspect ratio  and compression 
ratio of the flange thickness f and was defined by the following expression. 
 

 

Figure 2: Schematic illustration of analytical model Figure 3: Evaluation of the formd cup 

Table 1: Analysis conditions 

Material Blank material Aluminum (A1050-O) 
Blank diameter D0 [mm] 30 
Blank thickness t0 [mm] 3.0 

Punch Diameter Dp [mm] 30 
Convex diameter Dpc [mm] 9.0 

Convex length Lp [mm] 1.0~5.0 
Base corner radius Rpb [mm] 0.2 
Top corner radius Rpt [mm] 0.2~1.0 

Die Diameter Dd [mm] 10~15 
Corner radius Rd [mm] 0.2 

Clearance c [mm] 0.5~3.0 
Friction coefficient  0.1 
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4 RESULTS AND DISCUSSION 

4.1 Effect of punch convex length 
In this experimental series, the effect of the punch convex length Lp was investigated in order 

to reveal the appropriate punch shape for forming the product without defects. The clearance c 
was set at 2.0 mm, and the punch top corner radius Rpt was set at 0.2 mm. Figure 4 shows the 
typical cups formed in this investigation. Side wall curved, and thickness ts was uneven and 
thicker than the clearance c when Lp was shorter than the blank thickness t0, as shown in Fig. 4 
(a). When Lp was equal to t0, ts was uniform and equal to c as shown in Fig. 4 (b). However, a 
dent was seen at the corner of the bottom due to local thinning during the initial stretching. The 
thickness at the dent decreased with an increase in Lp, and the blank ruptured when Lp was 5 
mm as shown in Fig. 4 (c).  
 

 
Figure 4: Typical configuration of formed cup (c=2.0 mm, Rpt=0.2 mm)  

 

 
Figure 5: Side wall thickness 

distribution  (c=2.0 mm, 
Rpt=0.2 mm, f=0.33) 

Figure 6: Material flow during flange compression  (c=2.0 mm, 
Rpt=0.2 mm) 
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Figure 5 shows the distribution of the side wall thickness ts/c when the flange compression 
ratio f was 0.33. ts/c increased toward the bottom of the cup when Lp was shorter than t0. The 
material flowed out from the clearance c1 between the punch convex corner and the die corner 
during the compression of the flange as shown in Fig. 6, and the material flow direction and ts 
are determined by c1. When Lp is shorter than t0, c1 is larger than c when the flange compression 
starts as shown in Fig. 6 (a), and c1 decreases to c while the punch convex approaches the die.  
When Lp is larger than t0, a cup with uniform distribution of ts was produced because c1 is equal 
to c during the flange compression, as shown in Fig. 6 (b). However, ts/c drastically decreases 
due to the local thinning at the corner of the cup when Lp is long compared to t0 as shown in 
Fig. 5. Thus, Lp should be t0 approximately for forming a cup with good dimensional accuracy.  

4.2 Effect of punch top corner radius 
Suppression of the dent was attempted by increasing the punch top corner radius Rpt. The 

clearance c was set at 2.0 mm, and the punch convex length Lp was set at 3.0 mm. Figure 7 
shows the cup bottom shape when Rpt was changed. The dent was suppressed under the 
condition that Rpt was over 0.6 mm by preventing the localized deformation at the portion near 
the corner of the punch top. However, the side wall thickness ts/c was large near the bottom in 
the case of Rpt=1.0 mm as shown in Fig. 8. When the flange compression starts, the clearance 
c1 between the punch convex corner and the die corner increases with an increase in Rpt as 
shown in Fig. 9. Therefore, the side wall thickened and curved just like the case that the punch 
convex length Lp was short. From this investigation, the appropriate Rpt is 0.6 mm for 
suppression of the dent. 

4.3 Production of deep cup by changing clearance 
Production of the deep cup was conducted by decreasing the clearance c. The punch convex 

length Lp and corner radius Rpt were set at 3.0 mm and 0.6 mm, respectively based on the above 
results. Maximum flange compression ratio f was set at 0.83 which reduces the flange 
thickness to 0.5 mm. Figure 10 shows the maximum aspect ratio α of the formed cup without 

 

 
Figure 7: Effect of punch top corner 

radius on bottom shape of 
cup (c=2.0 mm, Lp=3.0 mm) 

Figure 8: Effect of punch top corner 
radius Rpt on side wall 
thickness distribution 
(c=2.0 mm, Lp=3.0 mm, 
f=0.33) 

Figure 9: Material flow 
during flange 
compression (c=2.0 
mm, Lp=3.0 mm, 
Rpt=1.0 mm) 
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Figure 10: Aspect ratio and flange 

thickness variations with 
change in clearance (Lp=3.0 
mm, Rpt=0.6 mm) 

Figure 11: Thinning of side 
wall near flange 
(c=2.0 mm, Lp=3.0 
mm, Rpt=0.6 mm) 

Figure 12: Effect of clearance c 
on side wall thickness 
distribution (Lp=3.0 
mm, Rpt=0.6 mm, 
f=0.33) 

defects. α increases by thinning of the side wall and large compression of the flange. When c 
was 0.5 and 1.0 mm, it was possible to compress the flange at the maximum compression 
ratiof=0.83, and maximum α is 10.2 under the condition of c=0.5 mm in this investigation.  

When c was over 1.5 mm, local thinning occurred on the side wall near the flange when the 
flange thickness tf was small compared to c as shown in Fig. 11. This defect occurs because the 
thickness of the material, which flows from the flange portion, becomes gradually thinner than 
c with the flange compression. Therefore, f should be controlled under a certain value with c 
in order to suppress this local thinning.  

Figure 12 shows the side wall thickness distribution with the change of c. Thickness ts/c 
increased with a decrease in c, because the clearance c1 between the punch top corner and the 
die corner become large compared to c when c is small as shown in Fig. 9. Thus, it is possible 
to obtain the deep cup by decreasing c, although the dimensional accuracy is low. 

4.4 Two-step process for improving the dimension accuracy 
A two-step process was proposed in order to improve the dimensional accuracy of the 

formed cup as shown in Fig. 13. In first step, a fixed backward punch is used. The blank was 
stretched into the die with compression between the punch convex and the backward punch, as 
shown in Fig. 13 (a); this way, the local thinning at the punch top corner is suppressed by 
compression. After the first step, the backward punch was removed, and the flange was 
compressed as shown in Fig. 13 (b). Figure 14 shows the tool’s position after  the first step. 
Compression ratio of the thickness of the cup bottom portion b was controlled by changing the 
position of the backward punch, and b is calculated by the following expression. 
 

0

b0
b t

tt 


 (3) 

 

Here, t0 is the initial blank thickness, and tb is the bottom thickness of the cup as shown in Fig. 
3. The punch convex length Lp was set at 3.8 mm as total length of the blank thickness t0= 3.0 
mm, the die corner radius Rd= 0.2 mm and the punch top corner radius Rpt= 0.6 mm for 
preventing the change of the clearance c1 in Fig. 9 during the flange compression. 
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Figure13: Schematic illustration of the two-step process Figure 14: Tooling for the 

two-step process 

At first, appropriate b was investigated. Figure 15 shows the appearance of the cup after the 
first step using the backward punch under the condition that the clearance c was 1.0 mm. The 
material was stretched without the local thinning when the compression amount b was 
appropriate as shown in Fig. 15 (b). The local thinning appeared when b was too small as 
shown in Fig. 15 (a). Folding appeared due to the material flow from the cup bottom when b 
was too large as shown in Fig. 15 (c). Table 2 shows the formability in the first step using 
backward punch. Appropriate range of the bottom compression ratio is narrow when the 
clearance c was small, because the local thinning is easy to occur during the first step.  

Based on the above result, two-step process was conducted. Figure 16 shows the appearance 
of the formed cup by the two-step process using the backward punch, and Fig. 17 shows the 
side wall distribution compared with the one-step process without the backward punch. 
Appearance of the formed cup was ideal, and the side wall thickness was equal to c and 
completely uniform.

 

 
Figure 15: Effect of bottom compression ratio b on the cup shape after first step (c=1.0 mm) 

Table 2: Formability in first step using backward punch  

Clearance 
c [mm] 

Bottom compression ratio b
0.17 0.23 0.25 0.27 0.30 0.37 0.43 

0.5 
       

1.0        
:Success      :Dent       :Folding 
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Figure 16: Appearance of the cup formed by two-

step process (c=1.0 mm, Lp=3.8 mm, 
Rpt=0.6 mm, f=0.33)

Figure 17: Side wall thickness distribution of the cup 
formed by one-step and two-step processes 
with backward punch (c=1.0 mm, Lp=3.8 
mm, Rpt=0.6 mm, f=0.33) 

5 CONCLUSIONS 
- This paper presents a new deep drawing method that applies compressive force on the 

flange, and an investigation of the tool design was conducted using the FEM for 
improving the dimensional accuracy of the formed cups. 

- The proposed method is composed of initial stretching and flange compression. The 
main tools are a punch with convex and a die.  

- The punch convex length should be over the blank thickness for a cup with uniform 
side wall thickness. 

- Local thinning is prevented by increasing the punch top corner radius, but side wall 
thickness becomes uneven when the punch top corner radius is too large. 

- A deep cup could be obtained by decreasing the clearance between the punch convex 
and the die, and a maximum aspect ratio of 10.2 was obtained in this study. However, 
the dimensional accuracy decreases with a decrease in the clearance. 

- A two-step process using a backward punch was proposed for the improvement of the 
dimensional accuracy when the clearance is small. A cup with uniform side wall 
thickness was successfully formed by the two-step process. 
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Abstract. The present research carried out a series of analyses using the finite element method 
(FEM). The analyses investigated the effect of working condition on thickness variation after 
drawing a tube with initial thickness distribution.  As a result, it was notably revealed that 
application of dies with small half angle below 5 degrees was prominently effective for levelling 
the thickness variation. This effect was strengthen by employing tubes with thicker walls and 
larger diameters. Moreover, the mechanism of levelling the thickness variation was also 
examined. The small die angle affects the contact length at die approach, and the contact length 
at thinnest side becomes longer than that at the thickest side. The difference of the contact 
lengths equalizes the thicknesses of the thinnest and thickest sides. The analyses also predicted 
the thickness variation should almost be zero under an optimum condition. 

 
 
1 INTRODUCTION 

Drawing is a common and general process, which is placed in one of the last stages for 
manufacturing elongated products of bars, wires and tubes. Drawing process determines many 
characteristics of the products, including mechanical properties, hardness, residual stresses, 
surface integrities, straightness and so on. Although straightener, which is placed after drawing, 
improves straightness and alleviates residual stresses, these properties should previously be 
improved in the drawing process for stable manufacturing.  

There are many research works for drawing, assuming that drawing should be conducted in 
an axisymmetric manner. Some drawing methods were proposed for levelling residual stresses 
in bar drawing. Application of light reduction in area at the final drawing stage is very effective 
for levelling residual stresses [1]. This light reduction drawing is effective for copper, aluminum, 
high carbon steel as well as medium carbon steel [2]. Shape optimization of die was conducted 
and it was revealed that double-tapered die with light angle at the second taper was also 
effective for levelling residual stresses [3]. It was also pointed out that high reduction in 
thickness is effective for levelling residual stresses in tube drawing using plug [4].  

There are some research works on asymmetric phenomena in bar or tube drawing. One of 
the concerns is straightness. It was found that there are two ranges of reduction in area which 
effectively improve straightness in bar drawing [5]. Another concern is thickness variation in 
the case of tube drawing. The thickness variation derives from the tube fabrication processes. 
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Tubes and pipes are fabricated by either (1) electric resistance welding process (ERW process) 
or (2) seamless tube fabrication. The ERW process used a sheet metal which is rolled in advance, 
and the rolling process inevitably yields thickness variation. The seamless tube fabrication 
process is composed of piercing, mandrel-mill rolling and reducing-mill rolling, and these 
processes also yield thickness variation [6]. It has been desired that the drawing process should 
eliminate or reduce the thickness variation, which is yield by the tube fabrication processes. 
Foadian et al. proposed a unique drawing method using tilting die according to the thickness 
variation [7]. However, the amount and the direction of thickness variation in hoop direction 
should be known in advance for the arrangement of the die orientation.  

The present research conducts a series of analyses using the finite element method (FEM) 
for the investigation of the effect of working condition on thickness variation after drawing 
tubes with a plug.  In particular, this research focuses upon the effect of die angle, and tries to 
find the optimum condition. Furthermore, the mechanism of thickness change during drawing 
and the effects of the thickness reduction are also examined.  

2 ANALITICAL CONDITION FOR TUBE DRAWING WITH PLUG 

2.1 Drawing condition and FEM model 
A schematic illustration of drawing a tube with a plug is shown in Fig. 1 and the drawing 

condition is shown in Table 1. The die has an approach of straight tapered shape. The thickness 
variation is assumed to exist in the initial tube. The plug is a straight cylinder, which is 
supported by an elongated rod. The plug should freely and flexibly move in the orthogonal 
direction to the rod axial direction due to elastic deformation as it is actually longer than or 
equal to 10,000 mm in the industry.  

 
                                                                                              Table 1: Drawing condition  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
              Figure 1: Drawing a tube with a plug      

Die 

Type Rigid 
Die hole diameter dd /mm 30 
Die half angle /° 4.5 - 10 
Bearing length lb /mm 4 

Plug 

Type Elastic 
Plug diameter dp /mm 24.4 
Average clearance bw die & plug CL  

CL = (dd-dp)/2 /mm 2.8 

Tube 

Type Plastic 
Material of tube A1070 
Tube outer diameter dt /mm 31.5 
Tube thickness on average t0ave /mm 
Thickness reduction Rdt (%) 
      Rdt = (t0ave - CL)/ CL  

2.9 - 3.2 
3.5 -14.3 

 
Length of tube lt /mm 170 
Initial thickness variation 
t0=t0max-t0min /mm 0.2 

Division in FEM 

Axial 0.5 mm/div 

Radial 7div. 
(progressive) 

Hoop 15 deg./div 
Friction coefficient 0.07 

 

lr lb

t 0
m

in
t 0

m
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Plug
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d p d d

Die
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The FEM model is shown in Fig. 2. A half model is employed due to the symmetricity on 
the y-z plane. All nodes on the y-z plane are constrained in the x direction. The upper side of 
the tube cross section is thin and the lower side is thick, and the shape of the cross section is 
constant in the tube axial direction for the straight part of the tube which is denoted by [A] in 
Fig. 2(a). The supporting rod is much shorter than the actual one in the manufacturing line in 
the industry. The end face of the rod is constrained in the z direction, but free in y direction as 
shown in Fig. 2(a). Therefore, the plug freely moves in the y direction just as in the 
manufacturing line. The nodes of the tube are located between the nodes on the tools in the 
hoop direction so that the nodes should freely move in the hoop direction as shown in Fig. 2(c).  

The finite element analyses were conducted using the commercial code ELFEN, which was 
developed by Rockfield Software Limited, Swansea. An elastic-plastic analysis was carried out 
using an implicit scheme. A von Mises' yield criterion was adopted, and the normality principle 
was applied to the flow rule. Constraints were dealt with by the penalty function method. A 
hexahedral element was used because of the simplicity of the material deformation. The F-bar 
method was applied to the element for overcoming volumetric locking with simple 8-node 
hexahedral elements [8]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
        (a) Bird-eye view                                                   (b) Rear view                      (c) Magnified rear view  

Figure 2: FEM model for drawing 
 

2.2 Evaluation method of dawn tube 
The thickness variation ratio Ec was defined by the following equation, and the comparison 

was made between the values before and after drawing:  
 

 

(1) 

where tmax is the maximum tube thickness and tmin is the thinnest one.  
The change of thickness must be affected by stresses during drawing. Average stresses in 

the thickness direction was used for examination of the mechanism as the thickness change 
should appear as a result of the total deformation in the thickness direction. The average stresses 
 are calculated by the following equation:  

  2/minmax
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(2) 

where i is the node number, Ndr is the number of elements y direction, yi is the node position in 
y direction and i is the stress at node i. The nodes for calculation of average stress is shown in 
Fig. 3. 

The thickness variation ratio and the average stress are calculated during and after drawing. 
Figure 4 shows the definition of the position la after drawing and lp during drawing where the 
thickness variation or the average stress were evaluated. The vertical position of plug, which 
would dominates the thickness variation was evaluated according to the drawing stroke ld. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Nodes for calculation of average stress in the thickness direction 
 

 
 
 
 
 
 
 
 
 
 
 
                      (a) After drawing                                                               (b) During drawing 

Figure 4: Definition of positions for evaluating thickness variation and average stress in thickness 
 

 

3 RESULTS OF THE FINITE ELEMENT ANALYSIS 

3.1 Effect of die angle and thickness reduction on thickness variation 
Figure 5 shows the effect of die half angle on thickness variation after drawing. The thickness 

variation Ec changes from the head to the tail of the tube. The change of the thickness variation 
should be attributed to gradual position change of plug in vertical direction (y) during drawing. 
If a longer tube is used, the position of plug will become stable at the tail side, resulting in a 
stable thickness variation. The effect of die angle is prominent at the tail side, and the thickness 
variation Ec was effectively levelled when the die half angle  was lower than or equal to 5 
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degrees. 
Figure 6 shows the effect of initial average thickness on the thickness variation Ec after 

drawing for the low die half angle of 5 degrees. The effect of initial average thickness t0ave is 
prominent at the tail side, and the thickness variation Ec effectively decreased with the increase 
of initial average thickness t0ave. When the initial average thickness is larger than or equal to 
3.1mm, in other words, when average thickness reduction Rdt, which was defined inside Table 
1, is larger or equal to about 10 %, the thickness variation was effectively levelled.  

 
 
 
 
 
 
 
 
 
 
 
 
Figure 5: Effect of die angle on thickness                                Figure 6: Effect of average thickness on  
variation after drawing                                                              thickness variation after drawing 
 

3.2 Mechanism on decrease of thickness variation by applying the low die angle 
Figures 7 shows the mechanism of levelling thickness variation when the die half angle was 

low and the thickness reduction was large. There are three regions, (a), (b) and (c), which feature 
the change of thickness variation as follows: 

 
- Region (a): Gradual decrease of thickness variation.  

The inner surface does not contact with the plug surface. Compressive force must appear in 
the hoop direction of tube, and the hoop compressive stress should be higher at the thin side 
than that at the thick side. As a result, the thickness should increase more at the thin side than 
at the thick side, resulting in gradual decrease of thickness variation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Thickness variation change during drawing 
(die half angle  =4.5°, initial average thickness t0ave=3.2mm) 
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- Region (b): Rapid decrease of thickness variation.  
The thicker side of the inner surface contacts with the plug surface, but the thinner side does 

not. The thickness on the thicker side decreases as the tube wall is constrained between the plug 
and the die. On the other side, the thickness of the thinner side does not change much. As a 
result, the thickness variation rapidly decreases.  

 
- Region (c): Slight increase of variation ratio.  

The thicker and thin sides of the inner surface contacts with the plug surface. The tube wall 
at both of the thicker and thinner sides is constrained by the die and the plug. Therefore, the 
absolute value of the thickness variation, tmax-tmin does not change, while the thickness itself 
decreases at this region with decrease of the die diameter along z axis. As a result, the thickness 
variation ratio Ec slightly increases.  

 
Figure 8(a) shows deviatoric hoop stress which dominates plastic deformations in hoop 

direction. Deviatoric hoop stresses of the thickest and thinnest sides are compressive at the 
region (a), and that means the tube shrinks in the hoop direction. However, that of the thickest 
side changes to almost zero at the region (b), where the thickest side is constrained by the die 
and the plug. That means the thinnest side continues to shrink while the thickest stops to deform 
in the hoop direction at the region (b). 

Figure 8(b) shows deviatoric radial stress which dominates plastic deformation in thickness 
direction. Deviatoric radial stress of the thinnest side is larger than that of the thickest side at 
the region (a) with the drop of the value at the thickest side at [A]. That means thickness of the 
thinnest side increases more than that of the thickest side, resulting in the decrease of the 
thickness variation. The negative value of deviatoric radial stress of the thinnest side is smaller 
than that of the thickest side at the region (b), and that means thickness of the thickest side 
decreases more than that of the thinnest side, resulting in the decrease of the thickness variation. 
Therefore, both of the regions (a) and (b) have the effect of levelling thickness variation.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
                (a) In hoop direction                                                            (b) In radial direction 

 Figure 8: Distribution of deviatoric stresses 
                                          (die half angle  =4.5°, initial average thickness t0ave=3.2mm) 
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3.3 Effect of die angle on the mechanism of levelling thickness variation 
Figure 9 shows the effect of the die half angle on the distribution of thickness variation 

during drawing. The final thickness variation at the exit of the region (c) decreased with the 
decrease of the die half angle . The effect of the die angle is attributed to the length of the 
regions (a) and (b), which have the effect of levelling thickness variation as explained in Figs. 
7 and 8. The dies with low die half angles of 4.5 and 5 degrees have much longer regions of (a) 
and (b). Therefore, when the die half angle is less than or equal to 5 degrees, the thickness 
variation is effectively suppressed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 9: Effect of die angle on distribution of thickness variation during drawing 
(initial average thickness t0ave=3.2mm) 

 

3.4 Effect of initial average thickness on the mechanism of levelling thickness variation 
Figure 10 shows the effect of the initial average thickness on the distribution of thickness 

variation. The final thickness variation at the exit of the region (c) decreased with the increase 
of the initial average thickness t0ave. Even though the lengths of the regions (a) and (b) are not 
affected by t0ave, thickness variation ratio Ec decreased for large t0ave. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 10: Effect of initial thickness on distribution             Figure 11: Effect of initial thickness on vertical  
of thickness variation during drawing                                     force on plug ( = 5 degrees, plug fixed in y 
(die half angle  = 5 degrees, plug free in y)                           for constant thickness variation) 
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Figure 11 shows the effect of the initial average thickness t0ave on the vertical force Fy on 
plug in vertical direction (y). In this analysis, the plug was fixed in the vertical direction and 
the plug position in y direction  y was determined so that the thickness variation ratio Ec should 
be constant before and after drawing. The force Fy was defined as positive for the downward 
direction, and then the larger Fy of positive value means less thickness variation Ec should be 
realized when the plug is free in vertical direction (y). It is noteworthy that the vertical force Fy 
increased with increase of t0ave, and that means larger t0ave should lead to less thickness variation 
Ec when the plug is free in y.  

4 OPTIMUM CONDITION 

The previous sections revealed that the optimum conditions should be low half die angle  
less than or equal to 5 degrees and large thickness reduction Rdt larger than or equal to 10 %.  It 
would be also predicted that larger initial tube diameter would be desirable because it would 
enlarge the region (a), which has the effect of levelling thickness variation.  

FEM analyses was conducted for the verification under the condition in Table 2 for 
comparison between the optimum condition (B) and another condition (A). The FEM results 
are shown in Fig. 12 with a long and elastic plug, the end of which is constrained in 3 directions. 
The optimum condition certainly levelled the thickness variation to zero at the latter end of the 
tube.  

 
 Table 2: Optimum condition and its comparison 

 

Drawing condition (A) For comparison (B) Optimum 
Die Die half angle /° 10 5 

Tube 

Tube outer diameter dt /mm 31.5 33 
Average tube thickness t0ave /mm 

Average thickness reduction Rdt (%) 
2.9 
3.6 

3.2 
14.3 

(Initial thickness variation rate E0) (0.0690) (0.0625) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
             (a) Model with long and elastic plug                                               (b) Thickness variation 

 Figure 12: Thickness variation for optimum condition and for a compared condition 
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5 CONCLUSIONS 
- The present research carried out a series of analyses using the finite element method 

(FEM) for the investigation of the effect of working condition on thickness distribution 
after drawing tubes. 

- It was notably revealed that application of dies with low half die angle smaller than or 
equal to 5 degrees was prominently effective for levelling the thickness variation.  

- This effect was strengthen by employing tubes with thicker walls with thickness 
reduction larger than or equal to 10 %.  

- It was also suggested that the effect was also strengthen by employing tube with large 
diameter. 

- Moreover, the mechanism of levelling the thickness variation was also examined.  
- The FEM also predicted the thickness variation should almost be levelled to zero under 

the optimum condition.  
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Abstract. In sheet metal forming, we can recognize most deformed states by using in-plane 
biaxial deformation and can predict the occurrence of fracture by a forming limit diagram. 
However, in the case of axially symmetric tensile specimens, it is known that the magnitude of 
hydrostatic stress or stress triaxiality largely affects the occurrence of fracture. In this study, we 
investigated the history of hydrostatic stress and stress triaxiality by using an axially symmetric 
tapered tensile specimen. 

 
1 INTRODUCTION 

In sheet metal forming, it is very important to understand the forming limit for various in-
plane strain paths [1], [2]. A method to obtain a forming limit diagram was decided in the ISO 
standard [3]. However, the changes in hydrostatic stress depend on the strain path. It is known 
that the magnitude of hydrostatic stress largely affects the occurrence of fracture. Therefore, to 
evaluate the forming limit for each strain path more precisely, a new evaluation method 
considering hydrostatic stress would be beneficial. With a new method to test the uniaxial 
tension state, various hydrostatic stress states could be differentiated by using axially symmetric 
specimens of various shapes. However, few studies have investigated new methods. Thus, in 
this study, we used axially symmetric tapered tensile specimens to evaluate the forming limit 
of the uniaxial tension state in various hydrostatic stress states. 

Using finite element method (FEM) analyses, we investigated the hydrostatic stress-strain 
responses for elastic and plastic deformation of axially symmetric tapered tensile specimens 
during the uniaxial tensile test. By changing the taper angle, the possibility to control the 
hydrostatic stress in tensile tests was also examined.  

In the elastic deformation region, it was found that the hydrostatic stress could be controlled 
by changing the taper angle of the axially symmetrical specimen. The hydrostatic stress 
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increased with increasing taper angle. In the plastic deformation region, the hydrostatic stress 
at the center of the specimen varied nonlinearly. The nonlinear curve of hydrostatic stress and 
equivalent stress became larger by increasing the taper angle. Trials of varying taper angles 
were conducted to correlate the equivalent strain to the hydrostatic stress, and possible methods 
were considered to evaluate the forming limit at various hydrostatic stress states by using axial 
symmetry tapered specimens. 

 

2 THEORY 

2.1 Relationship between hydrostatic stress and pre-strain 
According to Ohji [4], hydrostatic stress does not affect occurrence of void; however, the 

stress largely affects the growth of a void. He also concluded that, as the strain grows, the 
void is stretched in the axial direction rather than in the radial direction. Therefore, it seems 
that hydrostatic stress after the occurrence of a void affects the growth of the void and the 
occurrence of fracture. Figure 1 shows the relationship between hydrostatic stress and pre-
strain. Here, we define   as stress and as strain.  

 

 
 
In Figure 1, we define 0 as pre-strain, v as equivalent strain when void is caused and f as 

fracture equivalent strain. Figure 1 (a) shows 0 is smaller than v. Figure 1 (b) shows 0 is 
larger than v. It appears that f in Figure 1 (b) is larger than f in Figure 1 (a), because 
hydrostatic stress affects the growth of the void. 

 

2.2 Relationship between stress triaxiality and equivalent strain 
According to Oyane [5], the relative density of the material of a specimen decreases due to 

void growth during deformation. He proposed criteria for ductile fracture based on the relative 
density of the material. To predict the forming limit, Takuda [6] proposed criteria for ductile 
fracture using the following equation, which is used along with finite element analysis.  
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In equation (1), the integral value I is composed of equivalent strain and stress triaxiality. 

Stress triaxiality is given by the following equation in the case of σ1>σ2=σ3 by assuming uniaxial 
tensile test. We can judge fracture when the integral value I becomes 1. The stress triaxiality in 
equation (2) is given in equation (3) by assuming σ2=σ3=0, i.e., using non-tapered specimen, or 
equation (4) by assuming  32 , i.e., using tapered specimen. 
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Figure 2 shows relationship between stress triaxiality and equivalent strain. 
 

 
 
In Figure 2, the gray area in Figure 2 (b) is larger than that in (a). Therefore, fb is larger than 

fa.  
 

2.3 Relation between stress triaxiality and pre-strain 
Similarly to hydrostatic stress, stress triaxiality affects the growth of a void. Therefore, we 

can rewrite equation 1) as follows by changing the integration range when the void is caused 
by v. 
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Figure 3 shows the relationship between equations 3), 4) and 5). 
 

 
 
Figure 2 shows that fb is larger than fa. 

 

3 EXPERIMENT 

3.1 Experimental conditions 
An experiment was conducted with axially symmetric tensile specimens made of aluminum 

(A1070). Figure 4 shows the specimen shape before the axial tensile test to give pre-strain. 
 

 
 
The axial tensile test is conducted with the specimen in Figure 4. Figure 5 shows the load- 

stroke curve. 
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In Figure 5, the void caused at stroke = 25 mm is due to necking. Therefore, from the result 

of the tensile test, the specimen is pre-strained when the stroke is 25 mm. The value of the pre-
strain is 0.05413. Furthermore, the specimen shape is changed by additional process. Figure 6 
shows the specimen shapes after processing. Here, θ is tapered angle in Figure 6 (b). 

 

 
 

3.2 Experimental results 
Figure 7 shows the fracture surfaces after the axial tensile test with specimen in Figure 6. 
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In Figure 7, all surfaces are cup and cup. Therefore, it seems that the void is stretched in the 
axial direction in the tensile test. The fracture point is at the center of the specimen in Figure 7 
(b), where θ=1° and Figure 7 (c), where θ=2°. However, the fracture point is not at the center 
of the specimen in Figure 7 (a), where θ=0°. The fracture equivalent strain can be calculated by 
the following equation. Here, we define A0 as cross-sectional area before tensile test and A as 
it after tensile test. 

 

 ln' eq 








0A
A  (6) 

 
The fracture equivalent strains are listed in Table 1. 
 

 
 

4 ANALYSIS 

4.1 Analytical condition 
The analysis is conducted by simfact forming. Figure 9 shows the analysis model and Table 

2 shows the analysis condition. 
 

  
 
In Figure 8, the 1/8 symmetry model is used to reduce the analytical time and expense. 

However, the tensile part has a fine mesh in order to observe the area in detail. In Table 2, the 
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mechanical properties were calculated using a tensile test. In the analysis of the axial tensile 
test, the data output interval was 0.005 mm, and the equivalent strain at the center of the 
specimen was 3.0. 

 

4.2 Analytical results 
Figure 9 shows the relationship between equivalent strain and hydrostatic stress or stress 

triaxiality. 
 

 
 
 In Figure 9, hydrostatic stress and stress triaxiality increase with increasing taper angle. 

Therefore, the stress states at the center of the specimen are changed by the taper angle. 
Furthermore, in the plastic deformation region, hydrostatic stress at the center of the specimen 
varies nonlinearly. The nonlinear curve of hydrostatic stress and equivalent stress becomes 
larger with increasing taper angle. 

 

5 CONCLUSIONS 
- In the experiment, unlike the theory, the fracture equivalent strain of a specimen with pre-

strain is smaller than it is without pre-strain. 
- The work-hardening exponent of the material in this study is very small. Therefore, the 

uniform elongation region is very short in the tensile test. Essentially, the material needs to 
have uniform deformation in the length region. Furthermore, the void grows too large 
because the stroke in the tensile test is excessive for pre-straining a specimen. Detailed 
observation of the specimen cross section during the tensile test is required. 

- In the analysis, the results suggest a possible method to evaluate the forming limit at various 
hydrostatic stress states by using axially symmetry tapered specimens. 
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Abstract. Duplex embossed sheet metals are very useful due to their high rigidity.
Furthermore, it is very interesting that the periodic configurations given by embossing brings
a new macroscopic feature into a sheet metal. In this study, in order to confirm the effect of
only sub-macroscopic structure, which was the configuration given to sheet metal by duplex
embossing process, the material was set to isotropy, and FEM simulation was carried out to
investigate about the deformation behavior of flange portion during the early stage in deep
drawing of duplex embossed sheet.

1 INTRODUCTION
In the recent decades, the energy conservation is more and more demanded. And around

this opinion, many strategies of lightweight were proposed. One of the representatives is
using the thinner sheet metal. However, the rigidity and forming ability of thinner sheet metal
become poor when compare with the thick sheet metal. To overcome this problem, embossing
process was proposed due to their high rigidity.

As the sheet metal subjected to duplex embossing process which the sheet metal subjected
to embossing process on both sides. The cross section changed to be wave, and the sheet
metal will be given a periodic convex-concave structure. It is considered that there will have a
new anisotropy depends on this sub-macroscopic structure. Until now, uniaxial tensile
properties have been investigated, and peculiar features of duplex embossed sheet have been
reported [1]-[3]. One of the features is the low Lankford value (r-value). According to the
classical theory, this means that deep drawability could become lower in embossed sheets
than that in a plane sheet. However, there is only a few investigations about the deep
drawability of embossed sheet metal [4]. And in some cases, contrary experimental results
have been reported [5].

80



Wuyang.Liu, Takashi. Iizuka

2

Here, in this present study, in order to confirm what happens at flange portion during early
stage in deep drawing deformation of duplex embossed sheet, simulation of deep drawing test
was conducted by FEM analysis carried out using SIMUFACT 13.0. In this FEM analysis,
1/4 symmetry model was used to reduce the analytical time and expense. And in order to
confirm the effect of sub-macro structure on flange deformation behavior, which was the
configuration given to sheet metal by duplex embossing process, the material was set to
isotropy. The punch force-stroke response in the deep drawing deformation, the average
strains in both radial and circumferential directions, the equivalent strain increment
distribution map are evaluated numerically at early stage in deep drawing. From these results,
the flange deformation behavior was investigated. And also it affirms the results of previous
experimental results[6].

2 DUPLEX EMBOSSING PROCESS
Figure 1 shows the schematic of analytical models of duplex embossing process in this

study. As shown in this figure, about the duplex embossing process, only upper die is
movable in vertical direction. The embossing height h is defined as the half of upper die
stroke. Moreover, it is considered that the mechanical characteristics of regular sheet metal
depend on the aggregate structure caused by rolling process. And as it subjected to duplex
embossing process, the apparent mechanical characteristics of duplex embossed sheet metal
changed to depend on this convex-concave structure. So, it is necessary to define the
relationship between the rolling direction and embossing direction. Firstly, about the
embossing direction, the direction which the same orientation (convex or concave) became
linear was defined as embossing angle is 0°. The angle between this embossing direction and
the rolling direction was defined as γ. Furthermore, the distance between the centers of
adjacent convex and concave bosses was defined as 3mm.

Figure 1 : Duplex embossing process models

Figure 2 : Definition of the relationship between embossing direction
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3 ANALYSIS

3.1 Analytical condition
In fact, the work hardening is existed in the duplex embossed sheet metal caused by this process.

So, in order to as far as possible simulate the deep drawing test using duplex embossed sheet
accurately. The analysis of duplex embossing process is also essential. Here, in this present study, the
analysis of duplex embossing process was conducted firstly. Moreover, in this FEM analysis, 1/4
symmetry model was used to reduce the analytical time and expense. Figure 3 shows about
the 1/4 specimen used in this FEM analysis of deep drawing test.

Figure 3: 1/4 specimen model (a) Plane sheet (b) Duplex embossed sheet

Analytical conditions are listed in Table 1. The diameter of the circular specimen (before
duplex embossing process) was set to be 60mm. And the material of specimen was set to be
Aluminum alloy. The specific information of this material (Young modulus, n-value, F-value)
were also listed in this table. About the γ, in this study, the material was set to isotropy, it
can be approximately considered that it is similar toγ=0°. The embossing height h was 1mm,
and the thickness of the sheet metal before duplex embossing process was 1.0mm.
Furthermore, the mesh size of specimen model was set to 0.5.

Next, Figure 4 introduces the flange deformation measurement method in this study. The
measured portions in this analysis were set to 26mm and 28mm from the center of specimen
respectively. Because the material was set to be isotropy in this present study. It is considered
that there only have one kind of anisotropy which depends on the periodic embossing
structure. So in the circumferential direction, the measure points were established from
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embossing direction is 0° to 45° by 15° interval of 1/8 specimen as the symmetric of
embossing structure.

About the deep drawing test set-up, here, the flat head punch was used to conduct the test,
and diameter and shoulder radius of it was 29 mm and 3mm respectively. Moreover, due to
the apparent thickness of plane sheet and duplex embossed sheet metal (distance between
convex and concave bosses) is different from each other. Focus on this issue, in this analysis,
the die was set the same as the experiment which was conducted previously. In case of plane
sheet, the inner diameter of die was 31.5 mm. And in case of duplex embossed sheet, the inner
diameter of die was changed to be 33.5 mm. About the conditions of deep drawing test, the
blank holder force was set to be 3kN, and the friction coefficient was set to 0, it can be
considered to similar with perfect lubricated state.

3.2 Calculation method
In this present study, the strain component in the radial and circumferential direction were

calculated in order to evaluated the flange deformation behavior. First, about the radial
direction strain, it was calculated from average variations of the length of two measurement
points in the same embossing direction. On the other hand, about the circumferential direction
strain component, it was calculated from the average circumferential length with radius rave of
the center point of the two measurement points in the same embossing direction. The rave can
be calculated by the following equation.

12
)(2 9075604530150 rrrrrrrrave


 1)

Where the r denotes the average radius of the corresponding embossing direction.
Because it is considered that the embossed sheet metal is 1/8 symmetry in case of the material
is isotropy. So, rave could be calculated by the following equation simply.
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 2)

After the calculation of rave, the average circumferential length L could be calculated easily
by the following equation.

ave2 rL π 3)
In the end, this average length was used to calculate the average circumferential strain.

4 RESULTS
Figure 5 shows the punch force-stroke curves in deep drawing test of plane sheet and

duplex embossed sheet. Comparing these two curves, it can be easily found that the punch
force of embossed sheet in case of h=1mm is smaller than that of plane sheet no matter how
much the punch stroke is. It is considered that the deep drawing deformation resistance of
embossed sheet is smaller than that of plane sheet.

Figure 6 shows the variations of center points coordinate of the two measurement points in
case of different embossing directions and punch stroke. From these figures, it can be found
that at the beginning of the analysis of deep drawing test (stroke=0~4mm), the positions of
these center points are almost the same with each others. And from the punch stroke is 6mm,
it was confirmed that the moving toward center speed of plane sheet is faster than that of
duplex embossed sheet metal. It is considered that in the radial direction, the duplex embossed
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sheet metal can be deformed more easily than plane sheet because of the existence of rotatable
portion. Next, from the punch stroke is 16mm, it can be found that the difference of the center
points positions coordinate between plane sheet and duplex embossed sheet started to become
smaller as punch stroke is increased. It can be thought that the tendency can be reversed in the
end of deep drawing test. In other words, about the cup height, duplex embossed sheet will be
smaller than that of plane sheet.

Figure 5: Force-Stroke curves of deep drawing test of plane sheet and duplex embossed sheet

Figure 6: Variations of the center points coordinate of two measurement points in case of different embossing
directions and punch stroke
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Figure 7 shows the variations of strain distribution of the flange portion deformation in
deep drawing. Figure 7 (a) is the relationship between radial direction logarithmic strain and
punch stroke. From this result, it can be found that about the radial direction logarithmic
strain, plane sheet is the same as duplex embossed sheet metal at the beginning of deep
drawing deformation (stroke=0~2mm). Next, as the punch stroke is developed, the radial
direction logarithmic strain of them were increased altogether. Moreover, the embossed sheet
is smaller than that of plane sheet. And then there have a tendency that this strain of plane
sheet will be decreased as the stroke increased and become smaller than that of duplex
embossed sheet.

Figure 7 (b) shows the relationship between circumferential and radial direction
logarithmic. Here, in this present analysis, it can be found that about the plane sheet, these
two kinds of strain changed in the same degree. It is considered that the strain ratio is
approximated to be -1. And as the deep drawing test is developed, it final stage of deep
drawing, the strain ratio become larger. It it thought that the thickness of flange portion will
be increased. On the other hand, about the duplex embossed sheet, it could be found that the
slope of the curve is bigger than that of plane sheet. It can be considered that the thickness
increase of duplex embossed sheet is larger than that of plane sheet. Therefore, it is also
considered to be the reason which lead to the cup heights are different with each other.

Figure 7: Variations of strain distribution (a) Relationship between radius direction logarithmic strain and punch
stroke; (b) Relationship between circumferential and radius direction logarithmic

Finally, Figure 8 shows the equivalent strain increment distribution maps in case of
different punch stroke. Figure 8(a) is the sequence of deformation of plane sheet. Paying
attention to the flange portion, it can be found that the flange portion of plane sheet deformed
uniformly as the punch stroke is increased. And the equivalent strain increment became
maximum at the shoulder portion of die. On the other hands, Figure 8(b) is the distribution
maps of duplex embossed sheet. It can be confirmed that at the flange portion of duple
embossed sheet, the portion near the place where the embossing direction is 0° become the
largest. It can be considered that it is derived from the anisotropy depend on embossing
distribution. And because of the existence of rotatble part, the variation is not uniform, the
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portion between bosses is the largest relatively. And at the last half of the deep drawing, the
difference depend on embossing direction became not very obvious.

Figure 8: Variations of equivalent strain increment in case of different punch stroke
(a) Plane sheet ; (b) Duplex embossed sheet

5 CONCLUSIONS
In the present study, the flange portion deformation behavior of duplex embossed sheet

metal was investigated numerically. The results obtained from this study are summarized as
following.

- The deep drawing deformation resistance of embossed sheet (h=1mm) is smaller than
that of plane sheet.

- About the moving toward center of the flange portion in deep drawing, when the
punch stroke is increased, plane sheet is larger than that of duplex embossed sheet.
And in the second half of the deep drawing, the embossed sheet start to be larger than
that of plane.

- As punch stroke is developed, the radial direction logarithmic strain of both of plane
sheet and duplex embossed sheet increased. Furthermore, duplex embossed sheet is
smaller than that of plane sheet. However, in the second half of the deep drawing, the
strain of plane sheet started to decrease.

- Strain ratio of duplex embossed sheet is larger than that of plane, it is considered that
the apparent thickness increase of flange portion in deep drawing deformation of
duplex embossed sheet is larger than that of plane sheet.

- About the equivalent strain increment distribution, duplex embossed sheet is different
from that of plane sheet, it was deformed not uniformly, and become the largest as at
the embossing direction is 0°.
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Abstract. The aim is to determine the optimized semi-finished workpiece geometry to
its given target geometry after a forming process. Hereby, a novel approach for inverse
form finding, a type of a shape optimization, is applied to a notch stamping process. As a
special feature, h-adaptive mesh refinement is considered within the iteratively performed
forming simulation.

1 INTRODUCTION

Metal forming processes are classified into sheet forming with plane stress conditions
and bulk metal forming with three dimensional stress conditions. Recently a new class
of forming process called Sheet-Bulk Metal Forming (SBMF) has been introduced by
[9]. SBMF combines three dimensional plastic flow with sheet metal forming operations,
whereby the focus is placed on functional integration. It gains to form local shape elements
normal to the sheet plane with a magnitude similar to the original sheet thickness. This
leads to even higher requirements in regards to shape optimization. Numerical shape
optimization is beneficial to reduce experimental costs, since trail-and-error methods and
subsequent finishing operation steps, respectively, are minimized. In this contribution,
shape optimization is applied by means of an inverse form finding strategy.

According to Chenot et. al. [4], the forming simulation, with quantities prescribed in
the material configuration, is defined as a direct problem. Whereby shape optimization is
referred to an inverse problem, which seeks to determine the optimal workpiece geometry
based on the prescribed forming process and a target geometry.

For this purpose, a parameter-free (node-based), form finding algorithm is introduced
by Landkammer and Steinmann [8]. It includes nodal positions as design variables and
an objective function as minimization criterion. An iterative optimization strategy to
update the workpiece geometry is implemented in a non-invasive fashion. This implicates
independence of the algorithm to the constitutive behavior and the simulation tool. The

1
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Forming simulation
as a direct problem

Shape optimization
as an inverse problem∑ 1

2�d
D�22 → min

dDDD

Updated

Material configuration

Original

Target

Spatial configuration

Computed

Figure 1: Inverse shape optimization procedure with material configuration, target spatial
configuration and the computed spatial configuration

procedure is realized via subroutines, which translate information between the forming
simulation (direct problem) and the optimization algorithm (indirect problem), see Fig. 1.

Shape optimization suffers from the contradiction to be efficient but accurate in same
time. Due to large deformations within the forming simulation, a fine mesh is required in
order to avoid serve mesh distortions of the finite element (FE) mesh. Adaptive strategies
are required to decrease computational costs and minimize the discretization error. Here,
an h-adaptive strategy is applied to locally refine the mesh during the simulation. It leads
to a refinement of highly exposed regions and an efficient mesh is generated.

The implementation of adaptive remeshing techniques requires detailed investigation
due to the applied node-based optimization strategy. The challenge of the inverse op-
timization process with h-adaptivity is caused by newly emerging nodes and elements
within the model. This issue can be mastered by adjusting the subroutines, which trans-
lates information between the forming simulation (direct problem) and the optimization
algorithm (inverse problem).

Due to the advantages of h-adaptivity, it is possible to optimize more complex geome-
tries and to cope with large plastic strains. It even enables to include penetration of a
sharp edge tool into the forming simulation.

The paper is structured as follows: In the sequel, basics of nonlinear continuum me-
chanics are introduced in Sec. 2 and FE discretization clarification is outlined in Sec. 3.
The detailed algorithm for inverse form finding, formulated as an optimization problem,
follows in Sec. 4. Afterwards, h-adaptive mesh refinement is described in Sec. 5. A exam-
ple in Sec. 6, is presented to demonstrate the application of the mesh adaptivity within
inverse form finding. Finally, Sec. 7 recaps the findings.

2 BASICS OF NONLINEAR CONTINUUM MECHANICS

A general description of nonlinear continuum mechanics is required for a discussion
regarding inverse shape optimization and further the description of the h-adaptive refine-
ment strategy. More detailed description of nonlinear continuum mechanics can be found
in [1] among others.

2

89



M. CASPARI, P. LANDKAMMER AND P. STEINMANN

2.1 Kinematics

Fig. 2 depicts a continuous setting of the material configuration B0 at time t = 0 and
the spatial configuration Bt at time t > 0. A placement of a physical body into the
Euclidean space E3 with Ei ≡ ei and i = 1, 2, 3 is assumed.

x = ϕ(X, t)

u = x−X

E3 ≡ e3

E2 ≡ e2
E1 ≡ e1

B0 Bt

X x

Figure 2: Kinematics of a nonlinear continuum with the undeformed (material) and the
deformed (spatial) configuration

The deformation map ϕ maps positions X of a material configuration B0 to positions
x of a spatial (deformed) configuration Bt:

x = ϕ(X, t) : B0 → Bt (1)

The displacement field u occurs to the difference of the position vectors at spatial and
material configurations:

u(X, t) = ϕ(X, t)−X (2)

The gradient F of the deformation map with respect to material coordinates renders a
linear map from the material tangent space TB0 to the spatial tangent space TBt:

F =
∂ϕ(X)

∂X
: TB0 → TBt (3)

2.2 Weak Piola formulation

In the following, the body forces are neglected due to its minor influence in contrast
to forming forces.

An equilibrium in the Piola formulation is given by the boundary value problem with
Dirichlet and Neumann boundary conditions (Eq. 5):

DivP = 0 (4)

ϕ = ϕ̄ on ∂Bϕ
0 and P ·N = T on ∂BT

0 (5)

The balance equation (Eq. 4), formulated with the first Piola-Kirchhoff stress P , results
from the balance of linear momentum, including the divergence operator with respect to
material coordinates.

3
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This system of equations is solved by an application of the principle of virtual work.
Therefore, virtual displacements δϕ are introduced. With corresponding initial condi-
tions, the weak formulation is written as:

∫

B0

P : δFdV =

∫

∂Bt
0

δϕ · TdA ∀δϕ admissible (6)

3 FINITE ELEMENT DISCRETIZATION

Discretization is required to solve the weak formulation in Eq. 6 for a continuum body
B. The body itself and likewise the field values are approximated. Gauss-integration is
typically performed for solving integrals over a finite element. Linearization enables the
use of efficient iterative solution methods for the system of nonlinear equations.

3.1 Discretization of a body into finite elements

The body B is discretized into nelem elements:

B0 ≈ Bh
0 =

nelem⋃
e=1

Be
0 and Bt ≈ Bh

t =

nelem⋃
e=1

Be
t (7)

Accordingly, coordinates of material and spatial configurations are prescribed as dis-
cretized values through:

Xh =

nelem⋃
e=1

Xe and xh =

nelem⋃
e=1

xe (8)

Within the isoparametric concept, all kinematic quantities are approximated by the
same shape functions N i(ξ) for each element node (i = 1 . . . nen), which are defined
on a reference element B� with isoparametric coordinates ξ ∈ [−1, 1]ndim . The element
coordinates Xe and xe depend on the nodal positions X i and xi:

Xe(ξ) =
nen∑
i=1

X iN i(ξ) and xe(ξ) =
nen∑
i=1

xiN i(ξ) (9)

The deformation map and further the deformation gradient follows the discretization with:

xh = ϕ(Xh, t) : Bh
0 → Bh

t and F h =
∂ϕ(Xh)

∂Xh
: TBh

0 → TBh
t (10)

The Jacobians

J e(ξ) =
nen∑
i=1

X i ⊗ ∂N i(ξ)

∂ξ
and je(ξ) =

nen∑
i=1

xi ⊗ ∂N i(ξ)

∂ξ
(11)

4
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are used for the mapping from the reference element to the element of spatial or material
configuration. The deformation gradient F e yields:

F e(ξ) = je(ξ) · J e(ξ)−1 =

[
nen∑
i=1

xi ⊗ ∂N i(ξ)

∂ξ

]
·

[
nen∑
i=1

X i ⊗ ∂N i(ξ)

∂ξ

]−1

(12)

Relations between an element in material, spatial and reference configuration are depicted
in Fig. 3.

E2

E1

e2

e1
ξ2

ξ1

ϕe(X)

F e(ξ)

Xe(ξ),Je(ξ)
B�

Be
0 Be

t

xe(ξ), je(ξ)
Geometry

Figure 3: Mapping of a reference element to the material and the spatial configuration.

3.2 Discretization and linearization of the weak formulation

Neglecting dynamics, the weak formulation (Eq. 6) contains internal and external vir-
tual work. The prescribed discretization and linearization is required and demonstrated
exemplary for the internal virtual work.

δW0 int =

∫

B0

[
F T · ∂ δϕ

∂X

]sym
: SdV (13)

≈ δW h
0 int = δϕI

nelem

A
e=1

∫

Be
0

F · S · ∂N
i

∂X
dV e = δϕI · f I

int

Hereby δϕ denotes the virtual displacement, discretized in the same way as the deforma-
tion map (Eq. 9), which is referred to as the Galerkin Method. The same procedure for
external virtual work results in an external force vector:

f I
ext =

nelem

A
e=1

∫

δBe
0

N iT̄ dAe (14)

This leads further to a system of equations which is represented node wise as:

rI = f I
int − f I

ext = 0 ∀I = 1, ..., nnodes (15)

The residuum rI has to be solved for each node I. For a solution, the linearization of this
equation is needed. It consequently follows for one element:

δϕeT ·Ke ·∆ϕe = δϕeT · f e (16)

5
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4 INVERSE FORM FINDING

A node-based approach is pursued to solve the inverse form finding problem. There-
fore, coordinates of selected design nodes serve as design variables for the optimization
algorithm, introduced by [8].

The objective function

δ(XD,xD
tg) =

ndsgn∑
D=1

δD
(
xD
tg,ϕ(X

D)
)

(17)

summarizing the local squared error

δD =
1

2
dDT · dD (18)

with nodal differences
dD = xD

tg −ϕ(XD) (19)

between the current spatial configuration ϕ(XD) and the prescribed target positions xD
tg

determined at each design node D = 1, . . . , ndsgn. The positions are stored in the column

vectors XD =
[
X1� · · ·Xndsgn�

]�
and xD =

[
x1� · · ·xndsgn�

]�
.

The optimization strategy results in a minimization of the objective function, which is
satisfied at the optimal configuration:

∂δ(XD,xD
tg)

∂XD

∣∣∣∣
XD

opt

!
= 0 (20)

In use of the approximation by Taylor series, Eq. 20 reads:

∂δ
(
XD,xD

tg

)

∂XD
+

∂2δ
(
XD,xD

tg

)

∂XD∂XD
·
[
XD

opt −XD
]

!
= 0 , (21)

The Taylor series is terminated after the first term. This leads to an iteration step as:

XD
k+1 = XD

k −
∂2δ

(
XD,xD

tg

)

∂XD∂XD

−1

·
∂δ

(
XD,xD

tg

)

∂XD
(22)

Motivated by the mentioned node-wise optimization approach, Eq. 22 is written as an
iteration step for each design node as:

XD
k+1 = XD

k − α
∂2δD

(
XD,xh

tg

)

∂XD∂XD

−1

·
∂δD

(
XD,xh

tg

)

∂XD
(23)

This iteration includes a linesearch parameter α, controlled by Armijo-Backtracking [7],
which ensures a suited update without serve mesh distortions. A complete update step is
now written as:

XD
k+1 = XD

k − α F̃
D−1

· dD (24)

6
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Table 1: The node-based optimization problem for inverse form finding [7].

Objective funct.: δ
(
XD,xD

tg

)
=

∑ndesign

D=1
1
2
‖dD‖22

Design variables: Material positions XD

of the design nodes

State equation: Motion ϕ : XD ∈ Bh
0 → xD ∈ Bh

t

Yet, the earlier introduced discretized deformation gradient in Eq. 10 performs the
mapping of the difference vectors from the spatial to the material configuration as a
smoothed gradient F̃ . Eq. 12 introduces an element-wise deformation gradient which is

evaluated on the integration points. To obtain the smoothed deformation gradient F̃
D

for a certain node, all adjacent elements are evaluated and smoothing techniques are
applied to map quantities from integration points to element nodes. The used recovery
technique is the widespread global Least-Squares (L2−) Smoothing proposed by Hinton
and Campbell [6].

Preprocessing

Solver

Material configuration Bh
0

Forming simulation

Spatial configuration Bh
t

Postprocessing

Initial material configuration

Optimal material configuration

Update procedure

Call FE software Update: Xh

No
YesObjective: δ(XD,xD

tg) < tol.?

Optimization

Exit

F
E
-T
o
ol

M
S
C
.M

A
R
C

O
p
t.
-T
o
ol

M
A
T
L
A
B

Figure 4: The iterative strategy for inverse form finding, separated into forming simulation
(direct problem) and shape optimization (inverse problem) [7].

5 H-ADAPTIVE FINITE ELEMENT REFINEMENT STRATEGY

The main task of adaptive mesh refinement strategies is to control the discretization
error in sense of minimization and additionally to compensate it over the area of interest.
However, the quantity of the error and the area of the highest gradient is not available
prior and has to be computed during the simulation [13]. Within this obstacle, particular
error estimators have been established ([5], [3]).

After detecting the area of high errors or distorted elements an adaptivity strategy is
applied. Typically h-, p- and r-adaption is available.

As pictured in Fig. 5(c) the r-refinement induces a moving of nodes by which the
mesh density is concentrated to a particular place. Due to the refinement caused by a p-
adaptivity Fig. 5(b), the polynomial degree of the element in the particular place is raised.
One common used r-adaptive method is the Arbitrary-Lagrangian-Eulerian adaptivity [2].

7
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a b c

Figure 5: H-adaptivity (a) with a level two refinement, p-adaptivity (b) for one element
and a global r-adapted mesh (c)[13]

Besides no occurrence of irregular nodes, a benefit of p- and r-adaptivity is given by no
modification of connectivity during the refinement process.

H-adaption Fig. 5(a) means an adaption of the element size with respect to prescribed
criterion, whereby the problem size rises during the implementation of new element nodes
[13]. Regarding to [10], there are two different kinds of nodes within the adapted grids.
The first one is the regular node which is standard for non adapted grids but also part of
the refinement. The second is the irregular node generated by the refinement. The regular
nodes are corners of the undisturbed elements. Remaining nodes are called irregular. By
definition, all corners being part of a boundary are called regular nodes. As pictured in
Fig. 6, the refinement of the top-right part of the structure causes some irregular nodes.
To ensure a continuity of the solution, despite of the existence of irregular nodes, the
solution is constrained to obtain interpolated values of surrounded regular nodes.

For a geometrical simple refinement depicted in Fig. 6, a mathematical description
is needed, which has been introduced by [5]. Recap Eq. 16, a description between node
displacement values, stiffness matrix, and node force values for one element are prescribed.

a b c

AA B

CC DD

E F

G H

4A

1A

3A

2A

4E 3E

1E
2E

Figure 6: H-refinement of a quadrilateral element set (a) with level one (b) and level
two (c) refinement [5].

During the refinement procedure, a 4-noded quadrilateral element is divided into four
new smaller elements. Nodal values for new element nodes are required. For the newly
irregular node 1E a relation depending on regular nodes is introduced by:

1E =
1

2
[3A + 2A] (25)

In conjunction with regular nodes, the transformation of nodal values is prescribed:

ϕE = P E · ϕ̄E (26)

8
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1E

2E

3E

4E


 =




1
2

0 0 1
2

0 1 0 0
0 0 1 0
0 0 0 1


 ·



2A

2E

3E

4E


 (27)

Furthermore the variational node values δϕE for one element are transformed with the
same requirement:

δϕE = P E · δϕ̄E (28)

In consideration of Eq. 26 and Eq. 28, Eq. 16 is written as:

δϕ̄T
E · P T

E ·KE · P E · ϕ̄E = δϕ̄T
E · P E · fE (29)

Therefore, a new and again symmetric, stiffness matrix and also an updated force vector
for the E-th element results in:

KE = P T
E ·KE · P E and fE = P E · fE (30)

The same procedure is applied for elements F, G and H. Subsequent, the global stiffness
matrix is routinely assembled. For a second level refinement in element G in Fig. 6(c),
element D and A has to be refined at first, otherwise two irregular nodes appear between
two regular nodes, which is prohibited.

6 EXAMPLES

The iterative optimization includes a forming simulation within each step. The notch
stamping process is reduced to a two dimensional and a half notch model, in order to
decrease the computational costs. Symmetry conditions are applied on the right side of
the model, which is depicted in Fig. 9(a). Beside the symmetry boundary condition, the

Figure 7: Workpiece
of a notch stamping
process as in [11]

F

Figure 8: Sketch of
the notch stamping
process [11]

a b

e2

e1

Figure 9: The original discretized material
configurations (a) and the optimized mate-
rial configuration (b)

bottom is fixed in e2-direction. All four sides (width: 50mm) of the rectangle quadratic
solid body are discretized by 9 nodes, which results in 81 nodes and 64 quadrilateral
elements (plane stress) for the whole model. The dual phase steel DP600 with a nonlinear
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isotropic hardening and corresponding parameters, investigated by [14], is used. The notch
is composed by a 12.5mm horizontal line and a 45◦ line connected without a fillet radius.
The resultant sharp edge is of special interest concerning the influence of the h-adaptivity
to the simulation output. The initial gap between notch and solid body prevents an initial
penetration during a further iteration step. A constant velocity is applied to the notch to
reach a fixed solid body penetration of 25mm. A friction factor of 0.07 is specified between
the notch and the solid body. Furthermore, a contact control of the shear arctangent type
is used to represent the contact behavior. This is originated by an investigation of [12] to
improve the material flow during a forming process. The factor represents the application
of the water based non-poisonous lubricant (Beruforge BF 150 DL) with wax particles
and high viscosity. The h-adaptivity is applied with a node in region-option and use two
regions moving along in conjunction with the notch. This constraint ensures a refinement
of every element within this region and therefore includes those elements close to the
notch. The configuration in Fig. 10(a) serves as the material start configuration of the
first iteration.

The target configuration in Fig. 10(d) is defined by a rectangle quadratic box (width:
50mm) that includes an exact shape of the impressed notch. A total number of 18 design
nodes XD enter the objective function δ(XD).

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

[−]

2.0

a b

c d
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Max.: 2.8
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e1

Design node

Symmetry

BoundaryE
q
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p
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Figure 10: Deformed spatial configurations when inputting the globally refined (a), the
optimized coarse (b) and the optimized h-adaptively refined (c) mesh, beside the pre-
scribed target configuration (d)
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Fig. 10 shows three examples of the deformed configuration after forming simulations.
Fig. 10(a) is the simulation result using a refined mesh throughout the whole body with-
out applying adaptive method. Hereby, the imprint of the notch fits proper and an
h-adaptivity would not improve the result in that particular area. However, a major
drawback is the excessive long computational time. The simulation takes six times longer
compared to a simulation with a locally adapted coarse mesh. Consequently, adaptivity
improves computational cost by factor six. Fig. 10(b) shows an optimized spatial con-
figuration of a model without mesh adaptivity. The desired target configuration is not
achieved. Two nodes slide along the sharp edge of the notch. As a consequence the notch
penetrates the element edge. Thus, the computational results are not significant.

Finally, the spatial configuration in Fig. 10(c) belongs to the optimized material con-
figuration depicted in Fig. 9(b). It results by applying h-adaptivity with four iteration
steps. In comparison to the global mesh refinement Fig. 10(a) the adverse time effect is
improved. In addition, compared to the coarse meshed model Fig. 10(b), the mesh is more
accurate. The objective function, including the mean squared error of nodal differences
between computed spatial and the target configuration, is thereby reduced from 5.45 (first
iteration) to 0.3 (fourth iteration). This is an improvement by factor 4.6, compared to
the final optimized coarse meshed model Fig. 10(b) with a mean squared error of 1.39.

7 CONCLUSION

An inverse form finding algorithm with material nodal positions acting as design vari-
ables is prescribed. The iterative procedure determines an optimized deformed (spatial)
configuration. The commonly used h-adaptivity is applied to ensure satisfying numerical
result despite of a sharp edge at the geometry of the contact body. For demonstration
purposes, the shape of a semi-finished workpiece geometry, belonging to a notch stamp-
ing process, is optimized. The minimization criterion, an objective function representing
the differences between the spatial computed and the target configuration, is significantly
reduced. Further research will be pursued regarding mesh adaptivity in conjunction with
the inverse form finding algorithm.
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Summary In the present research work the authors tried to measure the non-uniformity of 
strain on the specimen throughout tension test to validate the results of FEA.  Flat specimen 
of JIS5 was used to investigate the transition process of strain distribution.  The material was 
pure iron.  A cast ingot was elongated by hot forging to make a round bar which is 4 times as 
long as the ingot.  The bar was subjected to thermal treatment to homogenize the grain size 
before flat specimens were sectioned from the bar.  Strain gauges were placed on the 
specimen to monitor the transition of largest strain.  An extensometer was also placed to 
measure the average strain between the two gauge points. Result of FEA analysis predicted 
that the largest value of strain is observable at the shoulder portion at the initial stage of 
yielding.  The position of largest strain moved to an intermediate portion when the average 
strain increased and finally moved to the centre portion.  The result validated the predicted 
result by FEA.

1 INTRODUCTION
Tension test has a long history and has been widely acknowledged as the most common 

method for evaluating the mechanical properties of materials and it has been used on both 
academia and industry sides [1]. Major purpose of tension test is obtaining mechanical 
properties of the material such as a stress-strain curve of the material.  Yield stress or Elastic 
characteristics such as Young’s modulus are measured depending upon the customers’ request.  
Stress is calculated by dividing force by the cross sectional area of specimen and strain is 
calculated by measuring the change in gauge length of the measuring device such as a strain 
gauge or an extensometer. It is important to note that uniform distribution is assumed of the 
stress on the cross sectional plane and of the strain in the two gauge points, and the cross
sectional plain and the segment connecting two gauge points cross each other.  The authors 
showed that there are cases where these assumptions do not apply. Uniformity of stress and 
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strain distribution is important to ensure the precision of measured curve of stress-strain.  The 
authors showed by using FEA that there is a non-uniform distribution of stress and strain in 
tension test and there is a transition of peak stress and strain according to the progress of 
tension test [2].  In COMPLAS2015 the authors presented experimental results to show that 
these peak shifts might affect the shift of rupture point in tension test and proposed a 
geometry to ensure the centre rupture [3].  In the present work experimental result is shown to 
validate the result of FEA on tension test of sheet specimen.  Strain gauges were placed on the 
specimen and transition of the intensity of strain on the specimen was compared with the 
numerical result.

2 NUMERICAL ANALYSIS
Elastic-plastic FEA was carried out on a sheet specimen subjected to tension test focusing

attention on the transition of stress and strain distribution according to the progress of the test.
The code used was ELFEN [4] developed at Swansea University.

2.1 Preparations
The geometry of sheet specimen is illustrated in Figure 1. It is basically a JIS5 specimen. 

Symmetry was taken into consideration and only a quarter in the first quadrant was subjected 
to the analysis.  It was a plane-stress analysis and displacement in X-direction was applied on
the nodes in the gripping portion.

Figure 1: Geometry of specimen and first quadrant subjected to FEA.

Four types of stress-strain curve adopted in the analysis are shown in Figure 2; two types 
of yield stress and two types of work-hardening ratio.  Young’s modulus E and Poisson’s ratio 
ν were 210Gpa and 0.3 respectively and were not changed throughout the analysis.  
Influences of yield stress and work-hardening ratio on the transition of the distributions of 
stress and strain on the specimen were evaluated.

Figure 2: Stress-strain curve used in FEA.
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4.2 Result
For the case of material-1 transitions of axial stress and axial strain are illustrated in Figure 

3 and 4. Plastic deformation starts in the vicinity of the shoulder portion and new poastic 
zone suddenly appears on X-axis in between the centre and the shoulder.  Finally the highest 
value of strain moves to the centre and almost uniform distribution of axial stress and axial 
strain are obtainable in the vicinity of specimen centre. Little influence of work-hardening 
ratio was observed on the distribution patterns of stress and strain.

Figure 3: Transition of axial stress and axial strain according to tension test

Figure 4: Transition of principal stress and strain according to tenstion test.
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3 EXPERIMENT

3.1 Preparations
A 50Kg round ingot of pure iron was cast of which geometry was 310mm in height, 

180mm and 130mm in upper and lower diameters.  After cooling, the ingot was put in an 
electric furnace in order to homogenise the grain size.  Then specimen for tension test was 
sectioned from it bu wire cutting.  The specimen was JIS5 of which geometry is given in 
Figure 5. In order to measure the distribution of axial strain, 5 strain gauges were placed in 
the axial direction on both edges and on the centre line.  The number of strain gauges were 15 
on both sides of the front and rear surface. The gauges placed on the specimen were plastic 
gauges which are capable of measuring strain up to 20%. The grid size was 1.5mm wide and 
5mm in length and the base size was 3mm wide and 11.5mm in length.

Figure 5: Geometry of sheet specimen of JIS5 and  placement positions of strain gauges.

View of the tension test is given in Figure 6.  The testing was carried out by using an 
Instron testing machine with capacity of 200KN.  The cross head speed was 2mm/min. The 
deformation of strain gauges hit 20%, which is the lowest limit of measurable strain of the 
strain gauge,  in the course of the test but the test was carried out until rupture.

Initial setting                                       Testing                                        Necking

Figure 6: View of tension test.
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3.2 Result
Measured stress-strain curve obtained by extensometer is shown in Figure 7.

Stress-strain curve to rupture                                               Enlargement until 10% strain
Figure 7: Measured stress-strain curve by load and extensometer.

Increase in the strain on each observation point, i.e. point where strain gauge was placed , 
is shown in Figure 8. It is shown that shoulder portion immediately respond as soon as 
tension test starts.  Then intermediate portion starts to deform and the plastic strain exceeds 
that of shoulder portion.  Finally the centre portion starts to deform.  Extensometer picks up 
the average value which gradually approaches to the strain at the centre portion.  It is curious 
to note that the axial strain at centre is smaller than those of intermediate and edge portions 
until the time reaches 200 sec.
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Figure 8: Transition of axial strain according to tension test.
Distribution of strain measured by strain gauges are shown in Table 1.  The axial strain on 

the centre of shoulder portion (b) is 4.45 and is much smaller than those of other observation 
points, but this is because of the constraint of the gripped portion as it was shown in Figure 4.
On the centre plane the distribution of axial strain (Axdial-3(Centre)) is deemed uniform in 
the width direction, but at the intermediate portion the axial strain on one edge of specimen 
(c) is considerably smaller than those on the other edge (a) and on the centre line (b).  
Unfortunately some gauges placed on the intermediate ceentgre plane peeled off after 200 
seconds and it was not observed that the peak of strain shifts to the centre.  It may be better to 
carry out more numher of tension test in the same manner.  

Table 1: Distribution of axial stress (Time:200sec)

Position Edge (a) Centre (b) Edge (c)
Axial-1(End) 6.39 4.45 5.84
Axial-2(Intermediate) 6.23 6.25 5.75
Axial-3(Centre) 5.82 5.88 5.58

4 CONCLUSIONS
Elastic-plastic FEA was carried out on tension test of sheet speccimen followed by an 

experiment for validation.  Analytical result showed that peak value of axial strain appears at 
the beginning stage of the test and as soon as the plastic deformation starts on the parallel 
portion the position of peak strain moves to the intermediate portion, and finally the axial 
strain at the centre becomes largest.  Result of experiment validated that the shoulder portion 
immediately responds as soon as the test starts but as soon as the plastic strain starts to cover 
the specimen the peak strain shifts to the intermediate portion as it was predicted by FEA.  By 
repeating tension in the same manner peak shift of axial strain to the centre plane will be 
observed as was predicted by FEA.
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Abstract. In this study, the change in microstructure during large deformation is
simulated using molecular dynamics method. A polycrystalline fcc model consisting of
four grains with periodic boundary condition is prepared, and a compressive external
force is imposed on the model. The plastic deformation behavior, such as change in grain
shape, motion of grain boundary, generation of dislocation and slip, are investigated.
Initial orientation of every grain and the combination of the adjacent grains are varied,
and the dependency of the crystallographic conditions on the change in microstructure
along with the stress-strain relation are investigated. As a result, grain refinement due to
generation of grain boundaries revealed to strongly depend on the relation between the
original crystal orientation and imposed load direction.

1 INTRODUCTION

Mechanical properties of a material depend strongly on the microstructure, and hence
various methods have been developed to improve the microstructure. One of the most
simple indicators representing the state of microstructure is grain size, and the strength
of the material is generally stronger as the grain size is smaller. This relation is well
known as Hall-Petch relation, and to refine the grain size is generally effective to make
the material stronger. Therefore, sustained effort have been devoted to refine the crys-
tal grains; some of the successful schemes are equal-channel angular pressing (ECAP)[1],
accumulative roll bonding (ARB)[2], and asymmetric rolling[3] methods, and these pro-
cesses have been applied to industrial purposes. The common condition in these processes
is that the material is subjected to severe plastic deformation, and especially compressive
load is the key factor. However, the mechanism of the grain refinement is not straight-
forward, and many kinds of researches have been ongoing. Experimental observation of

1
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the microstructure using electron backscatter diffraction (EBSD) method is quite effective
to investigate the change in microstructure, but the dynamic mechanism is not directly
observed. Several kinds of electron microscopy have made it possible to observe the
atomistic real image, but the dynamic motion is not yet observable. Therefore, computer
simulation is indispensable for clarification of the mechanism, and the molecular dynamics
(MD) method is the most suitable for the purpose. A great number of researches have
been reported on the deformation mechanism of polycrystalline materials based on MD
simulations, and various kind of fundamental plastic behaviors such as generation and
motion of dislocation, grain-boundary migration, change in crystal orientation, and their
relation and interactions [4-8]. The author has demonstrated MD simulations on plastic
deformation and related phenomena such as grain-boundary stability and change in shape
of a polycrystalline material [9], shape-memory behavior [10], and transformation-induced
plasticity [11]. We are now motivated to investigate the mechanism of grain refinement
due to large deformation. In our previous report [12], change in microstructure under
tensile load was simulated, and grain-boundary migration and change in grain shape were
observed. In this study, supposing the grain refinement, a large compression is imposed
to the same model, and the change in grain shape and size is investigated.

2 MODEL AND CONDITIONS

2.1 Fundamental equations

In this study, a classical molecular dynamics method is used. The fundamental equation
is the following Newton’s equation of motion, and the force F i acting on the i-th atoms
is assumed to be represented by a Lennard-Jones-type interatomic potential function φ.

d2ri

dt2
= F i, F i = −

N∑
j �=i

dφ

dr

rij

|rij|
, (1)

with

φ = 4ε

(
(
σ

rij
)12 − (

σ

rij
)6
)

(2)

Here, ri is the position vector of the i-th atoms from the origin, and rij = rj−ri. The vari-
ables in LJ potential ε and σ are the material parameters in the dimension of energy and
length, respectively. For a generalized analysis, the equations are non-dimensionalized.
Then the potential parameters are diminished, and other physical quantities including
stress and temperature are all shown in the non-dimensional values in this paper.

2.2 Simulation model

A simplified polycrystalline model is used to capture the fundamental feature of the
grain refinement. Figure 1 represents the schematic illustration of the model; two types
are prepared, each of which consists of four grains while the grain arrangement differs
from each other: a transversal grain boundary is perpendicular to the loading direction in
Type A, while they are parallel in Type B. Periodic boundary conditions are applied in all

2

107



Takuya Uehara

xz

y

Compression

Grain I II

III IV III

Grain I

II

III

IV

III

Type A
(horizontal arrangement)

Type B
(vertical arrangement)

Figure 1: Illustration of the simulation model.

directions. The thickness of the model in the z direction is taken very small; every grain
corresponds to infinitely long columnar one. A compressive load is imposed by decreasing
the length Ly in the y direction. The lengths Lx and Lz in the x and z directions are
adjusted so that the average stress component σxx and σzz are kept at zero, while the
model retains rectangular parallelepiped.

The atoms are set on the lattice points of fcc crystal so that the (001) plane is on x-y
plane and [100] direction is along the x axis, and the number of unit cells are 50×50×5
in the x, y and z directions. Then the atoms are rotated around the z axis by angle θk,
in which k identify the grain number from I to IV in Fig. 1. The values in the angles
are varied, and the results for the combination represented in Table 1 are shown in this
paper.

Table 1: Grain angles and their combination for the simulation models presented in this paper.

Model ID \ Grain No. I II III IV
A1, B1 26.6̊ -26.6̊ 18.4̊ -18.4̊
A2, B2 26.6̊ -18.4̊ 18.4̊ -26.6̊
A3, B3 26.6̊ 18.4̊ -26.6̊ -18.4̊

26.6̊ =tan−11/2, 18.4̊ =tan−11/3

Grain boundaries constructed in Models A1-A3 and B1-B3 are mostly coincident site
lattice (CSL) boundaries. For example, in Model A1 and B1, the grain boundaries between
Grain I and II, and between III and IV are typical CSL boundaries indicated by low-index
sigma values.

3
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2.3 Conditions

The initial configuration of atoms are relaxed for 15000 time steps under constant
temperature at T=0.1 and no stress condition. Then compressive load is applied in the
y direction by decreasing the edge length Ly in the y diction at a constant decrement
∆Ly/ts. Here, ∆Ly is the total shrinkage in length and ts is time steps of the compression
period, the these values in this study are taken as ∆Ly=25.0 and ts=50000. Actually,
the initial length L0

y at the relaxation period is slightly different for every models, but
nearly L0

y=73.0. Accordingly, the total compressive strain is about 0.34. After the loading
period of 50000 time steps, the model is unloaded; the average stress in the y direction is
also released, and 5000-step relaxation period is assigned.

3 RESULTS AND DISCUSSION

3.1 Change in microstructure

Simulation results for Model A1 is shown in this section. Figure 2 represents the
snapshots of the atomic configuration projected on the x-y plane. The color indicates
potential energy of each atom; the atoms in bulk grain have low energy, depicted in blue,
whereas the atoms at grain boundaries have higher energy, and depicted in green or yellow.

Figure 2: Configuration of atoms for Model A1, in which the color indicates the potential energy of
every atom; green and yellow show grain-boundary region.

4
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Figure 2(a) shows a stabilized state by the relaxation period, which represents all grains
mostly retain square shape.

Then the compressive load is imposed from the 15000th time step. No specific change is
observed at the 20000th time step, but an apparent change is observed at the 24000th time
step at the left bottom corner in Grain III; The color is the same in blue but looks denser.
This is due to the projection angel on the x-y plane; i.e. initially the z direction is exactly
[001] in all grain and all atoms align straight, but the alignment changed when rotation
or change in orientation change occurs. Therefore, Figure 2(c) indicates that orientation
change is initiated in Grain III. A small change is also observed in right bottom corner in
Grain II. These orientation change spread inward grain quickly by the 26000th time step
as shown in Fig. 2(d). Simultaneously various changes are observed in other grains; New
grain boundaries depicted in green color, are generated. In all of the four grains, a vertical
boundary at the middle is observed, while some of which are temporally appeared, and
are not observed at the 30000th time step, as shown in Fig. 2(e).

The initial grain shape and grain boundaries are mostly maintained at the 30000th time
step, but extreme deformation occurs thereafter: the original square shapes are almost
completely unobservable at the 36000th time step shown in Fig. 2(f), and small grains
surrounded by the new boundaries is generated.

The main grain boundaries which originate from the initial ones retain even though the
grain shapes changed, and depicted in clear and relatively wide lines at the 48000th time
step. However, as further compression is imposed, some of them become apparent, and
the Grain II and IV is finally unified at the central domain in the model at the 64000th
time step. The reason is, however, not only the large strain but may be the influence of the
periodic boundary condition. The model height becomes smaller and periodic boundary
makes one grain sandwich another, and strong restriction may affect too much. Final
unloading makes overall slight recovery in model height in the y direction, but apparent
change in microstructure is not observed.

3.2 Stress-strain curve

The variation of the overall stress is shown in Fig. 3 (a), in which the length in the y
direction is also drawn. As the compression starts at the 15000th time step, compressive
stress increases monotonously by the 24000th time step. Along with the result shown in
Fig. 2 that no specific change in the configuration of atoms is observed, the deformation
is elastic region, and the gradient corresponds to the elastic coefficient.

The stress drops drastically between the 24000th and 26000th time steps. This is
the initiation of the plasticity, as crystallographic irregularity is observed in Figs. 2(c)
and (d). Then the stress starts increasing again, and a similar behavior as the initial
elastic region is exhibited by the second peak in stress at the 3000th time step. After the
following stress drop, the stress increase and drastic drop are not clearly appeared, whereas
gradual increase by the 45000th time step, and mostly flatten at the about σy=2.0. The
compression is stopped at the 65000th time step, and stress is released. In the stress-strain
curve shown in Fig. 3(b), elastic recovery by the unload process is clearly represented.

5
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Figure 3: Simulation result for Model A1. Variation of the length in the y direction and stress in y (a),
and stress-strain curve (b) .

3.3 All results

The results for the other models are summarized in Figs. 4 and 5. Figure 4 shows
the snapshots at the 48000th time step, and Fig. 5 shows stress-strain curves. Grain
refinement is observed for every case, and the original square grain shape has disappeared.
Only the retained feature of the initial grain feature is a straight grain boundary which
transects the model in Models A3 and B3. These boundaries are both constructed by two
CSL boundaries between ±26.5̊ and ±18.4̊ which are very stable and seems unaffected
by the large straining.

Figure 4: Configuration of atoms at the 48000th time step for all models, in which the color indicates
the potential energy of every atom.
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Figure 5: Stress-strain curves for all models (a) and the magnified plots around the first peaks around
between ε=0.02 to 0.08 (b).

Stress-strain relation is overall common to all cases; the stress increases monotonically
at first, drastically drops following the first peak, and thereafter, gradual increase and
drastic drop are intermittently repeated. However, the peak values and the event interval
are not identical. For example, the first peak, which is assumed to be the yielding stress,
differs as shown in the magnified diagram in Fig. 5(b). Models A1, A2, B1 and B2 have
almost identical peak value of σy=3.1, while Models A3 and B3 show lower value. The
former 4 models commonly exhibit continuously smooth round peak from mostly linear
elastic region to the stress drop. In Models A3 and B3, on the contrary, the curve deviate
from the elastic curve once at sigmay=2.1 for B3 and 2.4 for A3, and increase again till
the peak values of sigmay=2.8 for B3 and 3.0 for A3. In the configuration of atoms,
specific features are observed for these two models, as discussed above, and such features
may affect the overall stress-strain relation. Detailed investigation on the bases of atomic
arrangement, crystal orientation, and grain-boundary structures will be discussed in our
future work.

4 CONCLUSIONS

In this study, molecular dynamics simulations were carried out on the atomistic be-
havior of a polycrystalline fcc material under large compressive deformation. A simplified
model with four grains is prepared, and six models which are different in grain arrange-
ment and crystal orientation. All the model consist of typical CSL grain boundaries,
while some are different. As a result, change in microstructure is observed for all models
when a large compressive strain is imposed. Some of the grains are divided into two
or more subgrains, and grain refinement was observed for all cases. The dependence of
the grain boundary structure was inferred by a specific behavior found for two models
which commonly have straight CSL boundary traversing the model. Further investigation
including much more variation of grain arrangement, structure of grain boundaries, and

7
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combination of crystal orientations is necessary to clarify the mechanism of the grain re-
finement. This study, nevertheless, revealed the effectiveness of the model for the purpose,
and hence we will continue the research using the present model.
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Abstract. Three-dimensional numerical analysis of the rotary piercing process was performed 
by the rigid plastic finite element method. Rotary piercing, also known as the Mannesmann 
piercing process, is a hot rolling process that manufactures seamless tubes. In this process, the 
heated round billet is rotated by the rolls and pierced by the plug as an internal tool. 
Numerical analysis was conducted to investigate the deformation behaviour during rotary 
piercing and redundant shear deformation specific to this process. This paper discusses the 
effect of various rolling parameters on redundant shear deformation. 

 
1 INTRODUCTION 

The rotary piercing process is one method for manufacturing seamless tubes that are used 
for oil country tubular goods and so forth. It is also known as the Mannesmann piercing 
process, the concept of which was invented by the Mannesmann brothers in Germany in 1886. 
More than 100 years later, a cone-type piercing mill with a high toe angle was developed by 
Sumitomo Metal Industries, Ltd. In this process, the heated round billet is rolled by a pair of 
rolls and held by a pair of guide rolls. The axes of the rolls are inclined opposite to each other 
in order to advance the round billet. The round billet is rotated by the rolls and pierced by the 
plug as an internal tool. While the round billet is rotated helically, the wall thickness is 
reduced by rolling with the rolls and the plug. As previously described, the tube is subject to 
large deformation in this process. Moreover, little study has been done concerning complex 
boundary conditions in this process: the round billet has a free surface, the billet-roll contact 
area is narrow, and the direction of the friction forces affecting the billet-roll contact surface 
often changes. It was thus difficult to model the numerical analysis of the rotary piercing 
process. Therefore, the boundary conditions were investigated in a hot rolling experiment. 
Setting the boundary conditions that match the experimental results, the three-dimensional 
numerical analysis model of the rotary piercing process was developed by the rigid plastic 
finite element method in 2006. The developed numerical analysis was undertaken in order to 
investigate the deformation behaviour during rotary piercing and redundant shear deformation 
specific to this process. Such redundant shear deformation is considered to be one of the 
parameters that may cause propagation defects on the internal surface of the tube. This paper 
puts its focus on the effect of various rolling parameters on redundant shear deformation. 
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2 NUMERICAL ANALYSIS MODEL 
Three-dimensional deformation analysis was performed by the rigid plastic finite element 

method using DEFORM-3D. The numerical analysis model of the rotary piercing process is 
shown in Fig. 1. The rolls rotate in the same direction with a constant rotational velocity of 60 
rpm, the disc guide rolls rotate in the opposite directions with a constant rotational velocity of 
4.0 rpm, and the plug is rotated by the rolled billet. All the tools were modeled as rigid bodies, 
the billet was modeled as Lagrange tetrahedral elements, the billet material was carbon steel 
C45, and the billet temperature was 1200°C. This numerical analysis assumed a mechanical 
calculation scheme. To investigate the boundary conditions, the deformation behavior of the 
tube was analyzed in the hot rolling experiment. This experimental results showed that the 
circumferential velocity of the rolled material was slightly lower than that of the roll. Since 
hardly any metal relative to the roll slipped, the friction model of the roll was approximated to 
sticking. Assuming that the friction model depends on the metal slipping velocity relative to 
the tool, the shear friction coefficient m for the roll was set to 1.0. 

In the hot rolling experiment and the developed numerical analysis, the toe angle γ and the 
feed angle β were varied. The toe angle γ is the opening angle of the roll axis with respect to 
the pass line. As shown in Fig. 2, the roll diameter varies depending on the toe angle γ to keep 
the roll face angle α constant. Figure 3 shows the feed angle β that is the inclination angle of 
the roll axis with respect to the pass line. As the feed angle β is increased, the advance 
direction velocity of the rolled material increases. 
 
 
 
 
 
 
 
 
 
 

Figure 1: Numerical analysis model of the rotary piercing process. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Schematic of the toe angle γ (at the feed angle β = 10°). 
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Figure 3: Schematic of the feed angle β (at the toe angle γ = 20°). 
 

3 NUMERICAL ANALYSIS MODEL VALIDATION 
3.1  Dimensional accuracy 

To validate the developed numerical analysis model, the dimensions of the tube in the 
numerical analysis were compared with those of the hot rolling experiment. Figure 4 shows 
both the longitudinal and transverse sections of the semi-finished product. The upper part 
shows the experimental results and the lower part shows the numerical analysis results. The 
numerical analysis results agree with the experimental results concerning the shape of the 
semi-finished product. As shown in Fig. 5, the difference in the circumferential length of the 
semi-finished product between the experiment and the numerical analysis was less than 2%. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Shape of the semi-finished product during rotary piercing. 
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Figure 5: Comparison of the circumferential length of the semi-finished product between 
the experiment and the numerical analysis. 

 
 
3.2  Circumferential shear deformation 

In the rotary piercing process, the external surface of the rolled material follows the roll, 
whereas its internal surface follows the plug. Since the external surface velocity is larger than 
the internal surface velocity, the circumferential velocity difference between the external 
surface of the rolled material and its internal surface is generated. As a result, redundant shear 
deformation occurs in the circumferential direction when the round billet is rolled by the rolls 
and the plug. The measurement of circumferential shear strain γrθ is illustrated in Fig. 6. In the 
experiment, the twist angle θ in the circumferential direction was investigated by rolling a 
billet filled with Kanthal wire. In the numerical analysis, the twist angle θ in the 
circumferential direction was investigated by measuring the material flow in the rolling cross 
section. Figure 7 shows the comparison of the twist angle θ in the circumferential direction 
between the experiment and the numerical analysis in each rolling cross section. The twist 
angle θ in the experiment was 30° and the twist angle θ in the numerical analysis was 32°. 
The developed numerical analysis results show agreement with the experimental results 
concerning circumferential shear strain γrθ. 
 
 
 
 
 
 
 
 
 
 

Figure 6: Measurement of circumferential shear strain γrθ. 
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Figure 7: Comparison of the twist angle θ in the circumferential direction between 
the experiment and the numerical analysis. 

 
 

4 RESULTS AND DISCUSSION 
4.1  Effect of toe angle γ on circumferential shear strain γr θ 

Figure 8 shows the effect of the toe angle γ on circumferential shear strain γrθ. The rolling 
conditions were the feed angle β = 10°, the elongation ratio (rolled length L' / billet length L) 
= 3.0, and the diameter expansion ratio (rolled diameter D' / billet diameter D) = 1.06. In the 
experiment and the numerical analysis, circumferential shear strain γrθ was suppressed as the 
toe angle γ was increased. The cause of this phenomenon was that the roll diameter varied due 
to the toe angle γ. As the toe angle γ is increased, the roll diameter on the inlet side is smaller. 
At the high toe angle, the small roll diameter on the inlet side allows a decrease in the external 
surface velocity of the rolled material. On the other hand, the internal surface velocity of the 
rolled material is affected by the plug geometry. Taking these results into account, on the inlet 
side of the roll, the circumferential velocity difference between the external surface of the 
rolled material and its internal surface decreases as the toe angle γ is increased. 

Figure 9 shows the increment of the twist angle θ in the circumferential direction during 
rotary piercing. The numerical analysis confirmed that the twist angle θ increased on the inlet 
side of the roll. On the inlet side of the roll, decreasing the plug diameter led to an increase in  
the circumferential velocity difference of the rolled material. Reducing the wall thickness of 
the tube under the condition that the circumferential velocity difference of the rolled material 
was large, the twist angle θ increased significantly. On the outlet side of the roll, increasing 
the plug diameter led to a decrease in the circumferential velocity difference of the rolled 
material. Additionally, since the wall thickness of the tube was slightly redused, the twist 
angle θ hardly increased. Consequently, the twist angle θ in the toe angle γ = 0° was twice as 
large as the twist angle θ in the toe angle γ = 30°. It is interpreted from this study that 
decreasing the circumferential velocity difference of the rolled material on the inlet side of the 
roll due to the toe angle γ suppresses circumferential shear strain γrθ. 
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Figure 8: Effect of the toe angle γ on circumferential shear strain γrθ. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9: Increment of the twist angle θ in the circumferential direction during rotary piercing 

in the numerical analysis. 
 
 
4.2  Effect of feed angle β on circumferential shear strain γrθ 

Figure 10 shows the effect of the feed angle β on circumferential shear strain γrθ. The 
rolling conditions were the toe angle γ = 20°, the elongation ratio (rolled length L' / billet 
length L) = 3.0, and the diameter expansion ratio (rolled diameter D' / billet diameter D) = 
1.06. In the experiment and the numerical analysis, circumferential shear strain γrθ was 
suppressed as the feed angle β was increased. This phenomenon was attributed to that the 
advance direction velocity of the rolled material increased in proportion to sin β. Therefore, 
the number of rolling times decreased as the feed angle β was increased. The effect of the feed 
angle β on the number of rolling times is shown in Fig. 11. The numerical analysis confirmed 
that most of circumferential shear strain γrθ occured when the tube was rolled by the rolls and 
the plug. The results from this study indicates that decreasing the number of rolling times due 
to the feed angle β suppresses circumferential shear strain γrθ. 
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Figure 10: Effect of the feed angle β on circumferential shear strain γrθ. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11: Effect of the feed angle β on the number of rolling times. 
 
 

5 CONCLUSIONS 
- The three-dimensional numerical analysis of the rotary piercing process was 

performed by the rigid plastic finite element method. The agreement of the numerical 
analysis results with the experimental results concerning circumferential shear strain 
γrθ confirms the validity of the developed numerical analysis model. 

- The experiment and the numerical analysis clarified the effect of the toe angle γ and 
the feed angle β on circumferential shear strain γrθ. As the toe angle γ or the feed 
angle β was increased, circumferential shear strain γrθ was suppressed. This paper 
clearly shows that the cone-type piercing mill with the high toe angle has an 
advantage of suppressing redundant shear deformation. 
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Abstract. The nature and the large notable distinguishing features of polymeric gels
explain their pervasive use as biomaterials in both regenerative medicine and tissue
engineering. With regard to their biocompatibility, their ability to withstand large
deformation and their significant capacity of solvent absorption, these biomaterials
are often selected owing to their versatile mechanical properties and especially the
closeness to soft biological tissues, amongst others. A finite-strain theory for the study
of the overall behaviour of a porous polymeric gel where microvoids are present is
presented. The swollen polymeric gel is modeled as a two-component body composed
of two incompressible components, namely, an elastic porous polymer imbibed with
a solvant. The chemical equilibrium is assumed to be preponderate at the interface
between the porous polymer and the environment where the chemical potential of
the solvent is fixed. The initially dry porous polymer undergoes large deformation
induced by absorption of a solvent from the environment and mechanical loading. In
this paper an attempt is made towards obtaining an estimation of the macroscopic
responses of the swollen porous polymer to prescribed proportional loadings. To this
end, a two-level representation of the material at hand for which the Representative
Volume Element (RVE) imbibed with a solvent is a simple axisymmetric cylinder
composed of a homogeneous matrix surrounding a spherical void, is considered. The
computational study addresses the situation where the RVE is subjected to prescribed
axial and lateral overall stresses under conditions of constant overall stress triaxiality.
For fixed values of the Flory-Huggins parameter and the nominal concentration of
the solvent, the overall stress-strain behaviour of the RVE model, the influence of the
initial porosity, and the prescribed stress triaxiality ratio have been outlined.
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1 INTRODUCTION

Hydrogels are pervasive in biology and have been turned out to be nearly optimal
for interfacing with dynamic systems. By way of illustration, they are used as bioma-
terials in order to enhance stem cell transplantation by addressing, in particular, the
mechanical aspects associated with each stage of the transplantation process [1, 17].
The characteristic soft ability of these polymeric biomaterials makes them strongly
resembling the extracellular matrix (ECM) which encapsulates cells in their native en-
vironment. Regarding tissue engineering, scaffolds made of hydrogels, just like ECM,
act as a structural support and are able to accommodate biomechanical signals to con-
trol cell function and eventually their fate [13]. Nowadays, it is trite to claim that stem
cells are known to respond to mechanical cues in their microenvironment by changing
their morphology, dynamics, proliferation rate, migration speed, and differentiation
potential [7, 27]. The physical process of mechanosensitivity is realized through the
contact and adhesion between cells and their microenvironment.

Hydrogels, a cross-linked polymers immersed in water, are an interesting class of
materials that are able to undergo significantly large deformation which can also be
triggered by external stimuli through appropriate change of constituents [26]. Sol-
vent molecules migrate in a gel by self-diffusion. When hydrogels are subjected to
mechanical loadings or also when the chemical potential of the environment changes,
the polymer chain network deforms and the solvent molecules migrate to reach the
thermodynamic equilibrium [28]. This equilibrium is reached as soon as the chem-
ical potential of the solvent equals to that in the external solution. The mechanical,
thermodynamic and kinetic properties of various environmentally sensitive hydro-
gels have been modeled and analyzed to study the different interesting phenom-
ena exhibited, namely the phase transition and instability during swelling [2, 6, 20].
The interaction of mechanics and absorption of a swelling solvent in polymeric gels
encompasses many important phenomena like environmental stress cracking, phase
transformations, and cavitation to quote few. Very useful and recent presentations
of the subject, based on continuum theories, may be found in a series of publica-
tions [3, 6, 9, 8, 12, 20, 36, 39] and references cited therein.

Poor toughness of soft porous biomaterials may results in failure which is an issue
of importance to both engineering and medical practice [23, 37, 4]. An understanding
of failure mechanisms turns out to be crucial in the study of fracture of these biomate-
rials. Cavitation is an important failure mode in elastomeric materials which includes
situations where failure is mediated by environmental factors. Because of its close
connection with material failure inception, cavitation has received much attention
from the materials and mechanics communities [4, 16, 18, 21, 25]. Physical evidence
showed that sufficiently large tensile loads can induce the sudden appearance of in-
ternal microvoids in elastomeric solids. Gent and Lindley [18] considered cavitation
as the result of unlimited elastic expansion of a pre-existing microvoid. They used the
elastic theory of void inflation to successfully correlate the critical load for cavitation
with the corresponding one necessary for the unbounded growth of a microvoid in
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an infinite medium. These authors conducted experimental investigations showing
that the critical load for cavitation was directly related to the elastic modulus. On the
other hand, the occurrence of such instabilities can also be attributed to the growth
of pre-existing defects into finite sizes. In Ball’s approach [4] cavitation is the start of
a traction-free void within a nonlinear elastic solid as the consequence of reaching a
critical load. Reviews as well as further details dealing with cavitation can be found
for example in [16, 21]. Pence and Tsai [35] have extended the Ball’s approach to
account for the absorption of a swelling solvent resulting in volumetric changes at a
fixed degree of swelling. They concluded that a Treloar material [38] always supports
cavitation under uniform swelling provided that the load is sufficiently large. Duda
et al. [12, 11] have shown that there is a critical value for the interaction parameter χ
below which a Treloar material does not support cavitation regardless of the magni-
tude of the load. In addition, Zimberlin et al. [41], using a syringe needle to prescribe
an internally pressurized void within a gel material, have proposed a method named
“cavitation rheology testing” allowing the determination of the local modulus of the
gel material. From these very short comments regarding the quantitative prediction
of the occurrence of cavitation in real soft materials, it can be kept in mind that fun-
damental problems dealing with this subject remain largely unresolved [30, 29].

In addition to this, let us mention briefly that the toughness of a material depends
on the ability of the microstructure to dissipate energy without propagation of de-
fects like initiated microvoids or cracks [23, 37]. Subsequently, the understanding
of failure mechanisms would also provide insight and afterwards enhancement into
the production of tissue-engineering scaffolds with properly appropriate architecture
and tailored properties. Scaffolds can be designed as porous structure (sponges) or
in forms of hydrogels. Sponges facilitate cell adhesion and the pore size variation
affects cell adhesion, migration and deposition. Hydrogels support the transportation
of cells and bioactive agents and can suspend cells in a three dimensional environ-
ment. Keeping the focus on the porosity, among the essential characteristics that ideal
scaffolds should share in order to be successful are the following [33, 32, 31] : i) the
scaffolds should have high permeability to enable adequate diffusion of nutrients for
the cells and the removal of waste products; ii) the cell supports porosity should be
sufficiently high to allow for the ingress of cells and provide the cells space to prolif-
erate and form the ECM; iii) they should have a large surface area; and iv) the pore
size should be fine-tuned to the cells type applied.

As regard overall properties, the presence of those microscopic defects can have
drastic consequences at the macroscopic level. In this computational study, the growth
of a small spherical void within a polymeric gel is viewed through the prism of mi-
cromechanics [10, 34, 14] and finite element analysis. A two-level representation of the
material at hand is considered. The mesoscopic scale is treated through an axisym-
metric representative volume element (RVE) composed of two phases: a homogeneous
void free matrix and spherical void. The behaviour of the RVE is appropriately av-
eraged to provide the so-called macroscopic behaviour of the material considered as
homogeneous. The calculations are very similar to many earlier similar simulations,
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the prototype of which is due to Koplik and Needleman [24]. The boundary condi-
tions of the RVE are prescribed under proportional stressing in such a way that the
isotropically invariant stress triaxiality keeps a constant prescribed value throughout
the loading displacement controlled history. The paper is organized as follows. Fol-
lowing [6, 12, 20, 22, 35], a general framework for studying the uptake of a solvent
by a polymeric elastic solid is summarized in Section 2 where the basic constitutive
equations are recollected. A brief presentation of the multiscale analysis and the de-
scription of the RVE model for the considered material are introduced in Section 3.
Some of the obtained numerical results are presented in Section 4. Finally, concluding
remarks are given in Section 5.

2 Governing equations

The problem formulation and material modelling of hydrogels are briefly presented
in this section. Closely following works in [6, 12, 20, 22, 35], the governing equations
and corresponding boundary conditions for equilibrium swelling deformation of this
material are described. They serve as the basis for the numerical studies presented in
the subsequent sections.

2.1 Kinematics and balance equations of finite growth

Consider a hydrogel body (current state) of volume Ω enclosed by a surface Γ, sub-
jected to body force, b

¯
, and surface traction, t

¯
. Due to immersion of the hydrogel body

in a solvent environment of chemical potential µ (per solvent molecule), a transport
of the solvent molecules occurs within Ω and across Γ. In addition, part of the surface
Γ may be mechanically constrained (e.g., bounded to a rigid body) and/or chemically
isolated from the solvent. Due to large deformation, it is more appropriate to use
nominal quantities referring to a reference state with fixed volume Ωo and surface
Γo. A generic material particle occupying position X

¯
at the reference state moves to

position x
¯
(X

¯
, t) at the current state at time t. The deformation gradient tensor maps

both reference states, namely,

FiK =
∂xi(X

¯
, t)

∂XK
with J := det F

¯̄
> 0 (1)

While the choice of the reference state is arbitrary in general, we choose the dry state
of the hydrogel as the reference state in the present study. Such a choice is necessary
for the use of a specific free energy function. However, let us mention from now that
a numerical challenge has to be circumvented in finite element analysis by using an
intermediate configuration for which J �= 1. The equation of force balance in terms of
the nominal stress s

¯̄
and boundary conditions can be set as follows

∂siK(X
¯

, t)

∂XK
+ Bi(X

¯
, t) = 0 and X

¯
= X̄

¯
or siKNK = T̄o

i (2)

where T̄
¯

o
is traction per unit area of the reference surface with the unit outward

normal N
¯

and the barred quantities are prescribed. In the circumstance of absence of
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any chemical reaction, the conservation of the number of injected small molecules at
the chemical potential µ into the gel, in the vicinity of X

¯
, read

∂C(X
¯

, t)

∂t
+

∂JK(X
¯

, t)

∂Xk
= r(X

¯
, t) (3)

where r is the number of the small molecules per unit time injected into a volume
element dV, J NK dA is the number of the small molecules per unit time crossing an
element of area N

¯
dA, and C be the concentration of the solvent number. The poly-

mers and the individual small molecules are assumed to be incompressible, which is
reflected in the incompressibility condition

1 + v C(F
¯̄
, C) = J (4)

where ν is the volume per small molecule and ν C is the volume of the small molecules
in the gel divided by the volume of the dry polymers.

2.2 Constitutive equations

Standard reasoning in thermodynamics accounting for condition of molecular in-
compressibility through the use of a field of Lagrange multiplier Π results in (refer
e.g., [6, 19, 39] and also to above mentioned references)

siK =
∂W(F

¯̄
, C)

∂F
¯̄

− Π JHiK , µ =
∂W(F

¯̄
, C)

∂C
+ Π v (5)

where W is the free energy of the gel and H
¯̄

is the transpose of the inverse of the
deformation gradient F

¯̄
, , namely, HiKFiL = δKL and HiKFjK = δij

1.
For the dissipation due to solvent migration, we can correlate the solvent flux, J, to

its driving force, the chemical potential gradient, as

J = −M∇Xµ (6)

The spatial differential operator ∇X is taken with respect to the reference configu-
ration. The kinetic tensor M may not be constant in general, but is all positively
definite.

The choice of an explicit form of the free-energy function W for elastomers and soft
tissues is a controversial problem. This choice is needed in order to solve the initial
value problem under consideration. Following Flory and Rehner [15], W has the form
W(F

¯̄
, C) = Ws(F

¯̄
, C) + Wm(C) reflecting the stretching network of the polymers, Ws,

and the mixing of the polymers and the small molecules, Wm. These two terms are
taken to be

Ws(F
¯̄
, C) =

1

2
NkT(FiK FiK − 3 − 2 log J)

Wm(C) = −
kT

v

[
vClog

(
1 +

1

v C

)
+

χ

1 + v C

]
(7)

1Algebraic identity:
∂ (det F)

∂FiK
= det FHiK
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where N is the number of polymer chains in the gel per unit volume of the dry
polymers, v is the volume per solvent molecule, T is the absolute temperature, and k
is the Boltzmann constant. The first term inside the bracket comes from the entropy of
mixing, and the second from the enthalpy of mixing. The Flory interaction parameter
χ is a dimensionless measure of the enthalpy of mixing, with representative values
χ = 0− 1.2. For applications that prefer gels with large swelling ratios, materials with
low χ values are used. The enthalpy of mixing motivates the small molecules to enter
the gel if χ < 0, but motivates the small molecules to leave the gel if χ > 0. The
chemical potential and stresses are normalized by k T and k T/v, respectively. The

material properties of the hydrogel is fully determined by three parameters: NkT, kT
v ,

and χ. The first two combine to give one dimensionless parameter, Nv. It is well
known that NkT defines the initial shear modulus of the polymer network, with the
number N proportional to the crosslink density ρc,[39, 38]. A representative value of
the volume per molecule is v = 10−28 m3. At room temperature, k T = 4× 10−21 J and
k T/v = 4 × 107 Pa. In the numerical examples below, we will take the values N v =
10−3 and χ = 1.2. The normalized chemical potential is mimicked by a temperature-
like variable, which is uniform in the polymeric gel, and is incremented as a loading
parameter. The whole governing equations and the thorough approach have been
implemented into Abaqus via a UHYPER subroutine. [20, 22, 40].

3 THE AXISYMMETRIC RVE MODEL

The voids are assumed to be uniformly distributed inside the matrix material as
shown in Figure 1-a. Specifically, the position of these voids are presumed to form a
hexagonal crystal lattice in such a way that the shape of the unit microstructure is a
prism with hexagonal basis face with inner radius Ro, height 2 Lo, and containing an
initially spherical void with radius ro. In order to reduce the effort of calculations to
a two-dimensional analysis, the cross section of the unit microstructure has been sim-
plified as a cylinder, as done in [5, 24]. Due to this approximation, the axisymmetric
RVE is shown in Figure 1-d for which a cylindrical reference coordinate system with
radial coordinate R, circumferential angle Θ and axial coordinate Z is used for the
analysis. In the initial undeformed configuration, the RVE model is a cylinder with
diameter 2 Ro and height 2 Lo = 2 Ro (for the sake of simplicity). The initial axisym-
metric RVE geometry is then simply characterized by the initial void volume fraction

fo given by fo =
2
3

(
ro
Ro

)3
. The RVE model is assumed to be subjected to axisymmetric

deformations with constant prescribed overall triaxiality so that all field quantities are
independent of Θ.

As a consequence of the lattice periodicity all outer planes of the unit cell have to
move as rigid planes in coordinate directions during the process of loading (Figure 2).
The faces at R = Ro and Z = Lo will have a uniform normal displacements and
their mutual orientations will be maintained. These requirements impose the RVE
model to remain, during the finite strain deformation process, a cylinder which is

6
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×

2 Ro

2
L

o

×

×

a)
b) c)

d)

Axisymmetric RVE

E
¯ X

E
¯ Y

E
¯ Z

E
¯ R

E
¯ Z

Figure 1: Three-dimensional hexagonal arrangement of spherical voids. a) Schematic
representation of a porous polymeric gel which is considered as an array of unit

hexagonal RVEs, each containing a single spherical void. The porous unit hexagonal
microstructure shown in (b) is approximated by the axisymmetric RVE model

displayed in (d).

thus characterized in an arbitrary state by ℓR = Ro + uA
R and ℓZ = Lo + uA

Z where uA
R

and uA
Z are the radial and axial components displacement of the upper right corner A.

Because of these constraints, only one quarter geometry of the RVE model (0 ≤ R ≤
Ro, 0 ≤ Z ≤ Lo) needs to be analyzed and is drawn in Figure 2.

The overall deformation of the RVE model can be calculated from the normal dis-
placements of the outer faces. The macroscopic total logarithmic strain tensor and
Cauchy stress tensor possess the same principal directions, which are the radial and
axial directions. The effective strain Ee defined by Ee =

2
3 |EZ − ER| where ER and EZ

are the macroscopic principal strains, is chosen as the overall deformation of the RVE
model and the independent variable for presenting most results. The effective von
Mises stress Σe , hydrostatic stress Σh, and the overall stress triaxiality T result from

Σe = |ΣZ − ΣR| , Σh =
1

3
(ΣZ + 2 ΣR) , T :=

Σh

Σe
=

1

3

(ΣZ + 2 ΣR)

|ΣZ − ΣR|
(8)

where ΣR is the remote macroscopic principal stresses in both R and Θ directions,
and ΣZ in the Z-one. The RVE model is presumed to be remotely loaded with pre-
dominant axial stress; that is the axial direction is assumed to be the maximum prin-
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×

×

Ro

L
o

×

A

ΣR

ΣZ

Mechanical loading

ΣZ ≥ 0

ΣR = α ΣZ

α is kept constant

T =
1

3

(1 + 2α)

|1 − α|
E
¯ R

E
¯ Z

Figure 2: Axisymmetric RVE model containing an isolated spherical void and to be
FE analyzed.

cipal direction and the components of the overall stress tensor Σ
¯̄

are then such that
ΣZ ≥ ΣR.

× ×

Solvent with chemical potential µ

Polymer imbibed with a solvent which migrates
into (out of) the RVE model through its boundary

Dry polymer
network Swelling

Deswelling

E
¯ R

E
¯ Z

Figure 3: Swelling-deswelling of the axisymmetric RVE model. After swelling the
porosity is maintained constant.

For metal, it is a well known fact that the stress triaxiality ratio T is the most im-
portant driving force to void growth in porous materials [5, 24]. On that account, a
general problem in RVE model computations is to maintain T constant in the course
of loading irrespective of the large displacement of the cell faces and the unstable
stiffness behaviour. The finite elements used were eight-nodes quadrilateral isopara-
metric elements. The mesh surrounding the void is slightly refined and it was judged
to be sufficiently refined for this study (800 Q8 elements). Care has been taken to in-
sure that the meshes were sufficiently refined and that the results were independent of
the degree of refinement. The Riks’s arc-length method in Abaqus is used in order to
handle the inevitable instability of the RVE and to proceed with further calculations.
The overall stress and strain rates are directly computed from the reaction forces and
the applied displacement rates. The actual void volume fraction f corresponding to
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the evolution of the microvoid is calculated using numerical integration from the up-
dated coordinates of the nodes at the void-matrix interface during the deformation of
the RVE model. The initial conditions and loading rate of the RVE model are chosen
such that inertial effects are negligible. No artificial damping has been used in all
computations. The value of the imposed axial displacement uA

z depends essentially
upon the value of fo and the fixed stress triaxility T as well. In addition, the imposed
boundary conditions have to be ramped up using a function of time over the first part
of calculation (typically the first 1-10%).

Before to proceed further, it is important to mention that the prevalent approach of
modeling the porous biomaterial at hand as an assemblage of axisymmetric unit RVEs
reduces the amount of work required for the multiscale analysis. This convenience
comes with an approximation since this assemblage cannot patently fill the space
continuously, and then is only suited for moderate porosity. Furthermore, the used
axisymmetric RVEs do not allow the adjustment of arbitrary stress ratios in three
directions.

4 NUMERICAL RESULTS

For the simulation presented hereafter, the chosen hydrogel properties are the fol-
lowing: initial polymer volume fraction φo = 0.90, degree of cross-linking Nv =
0.0010, and parameter χ = 0.10. At the reference state corresponding to an initially
swollen hydrogel of properties φo, Nv and χ, its initial chemical potential is prescribed

by µo/kT given by µo/kT = Nv(φ1/3
o − φo) + ln(1 − φo) + φo + χφ2

o = −1.3216. This
prescribed value is accounted for in Abaqus as an initial condition [40]. The porosity
fo takes on values 0.10, 0.50, 1.0, 2.0, 5.0 and 10.0%. The stress triaxiality T ranges from
1/3 (pure tension) to 2 (severe stress state for soft materials). However, in the interest
of place, hereafter only the value fo = 5% is considered.

The swelling-mechanical loading of the RVE model at hand may be summarised
as follows: (a) the polymer network of the RVE model with initial porosity fo is first
imbibed with solvent as shown in Figure 3. Subsequently, homogeneous swelling
occurs and the size of the RVE model changes a lot irrespective of the value of fo.
At equilibrium the chemical potential µ is homogeneous throughout the RVE model
which porosity after swelling turns out to be practically equal to fo. (b) The swelled
RVE model is then subjected to axial and lateral overall stresses under conditions of
constant prescribed overall stress triaxiality. Contour plots at the end of calculations
of the lagrangian strain component LE22 are shown in Figure 4 for T = 1

3 , 1 and 2. For

each of these values of T, the evolution of the normalized effective stress, Σe
kT and the

porosity f are displayed in Figure 5 as a function of the equivalent strain Ee.
It is to be noted that for moderate stress triaxiality (e.g., T = 1

3 corresponding to
a tensile test), the equivalent stress Σe continuously increases with equivalent strain
Ee. The same applies to the variations of void volume fraction f in terms of Ee, (red
curves in Figure 5). By way of example, it can be observed from Figure 5 that for T = 1

(magenta curve) beyond the peak stress corresponding to Ee = 0.39, (Σe
kT )

max = 1.22×

9
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Freely swelled RVE model
(configuration before
mechanical loading)

(a) T = 1
3

(pure tension)

(b) T = 1

(c) T = 2
3.44 mm

3.
44

m
m

uz = 1.93 mm uz = 2.34 mm uz = 4.98 mm

E
¯ R

E
¯ Z

Figure 4: Distribution of lagrangian strain component LE22 at the end of calculations
and final deformation shape of the RVE model for fo = 0.05. The hydrogel properties

are φo = 0.90, Nv = 0.0010, and χ = 0.10. The mechanical loading of the freely
swelled RVE model has been performed under constant stress triaxiality ratio T = 1

3
(a), 1 (b), and 2 (c).
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Figure 5: Evolution of the normalized equivalent stress Σe
kT and the void volume

fraction f in terms of the macroscopic equivalent strain Ee of the RVE model. The
initial value of the void volume fraction is fo = 0.050 and along the whole process of

deformation the overall stress triaxiality T is kept constant.

10−3, and f = 38.6 %, the void volume fraction increases very quickly. Figures 6–8

shows the deformation of the RVE model and the evolution during the whole process
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of loading of the lagrangian strain component LE22 for T = 1/3 (a), T = 1 (b) and
T = 2 (c), respectively.

uz = 0.97 mm

uz = 1.97 mm

uz = 2.97 mm

uz = 3.97 mm

uz = 4.97 mm

f = 0.061 f = 0.117E
¯ R

E
¯ Z

Figure 6: Deformation of the RVE model and evolution of contours of the lagrangian
strain component LE22. The initial porosity is fo = 0.050 and along the whole

process of loading the triaxiality is kept constant: T = 1/3 (pure tension).

uz = 0.79 mm
uz = 1.87 mm

uz = 3.02 mm
uz = 4.05 mm

uz = 5.74 mm

f = 0.092 f = 0.600E
¯ R

E
¯ Z

Figure 7: Deformation of the RVE model and evolution of contours of the lagrangian
strain component LE22. The initial porosity is fo = 0.050 and along the whole

process of loading the triaxiality is kept constant: T = 2.

Figure 9 displays similar results as those shown in Fig. 5 for fo ranging from 0.1 % to
10.0 %. It is to be noted that for T = 1, each curve macroscopic equivalent stress versus
macroscopic equivalent strains has a maximum depending on the initial value of the
void volume fraction. Lower the initial value fo of the void volume fraction, higher the
reached value of the relevant peak stress. Table 1 shows the obtained associated values

of
(

Σe
k T

)max
, Ee, f , and the imposed axial displacements uZ for fo = 0.1, 0.5, 1.0, 2.0, 5.0

and 10.0 %. Beyond macroscopic peak stresses, the void volume fraction rapidly
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increases. In this connection, it should be kept in mind that special care would be
considered after maximum load occur in the vicinity of the boundary of void. Indeed,
it is well known that strong softening of the material result in localized deformation
and consequently the mesh size dependence. After the peak macroscopic stresses the
equivalent stress drops abruptly and the validity of the numerical results is expected
to quickly deteriorate because of mesh excessive distortion. In addition, it should be
important to keep in mind that for the analysis presented above a criterion for the
final failure of the intervoid ligament is clearly missing.

uz = 0.82 mm

uz = 1.79 mm
uz = 3.32 mm

uz = 3.95 mm

uz = 5.89 mm

f = 0.120 f = 0.606E
¯ R

E
¯ Z

Figure 8: Deformation of the RVE model and evolution of contours of the lagrangian
strain component LE22. The initial porosity is fo = 0.050 and along the whole

process of loading the triaxiality is kept constant: T = 2.

0

0.50

1.00

1.50

2.00

0 0.10 0.20 0.30 0.40 0.50
Ee

Equivalent Strain

(
Σe

k T

)
× 103

N
o

rm
al

iz
ed

eq
u

iv
al

en
t

st
re

ss fo

0.1 %
0.5 %
1.0 %
2.0 %
5.0 %

10.0 %

0

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0 0.10 0.20 0.30 0.40 0.50
Ee

Equivalent Strain

f

V
o

id
v

o
lu

m
e

fr
ac

ti
o

n

Figure 9: Evolution, for T = 1, of the normalized effective stress and the void volume
fraction in terms of the macroscopic effective strain Ee of the RVE model.
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Table 1: Normalized maximum macroscopic equivalent stresses
(

Σe
k T

)max
and the

corresponding macroscopic equivalent strain Ee, void volume fraction f , and axial
displacements uZ. The stress triaxiality T is equal to 1.

fo (%)

(
Σe

k T

)max

f (%) Ee uZ (mm)

0.1 2.35 × 10−3 15.8 0.53 2.75

0.5 1.93 × 10−3 20.9 0.47 2.50

1.0 1.74 × 10−3 23.9 0.44 2.40

2.0 1.53 × 10−3 26.9 0.41 2.23

5.0 1.22 × 10−3 38.6 0.37 2.33

10.0 0.96 × 10−3 46.7 0.34 2.32

5 CONCLUDING REMARKS

This study focuses on the mechanical behaviour of porous polymeric gels intended
for use in tissue engineering and regenerative medicine as scaffolds. Following Hong
et al. [20] and Koplik and Needleman [24], we present a computational framework
for investigating the growth of microvoids initially assumed to be spherical and uni-
formly distributed inside the matrix material. The evolution of the size and the shape
of the microvoid has been obtained under the conditions that i) the ambient chemical
potential of the solvent is fixed, ii) the chemical equilibrium prevails at the interface
between the polymer and the environment interface, and iii) the mechanical loading
of the RVE is such that the stress triaxiality ratio is maintained constant throughout
the whole process of deformation. The following conclusions are drawn:
• For a porous polymeric gel, the amount of solvent molecules inside the material

is related to the chemical potential of the environment. The degree of swelling
is obtained by solving equations that account for the simultaneous interaction of
mechanics and absorption. It can be determined with a free swelling stretch, using
a finite element analysis.

• As an expected result, the value of the initial void volume fraction has a large
influence on the overall mechanical behaviour of a porous polymeric gel. Higher the
initial value of the void volume fraction, lower the resistance (maximum equivalent
stress) of the polymeric gel.

• The size of the swollen axisymmetric porous RVE model does not depend on the
initial value of the void volume fraction and the porosity is kept constant after
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swelling.
• For moderate stress triaxiality, e.g., T = 1

3 , the macroscopic equivalent stress con-
tinuously increases with macroscopic equivalent strain. The same applies to the
variations of the void volume fraction.

• For high stress triaxiality, the curves macroscopic equivalent stress vs macroscopic
equivalent strain display maximum depending on both the initial porosity and the
fixed value of the overall triaxiality.

• Finally, so far for the analysis presented above a criterion for the final failure of the
intervoid ligament is clearly missing.

The investigation of the effects of the constitutive parameters entering the theory,
namely, the number N of polymer chains per unit volume of the dry polymers, the
volume per solvent molecule v, and the Flory interaction parameter χ, on the overall
behaviour of a porous polymeric gel are contemplated as a future research work. The
fact of the matter is that this preliminary study could be of some relevance in regard
to failure of responsive polymeric gels. Numerous tissues and organs are hydrogel-
like in nature and several issues related to the mechanics of hydrogels remain open
(a short list is given in the review [28]). With increment of biomedical applications,
computational modelling to predict the performance of these biomaterials for use in
regenerative medicine and tissue engineering proves to be a valuable aid in assisting
understanding of the behaviour of hydrogels and their optimization as well.
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Abstract. The estimation of rupture in fibrous soft tissues has emerged as a central
task in medical monitoring and risk assessment of diseases such as aortic dissection and
aneurysms. In an attempt to address the challenges we have established a computational
framework within the context of crack phase-field modeling and proposed an energy-based
anisotropic failure criterion based on the distinction of isotropic and anisotropic material
responses. Numerically we compare that criterion with other anisotropic failure criteria,
in particular we analyze their capability to describe an admissible failure surface and how
a crack can be propagated. A canonical rate-dependent setting of the crack phase-field
model is formulated and solved in a weak sense by a standard Galerkin procedure featuring
a one-pass operator-splitting algorithm on the temporal side. The anisotropic failure
criteria are tested according to their performance on reflecting an admissible initiation,
and crack propagation with an emphasis placed upon the aortic dissection.

1 INTRODUCTION

Rupture of fibrous soft tissues involves tangled series of coupled biomechanical processes
imposing conspicuous limits on computational models to characterize physically relevant
failure. In this respect, mathematical models can help physicians to better assess the
risk of rupture involved in diseases such as aneurysms (Humphrey and Holzapfel [7]). In
an attempt to address the related issues we have established a mathematical framework
within the context of crack phase-field and proposed a novel energy-based failure criterion
based on a distinction of isotropic and anisotropic material responses (Gültekin et al. [3]).
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To date several contributions on failure criteria have been reported in the literature for
both isotropic and anisotropic materials, see, e.g., Hill [5] and Tsai and Wu [13]. However,
an account on their numerical performance, i.e. their capability to describe an admissible
failure surface and a crack propagation, is not yet presented, the main objective of this
communication. An anisotropic phase-field approach is formulated, enforcing the crack
growth along the direction of fibers. A rate-dependent setting of the crack phase-field
formulation is proposed which not only enhances the algorithmic stability upon macro-
cracking but also becomes physically justifiable as, e.g., the aortic dissection is observed
to be rate-dependent (Tong et al. [12]).

2 THEORY

This section deals with phase-field modeling of fracture in solids at finite strains featur-
ing the primary field variables, namely the deformation map ϕ and the crack phase-field
d in relation to the balance of linear momentum and the crack evolution, respectively.

2.1 The primary field variables of the multi-field problem

The coupled problem of fracture is described by ϕ and d, i.e.

ϕt(X) :

{
B × T → S,

(X, t) �→ x = ϕ(X, t),
d :

{
B × T → [0, 1],

(X, t) �→ d(X, t),
(1)

where ϕ maps a material point X ∈ B ⊂ R
3 in the reference configuration onto x ∈

S ⊂ R
3 located in the spatial configuration, while the crack phase-field d interpolates

between the intact (d = 0) and the ruptured (d = 1) state of the material. A key aspect
is to provide a diffusive crack topology by smearing out the sharp crack surface over a
solid domain using the length-scale parameter l (Miehe et al. [10, 8]). The sharp crack
surface topology at time t can be denoted by Γ(t) ⊂ R

2 in the solid B, with the definition
Γ(d) =

∫
Γ
dA. In contrast, a diffusive crack simply approximates the sharp crack surface

by a volume integral in the form of the regularized crack surface functional

Γl(d) =

∫

B

γ(d,∇d)dV, γ(d,∇d) =
1

2l
(d2 + l2|∇d|2), (2)

where ∇[•] denotes the gradient operator with respect to the reference coordinates, and γ
is the isotropic volume-specific crack surface. This can be extended to a class of anisotropic
materials via the introduction of an anisotropic volume-specific crack surface γ up to first
order, i.e.

γ(d,Q ⋆∇d) = γ(d,∇d), ∀Q ∈ G ⊂ O(3), (3)

where Q denotes the rotations in the symmetry group G, a subset of the orthogonal group
O(3) containing rotations and reflections, and ⋆ denotes a transformation operator. The
anisotropy is accounted by a second-order structure tensor L such that

L = l2[I+ ωM(M⊗M) + ωM′(M′ ⊗M′)], (4)
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which aligns the evolution of the crack according to the orientation of fibers in the con-
tinuum using the anisotropy parameters ωM and ωM′ that regulate the transition from
weak to strong anisotropy. The anisotropic volume-specific crack surface can now be
represented by the alternative form

γ(d,∇d;L) =
1

2l
(d2 +∇d · L∇d). (5)

2.2 Kinematics

The fundamental deformation measure at finite strain kinematics is the deformation
gradient, i.e.

F = ∇ϕ. (6)

Manifolds are equipped with the covariant reference metric tensor G and the spatial
metric tensor g transforming the co and contravariant objects in the Lagrangian and
Eulerian manifolds, respectively. Exploiting the multiplicative decomposition of F into a
volumetric part Fvol and an isochoric part F, with detF = 1, we have

F = FvolF with Fvol = J1/3I, F = J−1/3F, (7)

where the Jacobian J = detF > 0 characterizes the volume map of an infinitesimal
reference volume element onto the associated spatial element. Subsequently, we define
the unimodular part of the left Cauchy-Green tensor b and its first invariant Ī1 as

b = FG−1F
T
, Ī1 = trb. (8)

The anisotropic structure of fibrous soft tissues makes it necessary to consider additional
invariants. Hence, we introduce two reference unit vectors M and M′ representing the
mean fiber orientations, with their spatial counterparts m = FM and m′ = FM′ idealiz-
ing the micro-structure. Following this, we describe the additional invariants

I4 = g : (m⊗m), I6 = g : (m′ ⊗m′), (9)

expressed by the structure tensors Am
= m⊗m and A

m
′ = m′ ⊗m′.

2.3 Constitutive modeling of artery walls

The effective Helmholtz free-energy function Ψ0 describes the local anisotropic mechan-
ical response of the intact solid. We assume a specific form which comprises the effective
volumetric part U0, the isotropic part Ψiso

0 and the anisotropic part Ψani
0 according to

Ψ0(g,F,Am
,A

m
′) = U0(J) + Ψiso

0 (g,F) + Ψani
0 (g,F,A

m
,A

m
′), (10)

in the sense of Dal [1]. It needs to be underlined that in (10) the multiplicative decomposi-
tion of F is only used upon the matrix response; in other words, we omit the multiplicative
decomposition of F for the fiber response. The effective volumetric part is given by

U0(J) = κ(J − lnJ − 1), (11)
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while Ψiso
0 and Ψani

0 are functions of the invariants according to

Ψiso
0 (g,F) = Ψ̂iso

0 (Ī1), Ψani
0 (g,F,A

m
,A

m
′) = Ψ̂ani

0 (I4, I6), (12)

which take on the neo-Hookean and exponential models according to Holzapfel et al. [6]

Ψ̂iso
0 (Ī1) =

µ

2
(Ī1 − 3), Ψ̂ani

0 (I4, I6) =
k1
2k2

∑
i=4,6

{exp[k2(Ii − 1)2]− 1}, (13)

representing the elastic response of the ground matrix and the two distinct families of
collagen fibers, respectively. To give an account of the parameters, κ denotes the bulk
modulus in (11), while µ indicates the shear modulus in (13)1. The parameters k1 and k2
in (13)2 denote a stress-like and a dimensionless parameter, respectively. The anisotropic
part contributes to the mechanical response only when a family of fibers is under extension,
i.e. I4 > 1 and I6 > 1 [6]. The derivations of the corresponding constitutive response, i.e.
the effective Kirchhoff stress tensor τ 0 and the effective elasticity tensor C0 can be found
in Gültekin et al. [4].

2.4 Variational formulation based on power balance

For a degrading anisotropic solid with two families of fibers, the Helmholtz free-energy
function Ψ can be written as

Ψ(g,F,A
m
,A

m
′; d) = g(d)Ψ0(g,F,Am

,A
m

′), (14)

where Ψ0 is the effective free energy of the hypothetically intact solid according to (10).
The explicit form of the monotonically decreasing quadratic degradation function g is

g(d) = (1− d)2, (15)

which describes the degradation of the solid as d evolves, along with appropriate growth
conditions [2, 3, 4]. Hence, the volumetric, isotropic and anisotropic parts of the free-
energy function Ψ = U + Ψ̂iso + Ψ̂ani for a degenerating material become

U(J, d) = g(d)U0(J), Ψ̂iso(Ī1; d) = g(d)Ψ̂iso
0 (Ī1), Ψ̂ani(I4, I6; d) = g(d)Ψ̂ani

0 (I4, I6), (16)

respectively. We now write the rate of the energy storage functional E by considering the
time derivative of the isotropic and the anisotropic contributions of (16)2,3 integrated over
the domain, i.e.

E(ϕ̇, ḋ;ϕ, d) =

∫

B

(τ : g∇xϕ̇− fḋ)dV, (17)

where ∇x[•] denotes the gradient operator with respect to the spatial coordinates. We
have defined the Kirchhoff stress tensor τ̂ and the energetic force f such that

τ = g(d)(τ iso
0 + τ ani

0 ), f = −∂d[U(J, d) + Ψ̂iso(Ī1; d) + Ψ̂ani(I4, I6; d)], (18)
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where τ is essentially obtained via the effective isotropic and anisotropic Kirchhoff stresses
τ iso
0 and τ ani

0 , respectively. Meanwhile, f can be interpreted as the work conjugate quantity
to ḋ. The external action on the body gives the external power functional P, i.e.

P(ϕ̇) =

∫

B

ρ0γ̃ · ϕ̇dV +

∫

∂Bt

t̃ · ϕ̇da, (19)

where ρ0, γ̃ and t̃ represent the material density, the prescribed body force and the spatial
surface traction, respectively. In what follows, the dissipation functional D accounts for
the dissipated energy in the body is given as

D(ḋ) =

∫

B

gc[δdγ(d,∇d;L)]ḋdV, (20)

where δdγ defines the variational derivative of the volume-specific crack surface γ, whereas
gc is the critical fracture energy (Griffith-type critical energy release rate), see Miehe et
al. [10, 8] and Gültekin et al. [3].

Concerning thermodynamics, D has to be non-negative for all admissible deformation
processes, a primary demand of the second law of thermodynamics. This inequality is
a priori fulfilled by a the local form of (20) featuring a positive and convex propensity
(Miehe et al. [10]). The local form of (20) can be stated by the principle of maximum
dissipation via the following constrained optimization problem

gc[δdγ(d,∇d;L)]ḋ = sup
β∈E

βḋ, (21)

which can be solved by a Lagrange method yielding

gc[δdγ(d,∇d;L)]ḋ = sup
β,λ≥0

[βḋ− λtc(β; d,∇d)], (22)

where the local driving force β, dual to ḋ, and the Lagrange multiplier λ enforce the
constraint. In addition, the threshold function tc delineating a reversible domain E is

E(β) = {β ∈ R | tc(β; d,∇d) = β − gc[δdγ(d,∇d;L)] ≤ 0}. (23)

Finally, the extended dissipation functional Dλ reads

Dλ(ḋ, β, λ; d) =

∫

B

[βḋ− λtc(β; d,∇d)]dV. (24)

2.4.1 Mixed rate-independent variational formulation based on power bal-

ance

The sum of the functionals (17), (19) and (24) describes a rate-type potential giving
rise to the power balance, i.e.

Πλ = E +Dλ − P. (25)

5

143



O. Gültekin, H. Dal and G.A. Holzapfel

On the basis of the rate-type potential (25), the mixed saddle point principle for the
quasi-static process states

{ϕ̇, ḋ, β, λ} = Arg
{

inf
ϕ̇∈Wϕ̇

inf
ḋ∈W

ḋ

sup
β,λ≥0

Πλ

}
, (26)

with the admissible domains for the primary variables Wϕ̇ = {ϕ̇ | ϕ̇ = 0 on ∂Bϕ} and
Wḋ = {ḋ | ḋ = 0 on ∂Bd}. By considering the variation of Πλ we obtain the Euler-
Lagrange equations describing the mixed multi-field problem for the rate-independent
fracture of an anisotropic hyperelastic solid, i.e.

1: Jdiv(J−1τ ) + ρ0γ̃ = 0,

2: β − f = 0,

3: ḋ− λ = 0,

(27)

along with the Karush-Kuhn-Tucker-type loading-unloading conditions ensuring the prin-
cipal of maximum dissipation in case of an evolution of the crack phase-field parameter
d, i.e. λ ≥ 0, tc ≤ 0 and λtc = 0.

2.4.2 A mixed rate-dependent variational formulation based on power bal-

ance

Now we deal with the viscous extension of the variational approach and introduce a
Perzyna-type viscous extension of D such that

Dη(ḋ, β; d) =

∫

B

[
βḋ−

1

2η
�tc(β; d,∇d)�2

]
dV, (28)

where the viscosity η determines the viscous over-force governing the evolution of ḋ. In
(28) the positive values for the threshold function tc are filtered out by the ramp function
�x� = (x+ |x|)/2. The corresponding viscous rate-type potential reads

Πη = E +Dη − P. (29)

On the basis of the rate-type potential (29), we establish a mixed saddle point principle
for the quasi-static process, i.e.

{ϕ̇, ḋ, β} = Arg
{

inf
ϕ̇∈Wϕ̇

inf
ḋ∈W

ḋ

sup
β≥0

Πη

}
, (30)

with the admissible domains for the primary state variables. One can retrieve the coupled
set of Euler-Lagrange equations for the rate-dependent fracture by simply taking the
variation of Πη, i.e.

1: Jdiv(J−1τ ) + ρ0γ̃ = 0,

2: β − f = 0,

3: ḋ− �tc(β; d,∇d)�/η = 0,

(31)

The explicit form of the threshold function tc recasts the equality (31)3 in the form

f = ηḋ+ gcδdγ(d,∇d). (32)

6
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2.5 Crack driving function and failure Ansatz

Focusing on the rate-independent case in (32), where η → 0, we elaborate on the
energetic force (18)2. Accordingly, we substitute (15) and (16) into (18)2 to arrive at

f = 2(1− d)(U0 + Ψ̂iso
0 + Ψ̂ani

0 ) = 2(1− d)Ψ0. (33)

By substituting (33) into (32) for the rate-independent case we obtain (the calculation of
the variational derivative can be found in Gültekin et al. [3])

2(1− d)
Ψ0

gc/l
= d−∇ · (L∇d). (34)

With this notion at hand, we can define the dimensionless crack driving function

H =
Ψ0

gc/l
. (35)

As discussed in Miehe et al. [9] the dimensionless characteristics of H allows the incor-
poration of different failure criteria. A particular form of the failure Ansatz is postulated
in accordance with two significant conditions, i.e. the irreversibility of the crack and the
positiveness of H ensuring that the crack growth solely takes place upon loading, i.e.

H(t) = max
s∈[0,t]

[
�H(s)− 1�

]
. (36)

With these adjustments (34) takes on the following form

2(1− d)H = d−∇ · (L∇d). (37)

Bearing this in mind, we recall the rate-dependent case for η �= 0, i.e.

2(1− d)H = d−∇ · (L∇d) + ηḋ, (38)

which compares to (32) with the replacement of the dimensional energetic force by the
dimensionless failure Ansatz, the cornerstone of the crack phase-field modeling.

2.6 Anisotropic failure criteria

The dimensionless crack driving function (35) already reflects an energy-based criterion
for a general isotropic material. However, we know that most fibrous soft tissues exhibit
an anisotropic morphology, thereby an anisotropic mechanical response is expected. We,
therefore, provide a short description of anisotropic failure criteria which may manifest
the rupture phenomena in coherence with clinical observations. For simplicity, the ensu-
ing formulations are established according to the assumption that the principal axes of
anisotropy lie on the axes of reference. Nonetheless, transformation of stress components
can be achieved without much effort [4].

7
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2.6.1 Energy-based anisotropic failure criterion

Two distinct failure processes are assumed to govern rupture of the ground matrix and
the fibers as suggested by Gültekin et al. [3]. Accordingly, the energetic force (18)2 can
be additively decomposed into an isotropic part fiso and an anisotropic part fani such that

fiso = 2(1− d)(U0 + Ψ̂iso
0 ), fani = 2(1− d)Ψ̂ani

0 , (39)

which, in their turn, modify (34) into two distinct fracture processes which are

(1− d)H = d−
1

2
∇ · (L∇d), with H = H

iso
+H

ani
, (40)

where the dimensionless crack driving functions are defined as

H
iso

=
Ψ̂iso

0

gisoc /l
, H

ani
=

Ψ̂ani
0

ganic /l
. (41)

Therein, gisoc /l and ganic /l are the distinct critical fracture energies over the length scale
for the ground matrix and for the fibers, respectively. Finally, we provide the modified
forms of the rate-dependent and rate-independent cases for the crack evolution, i.e.

(1− d)H = d−
1

2
∇ · (L∇d), (1− d)H = d−

1

2
∇ · (L∇d) + ηḋ. (42)

For more details regarding the derivations see [3, 4].

2.6.2 Stress-based anisotropic Tsai-Wu failure criterion

The Tsai-Wu criterion is based on the strength of the material at which the stress space
intercepts the assumed failure surface (Tsai and Wu [13]). Accordingly, the dimensionless
crack driving function with respect to the effective Cauchy stress tensor σ0 assumes a
composition of two scalar functions, i.e.

H = T : σ0 + σ0 : T : σ0, (43)

where T and T denote the second and fourth-order strength tensors, respectively. Through
assumptions and simplifications introduced by symmetry relations we end up with

Tii =
1

(σu
i )

2
(44)

for the diagonal terms of the fourth-order strength tensor related to ultimate normal and
shear stresses σu

i , with i ∈ {1, . . . , 6}.

8
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2.6.3 Stress-based anisotropic Hill failure criterion

Considered as the anisotropic extension of the von Mises–Huber criterion, the Hill
criterion (Hill [5]) uses a quadratic form of H such that

H = σvm
0 : T : σvm

0 , (45)

where σvm
0 represents the effective von Mises stress tensor. The components of σvm

0 can
be defined in terms of general stress components, i.e.

σvm
01

= σ01 − σ02 , σvm
02

= σ02 − σ03 , σvm
03

= σ03 − σ01 ,

σvm
04 = σ04 , σvm

05 = σ05 , σvm
06 = σ06 .

(46)

The fourth-order strength tensor T pertains to the effective normal stresses and shear
stresses [4].

2.6.4 Principal stress criterion

Developed on the basis of principal stresses the criterion by Raina and Miehe [11]
reports on the spectral decomposition of the effective Cauchy stress tensor and takes the
positive principal stresses into account, i.e.

σ+
0 =

3∑
i=1

�σ0i�ni ⊗ ni, (47)

where σ0i denote the effective principal stresses, and ni are the corresponding eigenvectors
for i ∈ {1, 2, 3}. Accordingly, H is rewritten as

H = σ+
0 : T : σ+

0 , (48)

where the fourth-order strength tensor T reads in the index notation

(T)ijkl =
1

4σ2
crit

(AikAjl + AilAjk), (49)

where σcrit denotes the reference critical stress associated with uniaxial loading in a certain
axis that can be conceptually replaced by an ultimate stress. Therein, A is expressed in
index notation for i, j, k, l ∈ {1, 2, 3}, for which details are provided in [11].

3 NUMERICAL EXAMPLES

We now briefly demonstrate the performance of the proposed model applied to fracture
of a fibrous soft tissue for which the crack initiation and propagation associated with
different failure criteria are compared for simple yet representative numerical examples.
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Figure 1: Failure surfaces in regard to Cauchy stresses σxx, σyy and σzz in kPa at which the
failure conditions are satisfied, leading to d > 0 for (a) the energy-based; (b) the Tsai-Wu; (c)
the maximum principal stress; (d) the Hill failure criterion (adopted from Gültekin et al. [4]).

3.1 Numerical investigation of the failure surfaces

The first example deals with the onset of micro-cracking with regard to distinct failure
criteria, as mentioned in Section 2.6. The problem setup involves a homogeneous case
with a unit cube discretized by one hexahedral element resolving the analytical solution
for the deformation and stress. The sample, regarded as transversely isotropic, undergoes
a series of uniaxial and biaxial deformations (for details see Gültekin et al. [4]).

Figures 1(a),(b) and (c) illustrate the resulting failure surfaces at the instance when
d �= 0 for the energy-based, Tsai-Wu and the principal stress criterion, respectively. The
results conspicuously retrieve ellipsoidal failure surfaces. Figure 1(d) indicates the failure
surface for the Hill criterion. In fact, this criterion induces surfaces diverging from being
elliptic. In particular, the isotropic failure envelope on the yz-plane eventually becomes
discernable, see Fig. 1(d), which recovers the von Mises–Huber criterion, as expected.

3.2 Peel test investigated with different failure criteria

The second example shows a peel test alluding to aortic dissection. This benchmark,
with an initial tear, models a hypothetical artery comprised of a single family of fibers
with orientation M (again for more details see [4]).

The two arms of the strip are separated by an initial tear and pulled apart in opposite

10
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10

d

(a)

(b)

(c)

(d)

Figure 2: Evolution of the crack phase-field d for (a) the energy-based; (b) the Tsai-Wu; (c) the principal
stress criterion, as the arterial tissue with an initial tear is being pulled in two opposite directions.

directions, see Fig. 2. Analysis results render the stress-based criteria susceptible to
instabilities in terms of crack growth upon the initiation of macro-cracks in the material
thereby the convergence of the algorithm becomes problematic. Moreover, the use of
stress-based criteria leads to a crack propagation susceptible to boundary effects not
observed in the case of the energy-based criterion.

4 CONCLUSION

A number of anisotropic failure criteria, essentially based on free energy or stress, was
compared in terms of their capability to manifest admissible anisotropic failure surfaces
and crack propagations for simple boundary-value problems (BVPs). On the theoretical
side, the anisotropic crack phase-field model, established according to a continuous vari-
ational setup due to a power balance, provided the backbone of our modeling endeavors.
On the numerical side, we focused on the failure surfaces of the used criteria induced for
a homogeneous problem subjected to uniaxial and planar biaxial deformations. A peel
test was also analyzed and the respective dissections were examined. Results favor the
energetic-based criterion to accomplish a stable crack growth for the analyzed 3D BVPs
blended with anisotropy at finite strains.

11

149



O. Gültekin, H. Dal and G.A. Holzapfel

REFERENCES

[1] H. Dal. Quasi-incompressible and quasi-inextensible element formulation for transversely
anisotropic materials. Int. J. Numer. Meth. Engng, 2017. submitted.

[2] O. Gültekin. A Phase Field Approach to the Fracture of Anisotropic Medium. Master’s
Thesis, University of Stuttgart, Institute of Applied Mechanics (CE), 2014.

[3] O. Gültekin, H. Dal, and G. A. Holzapfel. A phase-field approach to model fracture of ar-
terial walls: theory and finite element analysis. Comput. Meth. Appl. Mech. Eng., 312:542–
566, 2016.

[4] O. Gültekin, H. Dal, and G. A. Holzapfel. Numerical aspects of anisotropic failure in soft
biological tissues favor energy-based criteria: A rate-dependent mixed crack phase-field
model. Comput. Meth. Appl. Mech. Eng., 2017. submitted.

[5] R. Hill. A theory of the yielding and plastic flow of anisotropic metals. Proc. R. Soc. Lond.
A, 193:281–297, 1948.

[6] G. A. Holzapfel, T. C. Gasser, and R. W. Ogden. A new constitutive framework for arterial
wall mechanics and a comparative study of material models. J. Elasticity, 61:1–48, 2000.

[7] J. D. Humphrey and G. A. Holzapfel. Mechanics, mechanobiology, and modeling of human
abdominal aorta and aneurysms. J. Biomech., 45:805–814, 2012.

[8] C. Miehe, M. Hofacker, and F. Welschinger. A phase field model for rate-independent crack
propagation: Robust algorithmic implementation based on operator splits. Comput. Meth.

Appl. Mech. Eng., 199:2765–2778, 2010.

[9] C. Miehe, L.-M. Schänzel, and H. Ulmer. Phase field modeling of fracture in multi-physics
problems. Part I. Balance of crack surface and failure criteria for brittle crack propagation
in thermo-elastic solids. Comput. Meth. Appl. Mech. Eng., 294:449–485, 2015.

[10] C. Miehe, F. Welschinger, and M. Hofacker. Thermodynamically consistent phase-field
models of fracture: Variational principles and multi-field FE implementations. Int. J.

Numer. Meth. Engng, 83:1273–1311, 2010.

[11] A. Raina and C. Miehe. A phase-field model for fracture in biological tissues. Biomech.

Model. Mechanobiol., 15:479–496, 2016.

[12] J. Tong, T. Cohnert, P. Regitnig, J. Kohlbacher, R. Birner-Gruenberger, A. J. Schriefl,
G. Sommer, and G. A. Holzapfel. Variations of dissection properties and mass fractions
with thrombus age in human abdominal aortic aneurysms. J. Biomech., 47:14–23, 2014.

[13] S. W. Tsai and E. M. Wu. A general theory of strength of anisotropic materials. J. Compos.

Mater., 5:58–80, 1971.

12

150



IS - Computational Modeling of Ductile Fracture at Multiple ScalesA thermodynamically consistent cohesive damage model for the simulation of mixed-mode delamination

XIV International Conference on Computational Plasticity. Fundamentals and Applications
COMPLAS XIV
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Abstract. This work is devoted to the formulation of a new cohesive model for mixed-
mode delamination. The model is based on a thermodynamically consistent isotropic
damage formulation, with consideration of an internal friction mechanism that governs
the interaction between normal and shear opening modes.

1 INTRODUCTION

Delamination, i.e. the progressive decohesion between two layers, is one of the main
causes of failure for laminated composites. Delamination often develops under the pres-
ence of concurrent interlaminar tensile and shear stresses, leading to mixed-mode loading
conditions with variable mode ratios. Several experimental works [1, 2, 3] have shown
that the micro-mechanical mechanisms involved in the delamination phenomenon vary
with the mixed-mode ratio, with a transition from pure mode I loading characterized by
matrix cleavage and fiber pull-out, to mode II conditions dominated by the formations of
cusps and hackles. At the macroscopic scale, this causes the fracture energy to increase in
passing from Mode I to Mode II, as confirmed by results of experimental tests performed
on many different composite materials (see, for instance, [4, 5]). As an example, Figure 1
shows the values of fracture energy at different mode ratios reported in [6] and deriving
from different experiments performed with the Mixed Mode Bending test apparatus [7]
on AS4/3501-6 carbon/epoxy composite. Empirical relationships have been proposed in
the literature to define a failure locus able to interpolate the toughness variation over the
full mixed-mode range. Among them, it is worth mentioning the Power Law [8] and the
BK law [4], widely employed as delamination criteria.

Robust numerical simulation tools are mandatory to obtain accurate predictions of
the onset and propagation of delamination in real-life problems, characterized by variable
loading paths. The finite element simulation of the decohesion between layers is often
addressed by means of interface elements, whose constitutive behavior is modeled by a
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Figure 1: AS4/3501-6: fracture energy vs mode mixity

cohesive law. In the literature, one can find a huge number of works on the cohesive
modeling of delamination, (see, for instance, [9, 10, 11]). However, many of them ex-
hibit some limitations, such as the need of assumptions on the loading path, the lack of
thermodynamic consistency, or the inability to ensure the correct energy dissipation in
case of non-proportional loading paths. These drawbacks may affect the reliability of the
numerical results when mixed-mode loading conditions with variable mode mixity ratios
and/or non-proportional loading are considered.

This work proposes a new cohesive model, based on a thermodynamically consistent
formulation with isotropic damage. An internal friction parameter is introduced to handle
the coupling between normal and shear stresses. The overall fracture energy at any mode
ratio is an outcome of the model, without the need to introduce any empirical laws to
define the fracture energy variation with the mode-mixity ratio.

2 FORMULATION

Let us consider the zero-thickness 2D interface element with four nodes shown in Figure
2. Under the hypothesis of small openings, the relative displacement vector δ is computed
as the difference between the displacements of two corresponding points belonging to the
top and bottom edges respectively:

δ = δ+ − δ− (1)

A local reference frame is introduced in order to identify the normal and the tangen-
tial directions. Superscripts n and s will denote the normal and the shear components,
respectively, of tractions and opening displacements.

The starting point of the formulation is the introduction of the free energy per unit
surface Ψ, defined as:

Ψ =
1

2
K (〈δn〉−)2 +

1

2
(1− d)K (〈δn〉+)2 +

1

2
(1− d)K (δs)2 (2)

where K is the elastic stiffness of the interface and d the isotropic damage variable.
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Figure 2: 4-node interface element

Figure 3: Damage modes

The same elastic stiffness is considered in the normal and in the shear directions. The
Macauley brackets 〈 〉 are introduced to distinguish between the negative and the positive
part of the normal opening displacement, so that the unilateral effect is accounted for.
The cohesive tractions tn and ts and the strain energy release rate Y per unit damage
growth are obtained through the state equations:

tn = ∂Ψ
∂δn

= K〈δn〉− + (1− d)K〈δn〉+ ts = ∂Ψ
∂δs

= (1− d)Kδs (3)

Y = −∂Ψ
∂d

= 1
2
K (〈δn〉+)2 + 1

2
K (δs)2 (4)

For the sake of simplicity, in the following only the tensile case, i.e. δn ≥ 0, will be
considered.

The model is based on the definition of three different damage modes in the plane of
non-dimensional cohesive tractions, identified by the normal unit vectors n1, n2 and n3

(see Figure 3), whose interaction governs the cohesive interface evolution under mixed-
mode loading conditions. As can be seen from Figure 3, n1 defines the opening-dominated
mode, while n2 and n3 the two shear-dominated modes. The three normals are collected
in matrix N:

N =




n1

n2

n3


 =




1 0
sinα cosα
sinα − cosα


 (5)

where the angle α, playing the role of a parameter of internal friction, defines the incli-
nation of the two shear-dominated damage modes.
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A vector of effective cohesive stresses s = [s1 s2 s3]
T
is defined by projecting the vector

of dimensionless cohesive traction t along the three normals:

s = Nt (6)

where:

t =

[
t
n

t
s

]
=

[
tn

tn0
ts

ts0

]
(7)

being tn0 and ts0 the strengths in pure Modes I and II. Thus, eqn. 6 becomes:

s1 = t
T
n1 = t

n

s2 = t
T
n2 = t

n
sinα + t

s
cosα (8)

s3 = t
T
n3 = t

n
sinα− t

s
cosα

Let us now introduce the effective opening displacements w = [w1 w2 w3]
T
, represent-

ing the kinematic variables conjugated to the effective cohesive stresses s in the expression
of the free energy density Ψ and defined as the projection of the dimensionless relative
displacements vector δ onto a structural vector mi (see Figure 3). In matrix form:

w = Mδ (9)

where:

δ =

[
δ
n

δ
s

]
=

[
δn

δn0
δs

δs0

]
(10)

being δn0 and δs0 the relative displacements at the onset of delamination, i.e. corresponding
to tn0 and ts0. M is the matrix gathering the components of the three structural vectors
mi:

M =




m1

m2

m3


 =




a 0
b sin θ b cos θ
b sin θ −b cos θ


 (11)

being θ the angle defining the orientation of m2 and m3. As shown in Figure 3, m1

is aligned to n1 for symmetry considerations. The two unknown constants a and b are
determined by imposing that the elastic strain energy density Ψ remains the same in
passing from the direct to the effective variables, i.e.

1

2
tTδ =

1

2

(
s1w1 + s2w2 + s3w3

)
(12)

From eqn. 12, one obtains:

a = (tn0δ
n
0 − ts0δ

s
0 tanα tan θ) b =

ts0δ
s
0

2 cosα cos θ
(13)

Thus,

w1 = δ
T
m1 = (tn0δ

n
0 − ts0δ

s
0 tanα tan θ) δ

n

w2 = δ
T
m2 =

ts0δ
s
0

2 cosα cos θ

(
sin θδ

n
+ cos θδ

s
)

(14)

w3 = δ
T
m3 =

ts0δ
s
0

2 cosα cos θ

(
sin θδ

n − cos θδ
s
)
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Based on the definitions 6 and 9 of effective stresses and relative displacements, the
overall strain energy density can be decomposed into the sum of three distinct contribu-
tions, each one associated to a damage mode as:

Ψ =
1

2
tTδ =

1

2
s1w1

︸ ︷︷ ︸
Ψ1

+
1

2
s2w2

︸ ︷︷ ︸
Ψ2

+
1

2
s3w3

︸ ︷︷ ︸
Ψ3

(15)

By exploiting the decomposition of eqn. 15, three effective strain energies Y i released per
unit growth of damage can also be defined through the state equations as:

Y 1 = −∂Ψ1

∂d
=

1

2
(tn0δ

n
0 − ts0δ

s
0 tanα tan θ)

(
δ
n
)2

Y 2 = −∂Ψ2

∂d
=

1

4
ts0δ

s
0

[
tanα tan θ

(
δ
n
)2

+
(
δ
s
)2

+ (tanα + tan θ) δ
n
δ
s
]

(16)

Y 3 = −∂Ψ3

∂d
=

1

4
ts0δ

s
0

[
tanα tan θ

(
δ
n
)2

+
(
δ
s
)2

− (tanα + tan θ) δ
n
δ
s
]

It can be observed that:

Y 1 + Y 2 + Y 3 =
1

2
tn0δ

n
0

(
δ
n
)2

+
1

2
ts0δ

s
0

(
δ
s
)2

= Y (17)

with tn0 = Kδn0 and ts0 = Kδs0. The decomposition of the strain energy release rate Y into

its three components Y i depends on the ratio
tn0 δ

n
0

ts0δ
s
0
and on the angles α and θ. In the

applications, it will be assumed that:

θ = arctan

(
tn0δ

n
0

ts0δ
s
0

tanα

)
(18)

so that Y 1 is always positive for any positive value of δn. Under this hypothesis, either

Y 2 or Y 3 can be negative, but their sum Y 2 + Y 3 = 1
2

[
tanα tan θ

(
δ
n
)2

+
(
δ
s
)2
]
, rep-

resenting the fraction of the strain energy release rate associated to the shear-dominated
damage modes, is always positive.

An energy criterion is considered to express the damage activation function:

ϕ =

(
Y 1

χ1
0 + χ1

)k

+H(Y 2)

(
Y 2

χ2
0 + χ2

)k

+H(Y 3)

(
Y 3

χ3
0 + χ3

)k

− 1 ≤ 0 (19)

where H() is the Heavyside function introduced to exclude possible negative contribution
of Y 2 or Y 3 to damage activation, the exponent k is a parameter of the proposed cohesive
model and (χi

0 + χi) represents the current threshold of the i − th damage mode, being
χi
0 its initial value and χi an internal variable governing its evolution with damage and

determining the shape of the softening branch. In this work, a model exhibiting a bilinear
traction-separation law in pure Modes I and II (see Figure 5) is considered, although other
choices of the functional form of the traction-separation curves (e.g. with an exponential
strength decay) are in principle allowed. Figure 4 shows the damage activation surface at
the onset of decohesion, for increasing values of the internal friction angle α and k = 2
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Figure 4: First activation domain: a) for increasing values of α and k = 2; b) for increasing values of k
and α = 30◦

Figure 5: Bilinear cohesive laws in pure Modes I and II

(a) and for increasing values of the exponent k, while maintaining a constant value of the
angle α = 30◦ (b).

The expressions of χi
0 and χi for the bilinear law can be found by considering the

behavior in pure loading Modes. At first, let us consider a pure Mode II case, characterized
by δn = 0 and δs �= 0. Under this hypothesis, it holds that (subscriptsmI and mII denote
pure Mode I and Mode II loading conditions):

Y 1
mII = 0

Y 2
mII =

1
4
ts0δ

s
0

(
δ
s
)s

(20)

Y 3
mII =

1
4
ts0δ

s
0

(
δ
s
)s

Because of the symmetry of the two shear dominated damage modes, it turns out that
Y 2
mII = Y 3

mII , χ
2
0 = χ3

0 and χ2 = χ3. The initial thresholds χ2
0 and χ3

0 can be determined
by imposing that the activation function is zero at the onset of delamination, i.e. for
δ
s
= 1. Thus,
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Figure 6: Pure mode bilinear law

φ =

(
Y 2
mII |1
χ2
0

)k

+

(
Y 3
mII |1
χ3
0

)k

= 2

(
Y 2
mII |1
χ2
0

)k

− 1 = 0 → χ2
0 = χ3

0 = 2
1
k
1

4
ts0δ

s
0 (21)

Analogously, by considering a generic point along the softening branch, it is possible
to find the expressions of χ2 and χ3 as:

φ =

(
Y 2
mII

χ2
0 + χ2

)k

+

(
Y 3
mII

χ3
0 + χ2

)k

− 1 = 0 → χ2 = χ3 = 2
1
k
1

4
ts0δ

s
0

[(
δ
s
)2

− 1

]
(22)

If a pure mode case is considered, the relationship between the relative displacement
and the damage variable can be obtained on the basis of purely geometrical considerations,
given the triangular shape of the cohesive law depicted in Figure 6.

δ =
δcrδ0

δcr − (δcr − δ0)d
(23)

By substituting eqn. 23 into eqn. 22, one obtains:

χ2 = χ3 = 2
1
k
1

4
ts0δ

s
0

[
δscr

δscr − (δscr − δs0) d

]2
− χ2

0 (24)

While in pure Mode II one has Y 1
mII = 0, in a pure Mode I case, i.e. for δn �= 0 and

δs = 0, Y 2
mI and Y 3

mI are also non-zero:

Y 1
mI =

1
2
(tn0δ

n
0 − ts0δ

s
0 tanα tan θ)

(
δ
n
)2

Y 2
mI =

1
4
ts0δ

s
0

(
tanα tan θδ

n
)s

(25)

Y 3
mI =

1
4
ts0δ

s
0

(
tanα tan θδ

n
)s

At delamination onset (i.e. for δ
n
= 1), it holds that:

φ =

(
Y 1
mI |1
χ1
0

)k

+

(
Y 2
mI |1
χ2
0

)k

+

(
Y 3
mI |1
χ3
0

)k

− 1 = 0 → χ1
0 =

1

2

(
tn0δ

n
0 − ts0δ

S
0 tanα tan θ

)

[1− (tanα tan θ)k]
1
k

(26)
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while, by imposing that the activation function is zero for a generic dimensionless opening
displacement δ

n
, i.e.

φ =

(
Y 1
mI

χ1
0 + χ1

)k (
Y 2
mI

χ2
0 + χ2

)k

+

(
Y 3
mI

χ3
0 + χ2

)k

− 1 = 0 (27)

one obtains:

χ1 =

(
tn0δ

n
0 − ts0δ

S
0 tanα tan θ

)
{
1−

[(
δncr
δscr

δscr−(δscr−δs0)d

δncr−(δncr−δn0 )d

)2

tanα tan θ

]k} 1
k

1

2

(
δncr

δncr − (δncr − δn0 )d

)2

− χ1
0 (28)

The formulation of the proposed cohesive model is completed by the introduction of
the evolution law, expressing the damage rate as:

ḋ = −
∂φ
∂δn

δ̇n + ∂φ
∂δs

δ̇s

∂φ
∂d

=

∑3
i=1

(
∂φ
∂Y i

∂Y i

∂δn

)
δ̇n +

∑3
i=1

(
∂φ
∂Y i

∂Y i

∂δs

)
δ̇s

∑3
i=1

(
∂φ
∂χi

∂χi

∂d

) (29)

together with the classical loading/unloading conditions:

φ ≤ 0 ḋ ≥ 0 φḋ = 0 (30)

Using a classical argument, based on the Clausius-Duhem inequality for isothermal
processes, the mechanical dissipation can be proven to be always non-negative:

D = Y 1ḋ+ Y 2ḋ+ Y 3ḋ =
(
Y 1 + Y 2 + Y 3

)
ḋ = Y ḋ ≥ 0 (31)

The definition of the proposed cohesive model requires the following input parameters:
the fracture energies GIc, GIIc and the peak tractions tn0 , t

s
0 in pure Modes I and II, the

internal friction angle α and the exponent k appearing in the activation function φ. These
parameters can be identified based on the results of standard experimental tests, i.e. one
Double Cantilever Beam (DCB) test for pure Mode I, one End Notch Flexure (ENF) test
for pure Mode II and a set of Mixed Mode Bending (MMB) tests [7] for varying mode-
mixity ratio, from which a curve describing the evolution of the fracture energy with the
mode mixity ratio can be constructed.

3 NUMERICAL EXAMPLES

The accuracy of the proposed model is assessed at a material point level by prescribing
the two components of the relative displacement along different paths, for a number of
different parameter sets.

3.1 Consistency tests: proportional path

Radial loading conditions with varying separation angles are enforced by imposing
δn = (1− β) γ and δs = βγ, γ being a multiplier linearly increasing from 0 to γmax = 0.1
mm and β ∈ [0, 1] a parameter defining the mode-mixity. Pure Modes I and II are
recovered for β = 0 and β = 1, respectively. Identical cohesive properties are here
assumed for the pure Modes, considering GIc = GIIc = 0.1 kJ/m2 and tn0 = ts0 = 6 MPa.
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Figure 7: Fracture energy vs mode mixity for k = 2, GIc = GIIc, t
n
0 = ts0 for increasing values of angle

α

Under these hypotheses, it is possible to show analytically that the softening branch is
linear for any value of β (note that this is not the case for β �= 0 and GIc �= GIIc,
even when the traction-separation curves are bilinear in pure modes). Moreover, for an
exponent k = 2 (i.e. quadratic damage activation surface), the response is symmetric with
respect to β = 0.5, i.e. the response is the same for β1 and β2 = 1−β1. Figure 7 shows the
evolution of the overall fracture energy Gc with the mode mixity parameter β, computed
as the sum of the areas beneath the traction-separation curves. Increasing the internal
friction α has the effect of reducing the peak value, without changing its position because
of symmetry. It is noteworthy that for α = 30◦, the model is able to reproduce the case
of constant fracture energy. This result can be found also analytically, by imposing that
the activation function is zero at the onset of delamination and at complete decohesion,
so that the two corresponding values of γ0 and γcr are obtained:

γ0 =
δ0[

(1− β)4 + 6β2 (1− β)2 tanα2 + β4
] 1

4

, γcr = γ0
δcr
δ0

(32)

For α = 30◦, one obtains:

γ0 =
δ0√

1− 2β + 2β2
, γcr =

δcr√
1− 2β + 2β2

(33)

The fracture energy turns out to be independent of β, i.e.:

Gc =
1

2
K (1− β)2 γ0γcr +

1

2
Kβ2γ0γcr =

1

2
Kδ0δcr = const. (34)

3.2 Consistency test: non-proportional path

The non-proportional, zig-zag loading path proposed in [12] and depicted in Figure
8a is considered in this example. The adopted cohesive properties are listed in Table 1.
Figure 8b shows the evolution of the damage variable: since a monotonically increasing
separation is applied, the damage increases monotonically as expected. The resulting
traction-separation curves are shown in Figure 9.
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Table 1: Non proportional zig-zag path: cohesive properties

tn0 MPa ts0 MPa GIc
J
m2 GIIc

J
m2 α k

10 10 100 100 30 4

Figure 8: Zig-zag path: a) relative displacement history, b) damage variable evolution.

3.3 Mixed-mode bending (MMB) tests

The experimental data of the Mixed Mode Bending (MMB) tests performed by Reeder
[8] on three different fibre reinforced composites, namely AS4/PEEK, AS4/3501-6 and
IM7/977-2, are here considered to assess the capability of the proposed model to reproduce
the mixed-mode behaviour over the full range of mode-mixity ratios. The adopted cohesive
properties are reported in Table 2. The internal friction angle α and the exponent k are
the values that guarantees the best fitting of the experimental data. The fracture energy
is computed as the sum of the areas beneath the normal and shear traction-separation
curves, obtained with a series of radial paths in the δn − δs plane, with increasing mode-
mixity ratio. In figure 10 the numerical prediction of the fracture energy for varying
mode-mixity ratio is compared with the experimental data and with the results obtained
with a Power Law, whose exponents have been calibrated in [8]: the dots corresponds to
the experimental points, the red dashed lines are obtained with the empirical Power Law
and the solid lines are the results of the present model. In all the three cases, the model
is able to reproduce correctly the non-monotonic growth of the fracture energy with the
mode mixity ratio and the numerical results are very close to the best fitting obtained by
Reeder, without the need of adopting any empirical law.

4 CONCLUSIONS

A new isotropic damage cohesive model has been proposed for the simulation of delam-
ination under mixed-mode loading conditions. The model is based on the introduction of
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Figure 9: Zig-zag path: traction-separation laws.

Table 2: Cohesive properties

tn0 MPa ts0 MPa GIc
J
m2 GIIc

J
m2 α k

AS4/PEEK 80 100 779 1142 24 1.6
AS4/3501-6 45 48 90 600 25 12
IM7/977-2 70 130 310 1410 28 12

an internal friction dissipation mechanism, which allows to handle the coupling between
normal and shear damage modes. The resuting mixed-mode fracture energy is the out-
come of modes interaction, without the need to define a-priori any empirical law. The
model is thermodynamically consistent, even under arbitrary non proportional loading
paths, with variable mode ratio.
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Abstract. The process of blanking takes place in a short band with high accumulated strain 
undergoing various stress triaxialities. Enhanced implementations for shear and compressive 
loads of Gurson’s and Lemaitre’s model are directly compared for the same blanking setup. For 
a dual phase steel DP600 the Lemaitre parameters are identified completely by an inverse 
strategy, while the parameters of the Gurson’s porous plasticity model are predominantly 
gained from analysis with a scanning electron microscopy (SEM). The models are validated by 
comparison of force-displacement curves, time point and location of crack initiation. 
Advantages and disadvantages of both approaches are discussed with respect to prediction 
accuracy and costs of parameter identification. Both of the models deliver an exact prediction 
for the location of the crack and a good prediction of the punch displacement at the onset of 
cracking.  

1 INTRODUCTION 
In recent decades, numerous improvements of early damage models have been made. 

Research in this field follows basically two different approaches. On the one hand, there are 
microscopicly motivated damage models which go back to the idea of Gurson [1], Tvergaard 
and Needleman [2]. These are referred to as “porous plasticity”, as the measure for material 
degradation is the void volume fraction, which leads to softening due to this degradation. On 
the other hand, there are phenomenological models (e.g. Lemaitre [3]) which are often derived 
within the context of thermodynamics. As these models are not linked to microstructure the 
quantity associated to material degradation is an internal variable called “damage” instead of a 
void volume fraction. As most internal variables in thermodynamics, the “damage” is not 
necessarily directly measureable as void volume fraction. Thus coefficients in the evolution 
equations (e.g. material parameters) must be determined via inverse parameter identification.  

Both approaches need intense amount of effort for parameter identification. The 
microscopically motivated models need several hours of scanning electron microscopy (SEM) 
and an experienced operator to obtain meaningful and reliable results. The phenomenological 
models need a series of different experiments and computing capacity for inverse identification. 

163



Florian Gutknecht, Kerim Isik, Till Clausmeyer and A. Erman Tekkaya 

 2

As a consequence it is of significant interest for users, as well as researchers in this field to have 
some comparative results to identify the advantages and disadvantages of both approaches.  

Vaz et al. [4] recently compared modern implementations of Lemaitre and Gurson models, 
but focused on identification strategy and finally applied the models to uniaxial tension. Hambli 
[5] compared basic versions of Lemaitre and Gurson models in the context of blanking. He 
found the Lemaitre model to yield better predictions in terms of crack initiation and 
propagation. Since then several modifications for the Gurson model have been proposed. 
Nahshon and Hutchinson [6] suggested to add a term for void growth due to shear load. This 
enhanced porous plasticity model is used by the authors in [7] for the simulation of a blanking 
process. Along the way further modifications for Lemaitre’s model have been proposed. 
Desmorat and Cantournet [8] suggested a modification to consider the effect of negative 
triaxialities. A similar approach presented by Soyarslan and Tekkaya [9] to account for the 
coupling of orthotropic plasticity and damage is used by the authors in [10] for the simulation 
of a blanking process. As both studies had different purposes they had different setups and 
focused on different aspects for validation. In this study, both approaches are directly compared 
for the same blanking setup.  

The following section briefly introduces the experiments and microscope analysis that are 
necessary for the comparison. Section 3 addresses the aspects of simulation (i.e. material model 
and parameter identification). In section 4, the simulation results are compared to the 
experimental data and discussed. The paper ends with a conclusion in section 5. 

2 EXPERIMENTS 
After a brief summary of the investigated material the setup of experiments for parameter 

identification and process validation are presented in section 2.1. Section 2.2 briefly describes 
how material parameters for Gurson model were measured. The material investigated is a dual 
phase steel, DP600 with a thickness of 2 mm. The chemical composition and basic mechanical 
properties measured in standard tensile test are given in Table 1. 

 
Table 1: Mechanical properties from uniaxial test and chemical composoition of DP600. 
 

Modulus of 
Elasticity in 

MPa 
Poisson’s 

ratio 

Anisotropy Yield strength 
in MPa 

Swift hardening (eq. 3.4) 

r0 r45 r90 K in 
MPa e0 n 

201400 0.3 0.974 0.972 1.217 359 983 0.00232 0.190 

C Mn Cu Ni P Cr Mo Al Ti S Si Fe 

0.081 1.45 0.056 0.071 0.021 0.212 0.00 0.029 0.002 0.005 0.255 
ba-

lance 

 

2.1 Tests (Macro level) 
For this study, three experiments are necessary. Notched tensile tests and biaxial Nakajima 

tests are conducted for parameter identification and blanking tests are run in a universal testing 
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machine for validation. The notched tensile tests have a twofold use. On the one hand, they are 
used for direct measurement of void volume fraction and void nucleation in the Gurson model 
(section 2.2) and on the other hand, they are used for inverse identification of the Lemaitre 
model parameters (section 3.3). The notched tensile specimen has a width of 20 mm and length 
of 235 mm. Notches with a radius of 10 mm are cut with a laser from both sides at the centre 
of the long side. Thus the minimum width is 10 mm.  The specimens are elongated with a 
constant strain rate of 0.0025 s-1. The displacement field in the notched area is captured with 
optical camera system GOM Aramis. The biaxial specimen is one of the Nakajima geometries 
used for the identification of forming limit curve. Standard DIN EN ISO 12004-2 defines the 
specimen geometries and testing methodology for forming limit curves. Testing setup consist 
of the hemispherical punch with radius of 50 mm, blankholder and die. The circular blank 
without any notch has a radius of 100 mm and results in the deformation path close to 
equibiaxial deformation till necking. The force-displacement curves taken from the experiments 
are used as the objective function for the inverse parameter identification methodology. The 
test is conducted till final fracture to cover forming behaviour beyond necking.  

The blanking experiments were conducted with a punching module (Figure 1) that is 
attached to universal testing machine Zwick 250. Thus intermediate stops of the punch are 
possible and the force and displacement of the punch can be recorded for validation. The 
cylindrical punch has radius of 8 mm. The tip of punch and die have edge radii of 25 µm. The 
cutting clearance is 80 µm, which corresponds 4% of sheet thickness. 

 

 
Figure 1: Punching module (left) and schematic representation (right) used for validation of 
blanking process simulation. 

2.2 Tests (Micro level) 
The samples for micrographs are detached with a precision cut-off machine. Afterwards an 

ion-etch-system is used to prepare the samples’ surface by using ion beam slope cutting. With 
this method, it is possible to observe voids with an area as small as 0.05 µm². Details of the 
method are presented in [11]. This approach makes it possible to directly quantify the initial 
void volume fraction f0 assuming that the void volume fraction approximately equals the void 
area fraction and thus can be obtained by the ratio of surface area of the voids to the total area 
of that surface. Furthermore, the method proposed in [12] makes it possible to identify the 
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parameters for void nucleation fN, SN and epN (cf. eq. 3.9) with the analysis of a notched tensile 
specimen. Therefore one half of the notched region is divided into eight zones. Each of these 
zones corresponds to a certain equivalent plastic strain and has a characteristic mean void size. 
The voids having a smaller size than the mean size of the neighbouring zone, which has a lower 
deformation is counted as newly nucleated void for that zone. Thus one gets a uniform 
distribution of nucleated void volume fraction and can fit the parameters to that distribution 
(Table 2). 

3 SIMULATIONS 
This section starts with an introduction to the common framework of both materials models 

used. Afterwards characteristics of the used Gurson and Lemaitre type models are given. 
Section 3.2 presents the model setup of the blanking process and experiments for inverse 
identification. This section closes with information about the numerical identification strategy. 

3.1 Material models 
Both material models in this study fall in the context of continuum damage mechanics. The 

framework uses a multiplicative split of the total deformation gradient  
 e p= •F F F  (3.1)

into elastic eF  and plastic part pF  as proposed by Lee [13].  The kinematic formulation of the 
model relies on an approximation for the logarithmic, elastic stretch eU , which arises in the 
context of the polar decomposition e e e•F R U , with eR  the elastic rotation tensor. As 
demonstrated in [14] one obtains 
 e e eT Pln( ) = • •d

dt
U R D R D  (3.2)

 e e e P = • R W R R W  (3.3)

 
for small elastic strain, i.e. e| ln( ) | << 1U . The rate of total deformation sym( )D L   is given 
in terms of the “velocity gradient” p 1• L F F . Consequently, p p p 1sym( ) sym( • ) D L F F 

and p pskw( )W L   represent the rate of plastic rotation and the plastic spin, respectively. The 
assumption P W 0 is justified for the investigated metals, such that the material axes rotate 
with the continuum. The associative flow rule  
 P P  TD   (3.4)

determines the rate of plastic deformation depending on the specific choice of the yield function 
P  and the magnitude of the plastic multiplicator  . The Cauchy stress tensor is denoted by 

T , and its principal stresses are iT . Stress triaxiality is defined as eqp   with hydrostatic 
pressure m 1/ 3tr[ ]p    T  and equivalent von Mises stress eq. The next paragraph presents 
a short summary of the coupled elasto-plastic damage models used in this comparative study.  
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Enhanced Gurson Model 
The yield function of the Gurson model has the general form:  

 2

eq * *22 m
1 3

y y

32 cosh (1 ) 0
2

P qq f q f
 
 

   
              

 (3.5)

where q1, q2 und q3 are material parameters [15], [16] and ep is the equivalent plastic strain. y 
= y [ep] is the flow stress and for the Swift type isotropic hardening with material parameters 
K, e0 und n, it reads:  
 p p

y 0[ ] ( )ne K e e    (3.6)

The void volume fraction is modified to f*, due to the accelerating effects of the void 
coalescence as follows [2]:  
 

 u c
c c

f c

f
f f ff f f

f f

 


    

c

c

f f

f f




 (3.7)

where critical void volume fraction at incipient coalescence and the void volume fraction at 
final fracture are denoted by fc and ff, respectively. fu*=1/q1 is the maximal value of the modified 
void volume fraction f* at which the stress carrying capacity vanishes macroscopically. This 
corresponds to the trigger for the element deletion to model fracture.  
The change in the void volume fraction f  has contributions due to the nucleation of the new 
voids nf , void growth due to hydrostatic stresses g

hydf  and void growth due to the shear stresses
g

shrf : 
 n g g

hyd shrf f f f       (3.8)

The nucleation of the voids is given by:  

 2p p
n p p N N

N N N
NN

1,    ( ) exp
22

f e ef A e A A e
SS 

  
    
   

 


   (3.9)

where the material parameters are: fN nucleated void volume fraction, SN standard deviation of 
the distribution of the nucleated voids and epN mean equivalent plastic strain at the incipient 
nucleation [17]. 
The void growth due to hydrostatic stresses is given by:  
 g p

hyd (1 )tr( )f f  D  (3.10)

The void growth due to shear stress is:  
     g p

shr w
eq

dev
dev :

w
f k f




T
T D  (3.11)
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according to [6]. Here, kw is a material parameter and w(dev[T]) is a stress dependent function 
depending on the third invariant of the deviatoric stress tensor J3 as follows:   
 

  
2

3
3
eq

27dev 1
2

Jw


 
    

 
T  (3.12)

The factor inside the eq. 3.12 is known as the Lode angle parameter . The Lode angle   
distinguishes the stress state between axisymmetric and shear stress state. It is related to the 
normalized third deviator stress invariant 3J as follows [18]: 

  3
3

eq

27 cos 3
2

J 


   (3.13)

For further details of the model regarding nucleation of the voids and the growth due to 
hydrostatic stresses, model implementation and related model parameters readers are referred 
to [19].  
 
Enhanced Lemaitre Model 

Similar to the Gurson type models with the void volume fraction, the effect of ductile damage 
is considered by the damage variable [0,1]D  . It accounts for the deterioration of the load 
bearing capacity due to the evolution of the defect structure. The effective stress 

/ (1 )DT T   represents the stress acting on the fictitious undamaged area, as opposed to 
the stress T acting on the total area. The plastic potential is given by

p
eq( , , ) 3/ 2 dev( ) :dev( )q D q q    T T T  , where eq represents the effective equivalent stress. 

The damage potential 
 

 
0

1
d 1

1 (1 )





 
 

Y YS
S D

 (3.14)

depends on the driving force :Y Y and the material parameters S, β, δ and Y0. (| | ) / 2x x x   
represents the Macauley bracket. In the context of blanking simulations it is important to 
consider that the evolution of damage under compressive stress states is different than under 
tensile stress states. Therefore, the weighting factor h is introduced 
 3 32 2 2 2

1 1

1 9
2 2i i

i i
Y T h T p h p

E E
 

 

                      
      (3.15)

to consider the effect of compressive stress states on the driving force. Here, iT  represent the 
principle stresses of T  and : 1 / 3 tr ( )p T  the hydrostatic pressure. Differentiation of (3.14), 
with respect toY reveals the particular form of the damage evolution 
 

0 1
(1 )




 



Y YD

S D
 (3.16)

The model is implemented via the user material interface into Abaqus/Explicit. For details of 
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the model formulation and the implementation the reader is referred to [9]. The standard 
damage model of Lemaitre [3] does not distinguish between compressive stresses and tensile 
stresses for the evolution of damage. This is in contrast to experimental observations, e.g. of 
Bao et al. [20], such as a cut-off value of the stress triaxiality -1/3, below which fracture does 
not occur. With the original Lemaitre model, i.e. h = 1 in (3.14), one obtains a fracture curve 
which does not consider the sign of triaxiality. In general, for technical metals, fracture occurs 
at higher strains for compressive stresses. Thus the fracture strain for η = -1/3 tends 
asymptotically to infinity in the current model for the limiting case of h = 0.  

In order to modify the cumulative damage for Lemaitre Model according to the shear stress 
states, the shear fracture related parameter of the fracture model in [21] is introduced to the 
damage evolution rate of the model. Then the damage evolution equation in eq. 3.15 reads:  
 

 
max 02 1

1

 





  
     



eq

Y YD
S D

 (3.17)

The relation between selected factor and Lode angle   can be shown as [22]:  
 

max2 2 4cos cos
3 3eq

   


      
  

 (3.18)

3.2 Modelling of experiments 
All experiments (i.e. notched tensile test, biaxial Nakajima test and blanking process) are 

modelled in the commercial software Abaqus/Explicit with a VUMAT implementation of the 
described material models. Failure of the material is represented by the deletion of those 
elements, at which the void volume fraction f, or the damage variable D reaches the critical 
value ff, or Dc respectively. 

The blanking process was simulated using a two-dimensional axisymmetric model with 
bilinear CAX4R elements. The mesh size in the process zone is set to 25 µm and maintained 
constant with an Arbitrary-Lagrange-Euler (ALE) approach (Figure 2). Punch and die are 
modelled as rigid bodies. 

The notched tensile test and biaxial Nakajima test are modelled in 3D space using trilinear 
C3D8R elements. For the notched specimen all three symmetry planes are used and for the 
Nakajima specimen a quarter model is used. The mesh size of the models for parameter 
identification is taken as 1 mm. Because the required mesh size for the blanking process is much 
finer than this value, one of the model parameters, S for Lemaitre model and kw for Gurson 
Model are manually scaled for the mesh size of 25 μm. The model parameters for the mesh size 
of 25 μm are tabulated in Table 3.  
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Figure 2: Simulation model of the blanking process. 

 

3.3 Parameter identification strategy 
The parameters for the elasto-plastic regime are obtained directly from uniaxial tensile test 

(Table 1). For the parameters related to material softening a distinction of cases is necessary. 
Parameter of the Gurson model are determined predominantly directly from microscopic 
analysis. Yet some parameters need to be identified inversely. The parameter related to void 
growth due to shear kw (cf. eq. 3.10) is obtained a posteriori by fitting to the force displacement 
curve of the blanking process. 

In the case of Lemaitre’s model all parameters related to softening (i.e. S, β, δ, κ and Y0) have 
to be identified by an inverse strategy. The critical damage Dc may be determined a posteriori. 
For the inverse identification the force displacement curve of the notched tensile and biaxial 
Nakajima test are used. The target function  
    2 210 10 0 0

exp exp
1 1

( ) ( ) ( ) ( )
N N

R R G G
i i sim i i sim

i i
e F u F u F u F u

 

      (3.19)

needs to be minimized. ( )iF u is the force vector with respect to the displacement. R10 denotes 
the notched tensile test and G0 the Nakajima test. The identification optimization itself is 
performed manually. The parameters for both models are tabulated in Table 2. 

4 RESULTS 
In the context of blanking special attention must be paid to use material models which are 

appropriate to treat evolution of material degradation with respect to all of the occurring stress 
states. The application to blanking is a challenging task, one of the reasons being that the 
triaxiality η takes values between - 2/3 and + 2/3 for a closed cut line [10]. The representatives 
of both model families should be able to account for these stress states. Therefore it is expected 
that the comparison is fair. 

The simulations of both models yield a fair prediction of force-displacement curve. The 
solution of the Lemaitre model is very close to the experimental measured one. The deviation 
in maximum force is less than 2%. The results of the Gurson model are significantly improved 
compared to the previous study of Hambli [5]. 
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Table 2: Identified material parameters for both models. 
 

Enhanced Gurson model [15], [16], [12] 
f0  q1  q2  q3  fN  sN  epN  fc ff kw 

0.0008 1.5 1.0 2.25 0.00062 0.1283 0.5421 0.015 0.07 1.2 
Enhanced Lemaitre model 

Y0 in MPa S in MPa β δ κ h Dc 
1.06 6 15 2 1 0 0.2 

 
This is probably due to the enhancement for shear activated void growth. Yet the solution 

accuracy is lower than for the enhanced Lemaitre model. The maximum force predicted is 4.4% 
below the maximum force in experiment. Despite these results the Gurson model predicts the 
onset of the first crack very well, with respect to both punch displacement and place of initiation 
(Figure 3).  

  

Figure 3: Occurence of initial crack and total rupture. Experiment and results for Gurson 
model from [7]. 

 
The Lemaitre model also predicts the place of initiation correctly on the lower side of blank, 

but the punch displacement for this event is predicted too early and slightly worse than with the 
Gurson model.  Prediction of the second cracking from the upper side of the blank is achieved 
with both models similarly well. 

5 CONCLUSION 
Two modern implementations of different continuum damage mechanics models have been 

applied to a complex process simulation. Parameters for the Gurson model have been identified 
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predominantly with a scanning electron microscope, while parameters for Lemaitre have been 
identified completely by an inverse strategy. Both models have shown good prediction 
accuracy. On the one hand the Lemaitre model predicted the punch force during the process 
almost excellently, on the other hand the Gurson model yielded better results for predicting the 
onset of damage, which is important for determining the amount of burnish and fracture on the 
cut surface. 

Concerning the effort of parameter identification the inverse strategy is considerably 
superior. At first the preparation of samples for SEM in order to observe voids in the nanometer 
scale is time consuming. Secondly, it takes a lot of time for the user of SEM to distinguish voids 
from other artefacts. In contrast the experiments for inverse strategy can be conducted easily. 
Due to the short simulation time of these experiments (one Nakajima simulation needed roughly 
two hours) the parameters could be identified manually. If the inverse identification were run 
automated as presented in  [10] the complete procedure would probably have needed between 
one and four days, depending on the number of used computing cores.  

On the other hand the processing of microscope images might be automated at least partially, 
as well. Moreover, the Gurson’s model reveals quantities (e.g. void volume fraction) directly 
comparable to microstructural information. This information might give a better insight in the 
physics on microstructure level and will be used in future validations. 
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Abstract. In this work, ductility limits of metallic materials, associated with the occurrence of 
strain localization, are predicted using the GTN damage model coupled with bifurcation 
theory. The resulting approach is implemented into the finite element code ABAQUS within 
the framework of large plastic strains and a fully three-dimensional formulation. A parametric 
study with respect to damage and hardening parameters is conducted in order to identify the 
most influential material parameters on strain localization. The analysis shows that the 
damage parameters have a significant impact on the predicted ductility limits, while the effect 
of hardening parameters on strain localization depends on the choice of void nucleation 
mechanism.

1 INTRODUCTION 
It is well known that in sheet metal forming processes, different types of defects may 

occur, which are usually associated with operating conditions and/or material characteristics. 
Plastic instabilities, corresponding to the occurrence of zones of highly localized plastic 
strain, are examples of these undesirable phenomena. To characterize the formability of thin 
sheet metals, the concept of forming limit diagram has been introduced [1]. Among the most 
influential constitutive features on the formability limits of thin sheet metals, the damage 
development is of particular importance. In this context, Gurson-type damage models have 
been developed, among which the GTN model [2], which is adopted in this work to describe 
the initiation of ductile damage and its evolution during loading. This model is coupled with 
the bifurcation analysis [3,4] to predict the occurrence of strain localization in metallic 
materials. The present work investigates the respective effect of damage and hardening 
parameters on the prediction of ductility limits using different void nucleation mechanisms. In 
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addition, an alternative modeling approach is explored for the analysis of hardening effects on 
strain localization, which consists in adopting a micromechanics-based calibration for the 
GTN q -parameters. 

2 GTN DAMAGE MODEL 
The ductile damage model adopted in this work is based on the Gurson model, which 

accounts for void nucleation and growth. This model has been subsequently modified in the 
literature leading to the following well-known GTN yield potential (see, e.g., [2]): 

( )
2

* *2
1 2 3

32 cosh 1 0
2

eq m

Y Y

q f q q f
σ σ
σ σ
   

−   
  

Φ = + + ≤ , (1)

where 1q , 2q  and 3q  are material parameters; mσ  is the hydrostatic stress defined by 
: 3mσ = 1σσσσ , with σσσσ  being the Cauchy stress tensor and 1  the second-order identity tensor; 

eqσ  is the von Mises equivalent stress defined by 3 : 2eqσ = S S , with S  being the deviatoric 
part of the Cauchy stress; Yσ  is the flow stress, function of the equivalent plastic strain pl

mε  of 
the fully dense matrix; ( )*f f  is the modified void volume fraction, function of the actual 
void volume fraction f , which is defined by 
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*                              for    ,
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crR

f f
f f

δ −
−
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where the damage parameters crf  and Rf  are the critical void volume fraction, at which the 
coalescence stage starts, and the void volume fraction at final fracture, respectively. 
According to Eq. (2), *( )f f  reaches its ultimate value *

uf  when Rf f= . 
The tensile flow stress Yσ  of the fully dense matrix material is assumed to be governed by 

an isotropic hardening law, as given by the following rate expression: 
pl
mY hεσ = ɺɺ , (3)

where h  is the plastic hardening modulus of the fully dense matrix material. The plastic flow 
rule follows the classical normality law, which defines the plastic strain rate pD  as 

p λ ∂Φ=
∂

D ɺ
σσσσ

, (4)

where λɺ  is the plastic multiplier, and ∂Φ ∂σσσσ  is the direction of the plastic flow. The evolution 
of void volume fraction depends on both growth of pre-existent voids and nucleation of new 
ones. For the nucleation of new voids, the model proposed by Chu and Needleman [5] is 
adopted in this work. This model involves the contribution of both the flow stress rate of the 
dense matrix and the hydrostatic stress rate. The final expression of the incremental change in 
void volume fraction is given by 

( ) ( )p

growth nucleation

1 : mN N Y Nf A h B Bf σ σ  − + + += D 1
 

ɺ ɺɺ . (5)
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In the above equation, the constants NA  and NB  allow characterizing the void nucleation 
model, which is strain controlled for 0NA >  and 0NB = , and stress controlled for 0NA =  and 

0NB > . Their expressions follow normal distribution laws as proposed in [5] 
2 2pl

m

00

1 1exp , exp
2 22 2

mN N N Y N
N N

N NN N

f
A B

s ss s

f ε ε σ σ σ
σπ σ π

                      

− + −− = −= , (6)

where Nε  and Nσ  are the mean strain and the mean stress for nucleation, respectively; Ns  is 
the standard deviation on Nε ; Nf  is the volume fraction of void-nucleating particles; 0σ  is the 
initial yield stress of the matrix surrounding the voids. In the co-rotational frame, which is 
associated with the Jaumann objective derivative, the Cauchy stress rate is expressed using 
the following hypoelastic law: 

: :e epλ 
 
 

∂Φ− =
∂

= D DC Cɺɺ
σσσσ

σσσσ , (7)

where D  is the strain rate tensor, eC  is the fourth-order elasticity tensor, and epC  is the 
elastic–plastic tangent modulus. Using the consistency condition 0Φ =ɺ , together with the 
above equations, the plastic multiplier λɺ  writes 

1 : :e

Hλ
λ = E C Dɺ , (8)

where 
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By replacing the plastic multiplier λɺ  (see Eq. (8)) into the hypoelastic law (Eq. (7)), the 
elastic−plastic tangent modulus of the GTN model writes 

( ): :ep e e e Hλ
∂Φ = − ⊗ ∂ 

C C C E C
σσσσ

. (11)

It can be observed that, in the case of strain-controlled nucleation (i.e., 0NA >  and    
0NB = ), the above elastic−plastic tangent modulus becomes symmetric and the normality of 

the plastic flow rule holds. In the case of stress-controlled nucleation (i.e., 0NA =  and   
0NB > ), the elastic−plastic tangent modulus is non-symmetric and the normality of the plastic 

flow rule does not hold. 

3 BIFURCATION CRITERION 
In this section, the constitutive equations described above are coupled with a plastic 
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instability criterion, as proposed by Rudnicki and Rice [3] and Rice [4], in order to predict the 
occurrence of strain localization. This criterion is based on bifurcation theory, where the 
incipience of plastic flow localization in the form of an infinite band is associated with the 
loss of uniqueness for the solution of the rate equilibrium equations. According to this 
criterion, the critical condition, which also corresponds to the loss of ellipticity of the 
associated boundary value problem, is related to the singularity of the acoustic tensor A , 
defined as ⋅ ⋅A = n L n , where n  is the normal to the localization band and the tangent 
modulus L  writes 

1 2 3
ep= + − −L C Z Z Z , (12)

where 1Z , 2Z  and 3Z  are fourth-order tensors that consist of Cauchy stress components. 
These additional tensors originate from the large-strain framework and their complete 
expressions can be found in [6,7]. The critical condition is then given by 

( ) ( ) 0det det= =⋅ ⋅A n L n . (13)

4 PREDICTION OF DUCTILITY LIMITS 
In this section, the GTN model is coupled with the bifurcation analysis to predict strain 

localization in porous materials subjected to in-plane loading conditions. The resulting 
approach is implemented into the finite element code ABAQUS/Standard within the 
framework of large plastic strains and a fully three-dimensional formulation. The effect of 
hardening and damage parameters, as well as the choice of nucleation modeling, on the 
prediction of ductility limits is analyzed. 

4.1 Strain-controlled nucleation model 

In this section, nucleation of new voids is taken strain-controlled, by considering 0NA >
and 0NB =  in the GTN model (see Eq. (5)). It is worth noting that, in this case, the normality 
of the plastic flow rule holds and the elastic–plastic tangent modulus epC  is symmetric, while 
the acoustic tensor A  is non-symmetric due to the convective stress components (Eq. (12)). 

The material considered here is Al5754 aluminum, with Young’s modulus and Poisson’s 
ratio equal to 70,000  MPa and 0.33, respectively. The associated hardening parameters, 
according to the Swift isotropic hardening law, and damage parameters are summarized in 
Table 1 (see [8]). 

Table 1: Hardening and damage parameters for Al5754 

0ε k  [MPa] n 0f Ns Nε Nf crf GTNδ 1q 2q 3q

0.00173 309.1 0.177 0.001 0.1 0.32 0.034 0.00284 7 1.5 1.0 2.15

4.1.1 Effect of damage parameters 

The effect of damage parameters on the ductility limit predictions for the Al5754 
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aluminum alloy is analyzed here. A relatively large number of damage parameters are 
involved in the GTN model; for conciseness, attention is focused on the initial void volume 
fraction 0f  and the nucleation parameter Nf . 

      
        (a)       (b)           

Figure 1: Effect of the initial void volume fraction 0f  (a), and the nucleation parameter Nf  (b) on the 
ductility limit predictions for Al5754 aluminum 

Figure 1 shows the impact of varying one damage parameter at a time on the prediction of 
the ductility limits for Al5754 aluminum. Concerning the effect of the initial void volume 
fraction 0f  (Figure 1(a)), large values for this parameter (e.g., 0 0.01f = ) imply that the 
material has already entered the coalescence stage, which dramatically lowers the predicted 
ductility limits. However, for very small values for parameter 0f , the ductility limit 
predictions are only slightly affected, which suggests that at such low void volume fraction 
levels, void growth is not the predominant mechanism for damage evolution. For the 
nucleation parameter Nf , the predicted ductility limits are lowered as this parameter 
increases. This trend is consistent with the physical meaning of this parameter (volume 
fraction of void-nucleating particles), as larger values for the latter tend to precipitate damage, 
thus promoting early plastic flow localization (see Eq. (6)). 

4.1.2 Effect of the hardening exponent n

The impact of the hardening exponent n , associated with the Swift law, on the ductility 
limit predictions is analyzed here for the Al5754 aluminum material. Figure 2 shows the 
predicted limit strains obtained with different hardening exponents n  for the dense matrix 
material. These results reveal that the effect of the hardening exponent n  on the ductility limit 
predictions is much smaller than that observed for damage parameters (see the previous 
section). Similar results are observed when varying the k  and 0ε  Swift hardening parameters, 
and are not reported here for conciseness. However, a more perceptible effect is found near 
the plane-strain tension (PST) loading path (see Figure 2). 
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Figure 2: Effect of the hardening exponent n , associated with the Swift law, on the ductility limit 
predictions for Al5754 aluminum with strain-controlled nucleation 

Similar trends have been observed in [9], where the GTN model was used with strain-
controlled nucleation and coupled with the bifurcation theory. Indeed, in such a modeling 
approach, strain localization is mainly controlled by damage-induced softening, as shown in 
Figure 3(a) for the uniaxial tensile (UT) strain path, where it can be seen that flow localization 
occurs at strongly negative hardening moduli. Moreover, the evolution of void volume 
fraction based on strain-controlled nucleation for this particular loading path (UT) is shown to 
be insensitive to the strain hardening of the dense matrix material (see Figure 3(b)). 

  
(a)                (b)

Figure 3: Effect of the hardening exponent n  on: (a) the Cauchy stress−strain curve, and (b) void volume 
fraction, until localization along the uniaxial tensile strain path 

4.2 Calibration of the GTN q -parameters 

The previous results have shown limitations of the GTN model, with strain-controlled 
nucleation, in accounting for the effect of strain hardening on the porosity evolution. To 
overcome such limitations, Faleskog et al. [10] suggested calibrating the GTN q -parameters 
in order to include the effect of strain hardening on void growth. Tables 2 and 3 summarize 
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the calibrated q -parameters and the damage parameters for a steel material with yield 
strength ratio 0 0.004Eσ =  (see [10]). The isotropic hardening model used in the simulations 
is based on a hardening power law (see [10]). 

Table 2: Calibrated q -parameters 

q -parameter 0.025n = 0.05n = 0.10n =

1q 1.74 1.48 1.29 

2q 1.013 1.013 0.982 

Table 3: Damage parameters for the GTN model 

Material 0f Ns Nε Nf crf GTNδ
Steel 0.001 0.1 0.3 0.05 0.04 5 

Figure 4: Effect of the hardening exponent n  on the prediction of ductility limits using the calibrated q -
parameters 

Figure 4 shows the effect of the hardening exponent n  of the power law on the prediction 
of ductility limits for the studied steel material based on the calibration of the q -parameters 
and strain-controlled nucleation model. The predicted ductility limits clearly show sensitivity 
to strain hardening for all strain paths, thanks to the use of micromechanics-based calibrated 
q -parameters. 

4.3 Stress-controlled nucleation model 
The effect of strain hardening on the ductility limits is investigated in this section using the 

GTN model with stress-controlled nucleation. The associated material parameters 
corresponding to a steel material are summarized in Table 4. The Ludwig power law is used 
in the simulations for the modeling of isotropic hardening for the dense matrix material. 
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Table 4: Hardening and damage parameters for the studied steel material 

0σ  [MPa] k  [MPa] 0f Ns Nσ  [MPa] Nf crf GTNδ 1q 2q 3q

150 800 0.001 0.1 1000 0.05 0.04 10 1.5 1.0 2.15

Figure 5 illustrates the effect of the hardening exponent n  on the prediction of limit strains 
for the studied steel material. It is clearly shown that the consideration of non-normality in the 
GTN model, due to stress-controlled nucleation, allows for a significant effect of strain 
hardening on the limit strains. Indeed, the predicted limit strains increase as the hardening 
exponent n  increases, which is consistent with the literature findings (see, e.g., [11]). The 
effect of the hardening exponent n  on the evolution of the Cauchy stress and the void volume 
fraction until localization for the UT strain path is shown in Figure 6. It can be seen that, in 
contrast to the case of strain-controlled nucleation (see Figure 3(b)), the evolution of void 
volume fraction is significantly affected by the hardening exponent n , which allows 
accounting for strain hardening effects on strain localization. Moreover, the Cauchy stress 
evolution reveals that the hardening modulus at localization is not strongly negative, as 
compared to that obtained in the case of strain-controlled nucleation. This is caused by the 
non-normality of the plastic flow, which plays a destabilizing role in the localization 
bifurcation analysis. 

Figure 5: Effect of the hardening exponent n  on the prediction of ductility limits for the studied steel material 
with stress-controlled nucleation 
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       (a)               (b)

Figure 6: Effect of the hardening exponent n  on: (a) the Cauchy stress−strain curve, and (b) void volume 
fraction, until localization along the UT strain path, in the case of stress-controlled nucleation 

12 CONCLUSIONS 
In this work, The GTN ductile damage model has been coupled with bifurcation theory to 

predict the occurrence of strain localization for metallic materials. The resulting approach has 
been implemented into the finite element software ABAQUS/standard in the framework of 
large plastic strains and a fully three-dimensional formulation. Ductility limits of metallic 
materials are then predicted using the proposed approach. A parametric study with respect to 
damage and hardening parameters has been conducted in order to determine the most 
influential parameters on strain localization. The analysis showed that the damage parameters 
have a significant impact on the predicted ductility limits. With regard to hardening, it is 
shown that the choice of void nucleation mechanism has an important influence on the 
sensitivity of the predicted ductility limits to strain hardening. Indeed, in the case of strain-
controlled nucleation, the predicted limit strains were found almost insensitive to strain 
hardening for most strain paths, while a significant influence was observed in the case of 
stress-controlled nucleation. The latter leads to non-normality in the plastic flow rule, which 
plays a destabilizing role that promotes early strain localization. This work also discussed the 
use of a micromechanics-based calibration for the GTN q -parameters in the case of strain-
controlled nucleation, which is shown to allow accounting for hardening effects on strain 
localization predictions. 

REFERENCES 
[1] Keeler, S. and Backofen, W.A. Plastic instability and fracture in sheets stretched over 

rigid punches. ASM Trans. Quart. (1963) 56:25-48. 
[2] Tvergaard, V. and Needleman, A. Analysis of the cup-cone fracture in a round tensile bar. 

Acta Metallurgica (1984) 32:157-169. 
[3] Rudnicki, J.W. and Rice, J.R. Conditions for the localization of deformation in pressure 

sensitive dilatant materials. Journal of the Mechanics and Physics of Solids (1975) 
23:371-394. 

0.0 0.1 0.2 0.3 0.4 0.5
0

200

400

600

800

  n = 0.4
  n = 0.3
  n = 0.2

C
au

ch
y 

st
re

ss
 σ

11
 [M

Pa
]

Steel

Logarithmic strain ε11

0.0 0.1 0.2 0.3 0.4 0.5
0.000

0.005

0.010

0.015
  n = 0.4
  n = 0.3
  n = 0.2

Logarithmic strain ε11

V
oi

d 
vo

lu
m

e 
fr

ac
tio

n

182



H. Chalal and F. Abed-Meraim 

10

[4] Rice, J.R. The localization of plastic deformation. Theorical and Applied Mechanics. 
Koiter ed., 207-227, (1976). 

[5] Chu, C. and Needleman, A. Void nucleation effects in biaxially stretched sheets. Journal 
of Engineering Materials and Technology (1980) 102:249-256. 

[6] Abed-Meraim, F., Balan, T. and Altmeyer, G. Investigation and comparative analysis of 
plastic instability criteria: application to forming limit diagrams. International Journal of 
Advanced Manufacturing Technology (2014) 71:1247-1262. 

[7] Ben Bettaieb, M. and Abed-Meraim, F. Investigation of localized necking in substrate-
supported metal layers: Comparison of bifurcation and imperfection analyses. 
International Journal of Plasticity (2015) 65:168-190. 

[8] Brunet, M., Mguil, S. and Morestin, F. Analytical and experimental studies of necking in 
sheet metal forming processes. Journal of Materials Processing Technology (1998) 80-
81:40-46. 

[9] Mansouri, L.Z., Chalal, H. and Abed-Meraim, F. Ductility limit prediction using a GTN 
damage model coupled with localization bifurcation analysis. Mechanics of Materials
(2014) 76:64-92. 

[10] Faleskog, J., Gao, X. and Shih, C.F. Cell model for nonlinear fracture analysis – I. 
Micromechanics calibration. International Journal of Fracture (1998) 89:355-373. 

[11] Doghri, I. and Billardon, R. Investigation of localization due to damage in elasto-plastic 
materials. Mechanics of Materials (1995) 19:129-149. 

183



IS - Computational Scale BridgingTwo level homogenization of flows in deforming double porosity media: Biot-Darcy-Brinkman model

XIV International Conference on Computational Plasticity. Fundamentals and Applications
COMPLAS XIV
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∗ European Centre of Excellence, NTIS – New Technologies for Information Society Faculty of
Applied Sciences, University of West Bohemia, Univerzitńı 8, 30614 Pilsen, Czech Republic
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Abstract. We present the two-level homogenization of the flow in a deformable double-
porous structure described at two characteristic scales: the higher level porosity associated
with the mesoscopic structure is constituted by channels in an elastic skeleton which is
made of a microporous material. The macroscopic model is derived by the asymptotic
analysis of the viscous flow in the heterogeneous structure characterized by two small
parameters. The first level upscaling yields a Biot continuum model coupled with the
Stokes flow. The second step of the homogenization leads to a macroscopic flow model
which attains the form of the Darcy-Brinkman flow model coupled with the deformation
of the poroelastic continuum involving the effective parameters given by the microscopic
and the mesoscopic porosity features.

1 INTRODUCTION

The double porosity materials consist of two very distinct porous systems so that their
interaction has a strong influence on the fluid transfer and other mechanical properties.
In general, the primary and the dual porosities can be distinguished. These two systems
characterized by very different pore sizes are arranged hierarchically, one is embedded in
the other. In the present study, we consider the fluid-structure interaction problem in the
double porosity medium. To respect the skeleton poroelasticity, we extend the model of
the hierarchical flow in a rigid double porosity medium described in [8]. The two-level
homogenization by the periodic unfolding method was applied to upscale the Stokes flow
in a rigid micro-porosity and, consequently, to upscale the Darcy-Stokes system relevant
to the mesoscopic medium. The macroscopic flow was described by a Darcy-Brinkman
system of equations governing macroscopic fields of pressure and flow velocity. The model

1

184
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Figure 1: Hierarchical porous structure parameterized by ε, the characteristic size of the microporosity,
and by δ which describes the size of the mesoscopic heterogeneities.

derived in this conference paper follows also the hierarchic upscaling procedure described
in [7], where a static problem was considered. In [6] we modified the model of a hier-
archical poroelastic material by including the Darcy flow in the microporosity. Here we
consider a reiterated homogenization of the Stokes flow problem with a strong contrast
in the fluid viscosity between the micro- and meso-pores. The 1st level homogenization
leads to the Biot model associated with the microporosity whereby interface conditions
between the Darcy and Stokes flows are obtained. The 2nd level upscaling of the meso-
scopic fractured medium then follows: the mesoscopic model is constituted by the Biot
model governing the microporosity and by the Stokes flow model of the fractures. In
the paper we present the local problems for characteristic responses; using their solutions
the homogenized coefficients of the meso- and macro-models are computed. Numerical
illustration is included to illustrate the model response.

2 A MODEL OF FLOW IN DEFORMING HIERARCHICAL POROUS
MATERIAL

In this section, we introduce the fluid-structure interaction problem in the pores of
the fractured microporous medium. This model is then analyzed using the two level
homogenization.

2.1 Geometry and scales

The double porous structure is characterized by two small parameters, ε and δ, which
are related to two characteristic scales; denoting by L a macroscopic characteristic length,
we have:

• �mes = δL, the mesoscopic characteristic length, and

• �mic = ε�mes, the microscopic characteristic length.

The hierarchical porous material occupying open bounded domain Ω ⊂ R3 is character-
ized by two scales related to two small parameters ε and δ, see Fig. 1. At the mesoscopic

2
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scale the periodic structure is formed by channels represented by domain Ωδ
c occupied by

fluid. The domain Ωδ
m = Ω\Ωδ

c is constituted by a microporous material consisting of the
solid and fluid parts. In particular, domain Ωε,δ

p ⊂ Ωδ
m represents micro pores occupied

by fluid, whereas Ωε,δ
s = Ωδ

m \ Ωε,δ
p is the skeleton.

The above domain decomposition is summarized, as follows:

Ω = Ωδ
m ∪ Ωδ

c ∪ Γδ ,

solid Ωεδ
s ⊂ Ωδ

m ,

microporosity Ωεδ
p = Ωδ

m \ Ωεδ
s ,

fluid Ωεδ
f = Ωεδ

p ∪ Ωδ
c ∪ Γδ ,

(2.1)

Moreover Ωεδ
s ∩ Γδ = ∅, thus, the mesoscopic “fictitious” interface is situated in the fluid

part.
In the rest of the paper, to simplify the notation, we drop the superscripts ε and δ.

2.2 Problem formulation

The solid skeleton Ωs is occupied by an elastic material described with the elasticity
tensor ID = (Dijkl) satisfying the usual symmetries. We consider a viscous incompressible
fluid saturating the micro- and the mesoscopic pores, see (2.1). Following the works [2],
cf. [8], dealing with models of the rigid double porous media, the viscosity ηε,δ is given
by piece-wise constant function according the micropore size ε:

ηε,δ =

{
ε2η̄ in Ωε,δ

p ,
η in Ωδ

c .
(2.2)

This scaling of the viscosity in micropores is the standard consequence of the non-slip
boundary condition for the flow velocity on the pore wall, cf. [4].

The problem imposed in Ω at the microlevel is constituted by the following equations
and boundary and interface conditions governing the displacement u of the solid and the
fluid pressure and velocity fields (v f , p):

−∇ · IDe(u) = f s in Ωs ,

n · IDe(u) = n · σf on Γfs ,

n · IDe(u) = g s on ∂σΩs ,

u = 0 on ∂uΩs ,

(2.3)

−∇ · (2ηe(v f )− pI ) = f f in Ωf ,

∇ · v f = 0 in Ωf ,

v f = u̇ on Γfs ,

w = w̄ on ∂extΩf ,

(2.4)
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where e(u) is the small strain tensor, σf is the fluid stress, f is the volume force, g s is
the surface traction stresses acting on the solid part; the exterior part ∂extΩs of the solid
splits into two disjoint parts, ∂extΩs = ∂σΩs ∪ ∂uΩs.

Above, to introduce the relative fluid velocity w = v f − ˙̃u in the fluid-saturated pores
Ωεδ

f , we define a displacement extension ũ in Ω such that ũ ≡ u in Ωs.
To introduce the weak formulation of the fluid-structure interaction problem, we use

spaces of admissible and test displacements and relative fluid velocities,

V 0 = {v ∈ H1(Ωs)| v = 0 on ∂uΩs}
W 0 = {v ∈ H1(Ωf )| v = 0 on ∂Ωf} , Wv̄ = W 0 + w̄ ,

(2.5)

where w̄ is extended from ∂extΩf to Ωf . By H1(Ω) we denote the the standard Sobolev
space W 1,2(Ω) of vector-valued functions.

The weak formulation of problem (2.3)-(2.4) reads, as follows: For any time instant
t > 0, find (u(t, ·),w(t, ·), p(t, ·)) ∈ V 0 ×Wv̄ ×H1(Ωf )), such that

∫

Ωs

IDe(u) : e(v)−
∫

Γ

n · σf · v =

∫

∂σΩs

g s · v +

∫

Ωs

f s · v , v ∈ V 0 ,

∫

Ωf

2ηe(w + ˙̃u) : e(z ) +

∫

Ωf

z · ∇p =

∫

Ωf

f f · z , z ∈ W 0 ,

∫

Ωf

q∇ · (w + ˙̃u) = 0 , ∀q ∈ L2(Ωf ) .

(2.6)

We recall that all functions and parameters involved in (2.6) depend on the two small
parameters ε and δ. Passing to the limit with microstructure sized associated with ε → 0
give rise to the mesoscopic model reported in Section 3. The second level homogenization
associated with with parameter δ → 0 leads to the macroscopic problem described in
Section 4.

3 MESOSCOPIC MODEL – THE FIRST LEVEL UPSCALING

The porous medium situated in Ωm is generated as a periodic lattice by repeating
the representative volume element (RVE) occupying domain Y ε = εY . The zoomed cell
Y = Π3

i=1]0, ȳi[⊂ R3 splits into the solid part occupying domain Ys and the complementary
fluid part Yf , thus

Y = Ys ∪ Yf ∪ ΓY , Ys = Y \ Ym , ΓY = Ys ∩ Yf . (3.1)

For a given scale ε > 0, �i = εȳi is the characteristic size associated with the i-th coordinate
direction, whereby also ε ≈ �i/L for a given macroscopic characteristic length L.

3.1 Local problems and homogenized mesoscopic poroelastic coefficients

For any D ⊂ Y , ∼
∫
D
= 1

|Y |

∫
D
; the analogical notation is employed for any A ⊂ Z, thus

∼
∫
A
= 1

|Z|

∫
A
. Further, for any D ⊂ Y , H1

#(D) is the Sobolev space W 1,2(Y ) = H1(Y ) of

4
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vector-valued Y-periodic functions (indicated by the subscript #). We define the usual
elasticity bilinear form,

as (w , v) =∼
∫

Ys

(IDey(w)) : ey(v) ,

where ey(w) = 1/2(∇yw+(∇yw)T ) is the strain tensor associated with the displacement
field w .

The local microstructural response is obtained by solving the following decoupled prob-
lems:

• Find ωij ∈ H1
#(Ys) for any i, j = 1, 2, 3 satisfying

as
(
ωij +Πij, v

)
= 0 , ∀v ∈ H1

#(Ys) . (3.2)

• Find ωP ∈ H1
#(Ys) satisfying

as
(
ωP , v

)
=∼
∫

ΓY

v · n [m] dSy , ∀v ∈ H1
#(Ys) . (3.3)

• Find (ψi, πi) ∈ H1
#(Yf )× L2(Yf ) for i = 1, 2, 3 such that

∫

Yf

∇yψ
k : ∇yv −

∫

Yf

πk∇ · v =

∫

Yf

vk , ∀v ∈ H1
#(Yf ) ,

∫

Yf

q∇y ·ψk = 0 , ∀q ∈ L2(Yf ) .

(3.4)

Using the characteristic responses (3.2)–(3.4) obtained at the microscopic scale the homog-
enized coefficients, describing the effective properties of the deformable porous medium,
are given by the following expressions:

Aijkl = as
(
ωij +Πij, ωkl +Πkl

)
, B̂ij = − ∼

∫

Ys

divyω
ij = as

(
ωP , Πij

)
,

M = as
(
ωP , ωP

)
=∼
∫

ΓY

ωP · n dSy , Kij = η̄−1 ∼
∫

Yf

ψj
i = η̄−1 ∼

∫

Yf

∇yψ
i : ∇yψ

i .
(3.5)

Obviously, the tensors AA = (Aijkl), B̂ = (B̂ij) and K = (Kij) are symmetric, AA adheres
all the symmetries of ID; moreover, AA is positive definite and M > 0. The hydraulic per-
meability K is positive semi-definite in general, although it is positive definite whenever
the channels intersect all faces of ∂Y and Yf is connected. Using the fluid compressibility
γ and the volume fraction φf = |Yf |/|Y |, we define

B := B̂ + φfI . (3.6)

5
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3.2 Mesoscopic problem

The first level homogenization ε → 0 of the model (2.6) yields the mesoscopic problem
governing the fluid redistribution between the deforming microporous material and the
mesoscopic channels. The mesoscopic model describes the coupled Darcy and Stokes flows
in the deforming porous fractured medium whose properties are constituted by the Biot
poroelastic model. The weak formulation of the mesoscopic problem involves the following
functional spaces: W c = {w ∈ H1(Ωc)|w = 0 on ∂extΩc}, Vm = {u ∈ H1(Ωm)|u =
0 on ∂uΩm} and Qm = H1(Ωm). The porous structure is fixed on a part of the boundary
∂uΩm ⊂ ∂Ωm ∩ ∂Ω.

Weak formulation. Find (u ,w , pm, pc)(t, ·) ∈ Vm× [W c+ v̄ ]×H1(Ωm)×L2(Ωc) such
that∫

Ωm

(AAe(u)− pmB) : e(v)−
∫

Γ

pmn
[c] · v =

∫

∂extΩm

φ̄sg · v +

∫

Ωs

φsf
s · v , v ∈ Vm ,

∫

Ωm

∇qm ·K (∇pm − f f ) +

∫

Ωm

qmB : e(u̇) +

∫

Ωm

Mṗmqm −
∫

Γ

qmw · n [c]

=

∫

∂extΩm

qmφf (u̇ − v f ) · n , ∀qm ∈ Qm ,

∫

Ωc

2ηe(w + ˙̃u) : e(ϑ)−
∫

Ωc

pc∇ · ϑ+

∫

Γ

pmn
[c] · ϑ =

∫

Ωc

f f · ϑ, ϑ ∈ W c ,

∫

Ωc

qc∇ · (w + ˙̃u) = 0 , ∀qc ∈ L2(Ωf ) .

(3.7)

The r.h.s. integral in (3.7)2 expresses the relative outflow form the matrix part, i.e. −w̄n =
−w̄ ·n = −n ·(v f − u̇), which is prescribed by the boundary condition. As the byproduct
of the first level homogenization, we obtain the following interface conditions on Γ,

n [c] · (w |Ωc −w |Ωm) = 0 ,

pc − pm = 2ηe(w |Ωc) : n
[c] ⊗ n [c] ,

t · ∂nw |Ωc + n · ∂tw |Ωc = 0 ,

(3.8)

where ∂n = n · ∇ and ∂t = t · ∇ with t being a unit vector in the tangential plane of
Γ, i.e. n · t = 0. It is worth noting that the 3rd condition in (3.8) corresponds to the
free-slip condition, in contrast with the Beavers-Joseph-Saffmann condition derived also
by the homogenization on a flat interface between the two flows, see e.g. [3], cf. [5].

Problem (3.7) is then subject of the second level homogenization which gives rise the
macroscopic problem.

4 MACROSCOPIC MODEL – THE SECOND LEVEL UPSCALING

The mesoscopic heterogeneous structure is generated as a periodic lattice using the
mesoscopic cell decomposed into the “microporous” matrix and the mesoscopic channels,

6
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Z = Zm∪Zc∪ΓZ , which are separated by the interface ΓZ . The global domain Ω generated
by δZ as a periodic lattice is decomposed into the corresponding parts, Ω = Ωδ

m∪Ωδ
c ∪Γδ.

We recall that the interface Γδ
Z of real-sized cell part δZm = Zδ

m is “immersed” in the
fluid; this is is the assumption involved in the 1st level homogenization.

The second level homogenization associated with the asymptotic analysis δ → 0 leads to
the following local problems governing the local characteristic responses which constitute
the macroscopic effective parameters of the double porosity medium.

4.1 Local problems and homogenized macroscopic coefficients

The following bilinear forms are employed:

am (u , v) =∼
∫

Zm

AAez(u) : ez(v) , bm (p, v) =∼
∫

Zm

pB : ez(v) ,

cm (p, q) =∼
∫

Zm

∇zq ·K∇zp , dc (w , ϑ) = 2η ∼
∫

Zc

ez(w) : ez(ϑ) ,

〈u, w〉Zc
=∼
∫

Zc

uw .

To compute the homogenized macroscopic coefficients, the mesoscopic problems for
characteristic responses must be solved. The following four decoupled local problems in
the matrix are defined: Find ωij,ωP ∈ H1

#(Zm)/R3, and πk, ϕk ∈ H1
#(Zm) such that,

am
(
ωij, v

)
= −am

(
Πij, v

)
∀v ∈ H1

#(Zm) ,

am
(
ωP , v

)
= bm (1, v)− ∼

∫

ΓZ

n [m] · v ∀v ∈ H1
#(Zm) ,

cm
(
πk, q

)
= −cm (zk, q) ∀q ∈ H1

#(Zm) ,

cm
(
ϕk, q

)
= − ∼

∫

ΓZ

qn
[m]
k ∀q ∈ H1

#(Zm) .

(4.1)

Moreover, three mesoscopic problems for characteristic responses in the channels must
be solved:

1. Find (ψij, π̂ij) ∈ H1
#(Zc)/R3 × L2(Zc), such that,

dc
(
ψij, ϑ

)
−

〈
π̂ij, ∇z · ϑ

〉
Zc

= −dc
(
Πij, ϑ

)
,〈

∇z ·ψij, q
〉
Zc

= −
〈
∇z ·Πij, q

〉
Zc

,
(4.2)

for all (ϑ, q) ∈ H1
#(Zc)× L2(Zc).

2. Find (ψP , π̂P ) ∈ H1
#(Zc)/R3 × L2(Zc), such that,

dc
(
ψP , ϑ

)
−

〈
π̂P , ∇z · ϑ

〉
Zc

= − ∼
∫

ΓZ

ϑ · n [c] − dc
(
ω̃P , ϑ

)
,

〈
∇z ·ψP , q

〉
Zc

= 0 ,

(4.3)

for all (ϑ, q) ∈ H1
#(Zc)× L2(Zc).

7
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4.2 Homogenized coefficients

In the following expression, we employ function ψ̃
ij

= ψij − ω̃ij. The following ho-
mogenized coefficients are involved in the macroscopic problem introduced below. They
are expressed using the characteristic responses of local problems (4.1), (4.2) and (4.3).

Aijkl = am
(
Πkl + ωkl, Πij + ωij

)
,

Bij = φmB ij − am
(
ωP , Πij

)
,

Hij = − ∼
∫

Zc

ϕjn
[m]
i = cm

(
ϕi, ϕj

)
,

Q∗
ij =∼

∫

ΓZ

πjn
[c]
i .

(4.4)

Cij = φmB ij + bm
(
1, ωij

)
− ∼

∫

ΓZ

n [c] · ψ̃ij
,

Kij = cm
(
zj + πj, zi + πi

)
,

Qij = cm
(
zi, ϕ

j
)
=∼
∫

ΓZ

πin
[m]
j ,

M = φmM + am
(
ωP , ωP

)
,

(4.5)

Sijkl = dc
(
Πij +ψij, Πkl +ψkl

)
,

Fij = φcδij + dc
(
ψP , Πij

)
− ∼

∫

Zc

π̂P∇z ·Πij ,

Eij = dc
(
ω̃P , Πij

)
,

(4.6)

The following relationships hold,

Qij = −Q∗
ji , Cij = Bij + φcδij , (4.7)

and we introduce

Pij = φcδij −Qij , P∗
ij = φcδij +Q∗

ij , (4.8)

Except of coefficients Qij and Pij, thereby also Q∗
ij and P∗

ij, all other coefficients are
symmetric tensors, i.e. aij = aji. Moreover Sijkl = Sklij.

8
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4.3 Macroscopic problem

The second level homogenization leads to the following macroscopic problem: Find
(u0,w 0, p0) ∈ V Ω × (W Ω + w̄)×H1(Ω), such that

∫

Ω

(
Aex(u

0)− p0B
)
: ex(v

0)−
∫

Ω

v 0 ·Q∗(∇xp
0 − f f )−

∫

Ω

v 0 ·Hw 0

=

∫

∂σΩ

(φm − φ̄m)p
0n · v 0 −

∫

Ω

p0v 0 · ∇φm +

∫

Ω

φmφsf
s · v 0 +

∫

∂Ω

φ̄mφ̄sg · v 0 ,

∫

Ω

q0C : ex(u̇
0) +

∫

Ω

∇xq
0 ·

(
K(∇xp

0 − f f )−Pw 0
)
+

∫

Ω

q0Mṗ0 = −
∫

∂wΩ

q0n · w̄
∫

Ω

ex(ϑ
0) :

(
Sex(w

0 + u̇0) + E ṗ0 +Fp0
)

+

∫

Ω

ϑ0
(
Hw 0 +P∗(∇xp

0 − f f )
)
=

∫

∂pΩ

φ̄cp̄
0n · ϑ0 ,

(4.9)

for all (v 0, q0,θ0) ∈ V Ω × W Ω × H1
#(Ω). By V Ω ⊂ H1(Ω) we denote the space of

admissible macroscopic displacements u0 vanishing on ∂uΩ, whereby the space W Ω ⊂
H1(Ω) contains velocities vanishing on entire ∂Ω, see the boundary conditions in the
initial formulation (2.3)-(2.4).

With the assumptions on the medium periodic structure, i.e. ∇φm = 0, and for the
usual case φm = φ̄m, the first two integrals involving p0 at the r.h.s. of (4.9) vanish. For a
special case φ̄m = 1, further symmetries can be observed, since φc = 1−φm; in particular,
the first two r.h.s. integrals are replaced by

−
∫

Ω

p0φc∇ ·w 0 −
∫

Ω

∇p0 ·w 0 ,

which give rise the following substitutions in eq. (4.9)1:

B := C , and Q∗ := P∗ . (4.10)

5 NUMERICAL ILLUSTRATION

In following part the results of numerical simulation illustrating the hierarchical three-
scale model proposed above are presented. The computation of effective coefficients can
be split into a few steps:

1. Find correctors on the microscale ωij,ωP ,ψi, πi as solutions of autonomous prob-
lems (3.2)-(3.4) on the cubic periodic cell Y .

2. Compute effective coefficients AA,B ,M and K given by (3.5) relevant on the meso-
scopic level.

3. Find the mesoscale correctors ωij,ωP , πk, ϕk,ψij, π̂ij,ψP and π̂P as solutions of
(4.1), (4.2) and (4.3) on the cubic periodic cell Z.

9
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4. Compute effective coefficients A,B,C,E ,F ,H,K,M,P ,Q and S introduced in
(4.4), (4.5) and (4.6).

Obtained effective coefficients relevant to the macroscopic scale are then used in simple
macroscopic problem.

The macroscopic model and all the autonomous problems at the meso- and microscopic
levels were implemented in SfePy software [1] which allows for multiscale simulations using
the FE method. The macroscopic fields w 0 u0 were approximated using the Lagrangian
elements Q2 and for macroscopic pressure field p0 the Q1 elements were used.

The solution of macroscopic problem is illustrated on the simple specimen shaped as a
block (10.0× 3.4× 3.4)m with material properties given by effective coefficients obtained
through the two-level upscaling from the mesoscopic level. The mesoscopic structure is
represented by a periodic cubic cell Z consisting of the microporous matrix Zm and the
fluid-filled channel Zc, see Section 4. The characteristic size of the real-sized cell Zδ

is δ = 10−1. Viscosity of the fluid in the channel is taken as η = 10−3Nsm−2. The
microporosity is represented by the channel Yf in the cubic cell Y . Fluid viscosity at this
level is rescaled according to (2.2), thus η̄ = ε−2η. The elasticity parameters of the solid
matrix are as follows: the Young’s modulus E = 3GPa and the Poisson’s ratio ν = 0.34.

The geometry representations of the micro-, meso- and the macroscopic level structure
are shown in Fig. 2 where the split of the boundary ∂Ω is illustrated, showing the two
segments Γin ⊂ ∂Ω, and Γout ⊂ ∂Ω. In the context of (4.9), ∂Ω ≡ ∂wΩ whereas Γout ≡
∂pΩ.

Figure 2: Left: Macroscopic geometry, definition of boundaries Γin, Γout; Middle: Mesoscopic geometry
consisting of fluid (Zc) and porous matrix (Zm), definition of point C; Right: Microscopic geometry
constituted by fluid part Yf and solid Ys.

In order to illustrate macroscopic behavior of deforming double porosity specimen
defined by (4.9), the following boundary conditions are considered:

w 0 = w̄ 0 = −nw̄0 on Γin,

w 0 = 0.8w̄ 0 = n0.8w̄0 on Γout,

w 0 = 0 on ∂Ω \ (Γin ∪ Γout).

p0 = 0 on Γout,

u0 = 0 on Γin,

10
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The seepage velocity w̄0 captures a parabolic profile along the cross-section Γout and/or
Γin, such that w̄0 = 0 at the edges ∂Γout and/or ∂Γin. For simplicity, volume forces and
surface tractions are omitted, thus f f = 0, f s = 0 and g s = 0. Results of the numerical
simulation at the macroscopic level are shown in Fig. 3, where displacement u0, velocity
w0 and pressure p0 fields are displayed.

Figure 3: Macroscopic fields: Top: local magnitudes of the displacement |u0|, deformed structure
displayed. Middle: pressure p0; Bottom: magnitude of relative fluid velocity w0.

6 CONCLUSION

In the reported work we propose a new model describing viscous flows in the homog-
enized double porous deformable medium in terms of coupled Darcy and Brinkman type
equations; the phenomenon of deformation introducing the Biot poroelastic coefficients
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into the meso- and macroscopic formulations presents the major novelty of the work when
compared with our paper [8]. We studied the two-level homogenization of Stokes flows
in the microporous material which is drained into the mesoscopic pores. In the proposed
model, the mesoscopic pores are much larger than the viscous boundary effects at the in-
terface. When each of the porosities is a connected domain, the flow in both is described
by two fields, w 0 and p0, for which boundary conditions must be specified independently.
The macroscopic model is not fully symmetric as the result of the fluid-structure inter-
action. As a future work, we intend to validate the macroscopic model using the direct
simulations of a heterogeneous structure at the mesoscopic level.
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Abstract. In forming processes, components generally undergo large deformations. This
induces the evolution of damage, which can influence material and product properties.
To capture these effects, a continuum damage mechanics (CDM) model, based on the
work of Lemaitre [8] and Soyarslan [13, 14] as well as different fracture criteria according
to Cockcroft and Latham [2], Freudenthal [4] and Oyane [10] are implemented and in-
vestigated. While the CDM theory considers the evolution of damage and the associated
softening, fracture criteria do not affect the results of the mechanical finite element (FE)
analysis. However, a coupling is generally possible via element deletion, but material
softening cannot be depicted in the simulation. Tensile tests with notched specimens are
performed in order to obtain the material parameters associated with these models by
inverse parameter identification processes. The optimized set of parameters is finally ap-
plied to the damage and fracture models used for the FE simulations of a cold extrusion
process, which are investigated in terms of damage evolution and material failure. It is
demonstrated that the CDM model predicts the evolution of damage observed for differ-
ent process parameters in cold extrusion quantitatively. The prediction of the failure by
the fracture criteria does not agree well with the experiments.

1 INTRODUCTION

In forming processes, the material used to produce components generally undergo large
deformations. For metals, this implies large plastic strains and damage, which has a
significant effect on the material, and thus, product properties. The depiction of damage
in FE-simulations is therefore necessary.

On the microscopic scale, damage occurs at inhomogenities such as inclusions or grain
boundaries. During deformation, damage develops as a result of nucleation, growth and
coalescence of voids. Excessive growth of these voids finally leads to macroscopic cracks,
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and thus, failure of the component. The mere existence of damage, however, does not
necessarily imply failure of the part, as Tekkaya et al. point out in [16].

The prediction of damage and fracture with finite element (FE) simulations requires
the definition of a constitutive damage model to properly depict the physical behavior.
McVeigh et al. [9], Saanouni et al. [12] and Soyarslan et al. [13] investigated cold extrusion
processes by predicting central bursting in FE analyses with the use of continuum damage
mechanics (CDM) theory. McVeigh et al. implemented a combined Drucker-Prager/HLC-
type yield surface based on a micromechanical cell modeling technique. Soyarslan et al.
performed investigations based on a Lemaitre-type damage model with fictitious material
parameters, while Saanouni et al. used parameters which were identified based solely on
uniaxial tensile tests. As an alternative to CDM, damage, which may ultimately lead
to fracture, can be accounted for by so-called fracture criteria, which predict fracture
in terms of the accumulation of certain stress states. Chen et al. [1] investigated cold
extrusion processes with those fracture criteria.

The goal of this work is the analysis of a cold extrusion process for 16MnCr5 in terms of
damage and the comparison of different damage and fracture formulations. The material
and model parameters associated with the constitutive damage model and the fracture
criteria are determined by an inverse parameter identification process for notched tensile
tests. Since no macroscopic cracks occur for the experimental setups of the cold extrusion
processes investigated in this work, the predictions for damage are validated by comparison
with scanning electron microscopy images of voids.

2 FRACTURE AND DAMAGE MODELING

In general, the prediction of damage with fracture criteria is based on very little infor-
mation about the material and stress states, resulting in a low effort for the computation
and the implementation. These criteria can be either used coupled or uncoupled to the
FE analysis. While softening effects cannot be conducted, the criteria can be coupled to
the simulation via element deletion. In this case, the interaction arises trough changes
in stiffness. Although such failure criteria give an estimation of the damage, they do
not cover any other effects that micro-cracks might have. Damage can decrease the elas-
ticity modulus, the yield stress, the hardness, the ultrasonic waves velocity, the density
or increase the electrical resistance. Constitutive models are capable of covering those
effects, since the evolution of damage can be modelled more accurately. However, the
computational cost compared to the fracture criteria is higher.

2.1 Fracture Criteria

Various fracture criteria exist to predict failure in forming processes. Most of them
can be written as the integral of a function of the stress state expressed in terms of the
Cauchy stress f(σ) over the plastic equivalent strain α with the failure strain αf as the
upper boundary, i.e.

C =

αf∫

0

f(σ) dα . (1)
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The variable C can be interpreted as the critical value when failure occurs and therefore
is a material parameter.

The established models of Freudenthal, Cockcroft and Latham and Oyane are imple-
mented in this work and explained in the following.

According to Freudenthal [4], the critical parameter at fracture

CF =

αf∫

0

σeq dα , (2)

is a measure for the absorbed energy per unit volume, where σeq denotes the equivalent
stress. This model does not consider the effect of high tensile stresses or hydrostatic stress
states explicitly.

Cockcroft and Latham [2] postulated that fracture is triggered by the maximum prin-
ciple tensile stress instead of the generalized stress. Therefore, the critical material de-
pendent value at fracture

CCL =

αf∫

0

�σp,1� dα (3)

is defined as the integral over the largest positive principal stress. The first principal
stress is denoted by σp,1, where σp,i represents the i-th principal stress, with σp,1 ≥ σp,2 ≥
σp,3. The expression �•� represents the Macaulay brackets, i.e. �•� = 0, ∀ • < 0 and
�•� = •, ∀ • ≥ 0. This criterion does not consider the influence of hydrostatic stresses
explicitly.

Oyane et al. [10] consider a void growth model. They postulate

CO =

αf∫

0

[
1 +

1

a0

σh

σeq

]
dα (4)

to be the criterion for fracture, where σh = 1
3
tr(σ) denotes the hydrostatic stress. The

parameter a0 can be adapted inside reasonable limits for a better correlation of numerical
and experimental results. It is connected with the volumetric strain and can be derived
by experiments with two different stress states, as explained in [10].

2.2 Continuum Damage Model

An elasto-plastic material model coupled with damage is selected for this article. It is
based on the work of Lemaitre, see [8], with modifications following the implementation
of Soyarslan et al. [13, 14]. All simulations in this work are performed with the commer-
cial FE software Abaqus. In the following, the constitutive model is introduced as it is
implemented in the framework of the Fortran-based user subroutines for finite strains. It
is formulated in terms of the rate of the Mandel stresses and logarithmic stretches.

3
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To define damage, the variable D, with D ∈ [0, 1], is introduced, which describes the
surface density of mechanical defects. The stresses acting on the resisting area are called
effective stresses, with •̃ = •/[1−D], where • can be any stress measure.

The deformation gradient
F = F e · F p (5)

is decomposed multiplicatively into elastic and plastic parts, F e and F p, respectively, see
[7]. Using the polar decomposition theorem, the deformation gradient can be written as

F = R ·U = V ·R , (6)

whereR is an orthogonal rotation tensor andU and V are symmetric deformation tensors,
representing the stretches, as explained in [3]. The logarithmic stretches

ln (U) = ln (U e) + ln (Up) (7)

can be decomposed additively into the elastic ln(U e) and plastic ln(Up) part. The rate

of the elastic logarithmic strecth
˙

ln(U e) can be approximated as

˙
ln(U e) = ReT ·D ·Re −Dp (8)

for small elastic strains (|U e| ≪ 1). Assuming that the plastic spin W p = skw(Lp) ≈ 0
in terms of the plastic part of the velocity gradient Lp = Ḟ p ·F p−1 can be neglected, one
obtains

Ṙe = W ·Re −Re ·W p (9)

for the elastic rotation. With this at hand, the rate of the effective Mandel stresses is
defined as

˙̃
M = λ0 tr(

˙
ln(U e)) I + 2µ0

˙
ln(U e) , (10)

where the Mandel stresses are related to Cauchy stresses via

σ =
Re ·M ·ReT

det (F )
. (11)

The damage associated driving force, also referred to as energy density release rate

Y =
1 + ν

2E

[
�M̃�+ : �M̃�+ + h �M̃�− : �M̃�−

]
−

ν

2E

[〈
tr(M̃)

〉2

+ h �tr(−M̃ )�2
]

(12)

is defined as proposed by Soyarslan et al. [13, 14]. The variable h was introduced by
Lemaitre as a material-dependent parameter associated with closing micro-defects. In the
latter definition of the damage related driving force, the crack-closure effect is not taken
into account. Here, h controls the delayed void growth under compressional loading.

The hardening law is chosen to be of a Swift-type, see [15], which defines the yield
stress as

q = A [α0 + α]n , (13)

4
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where A, α0 and n are material parameters. The yield function is defined as

Φy(M , q, D) = M̃eq − q , (14)

with M̃eq =
√

(M̃ : H : M̃ ), where H is the the so-called Hill-operator [5]. With this at

hand, the plastic part of the deformation rate can be derived as

Dp = λ̇
∂ Φ

∂M
= λ̇

1

1−D

H : M̃

M̃ eq

, (15)

where λ̇ represents the plastic multiplier. The evolution of damage is given via the relation

Ḋ = λ̇

〈
Y − Y0

S

〉κ
1

[1−D]β
, (16)

where κ, S, Y0 and β are material parameters.

3 Parameter Identification Process

Material models and fracture criteria used for the simulation of forming processes are
generally based on a variety of material and model parameters. For the mathematical
modeling of complex material behaviours, adapting the model parameters is essential for
the accurate prediction of the material response. While some parameters like the Young’s
modulus and the Poisson’s ratio can be computed directly, others can not. A common
approach is an inverse parameter identification process. The aim of the inverse problem of
parameter identification is to minimize the deviation between the experimental data and
the data obtained by numerical simulations using an optimal set of parameters, under the
consideration of mathematical and physical constraints.

To this end, a simulation of the experimental setup has to be performed multiple
times, where the material parameters are iteratively updated, until the numerical and
experimental results match as best as possible. Mathematically speaking, the optimal
parameter set is defined by the minimization problem of the form

min
κ

(f(κ)) , ∀κ ∈ K, with K = {κ |h(κ) = 0, g(κ) ≤ 0} . (17)

where f(κ) is the objective or error function. It depends on the parameter set κ which
underlies equality h and inequality constraints g.

While the simulations of the experiments are performed with Abaqus, the algorithm
for the parameter identification process is implemented in Python, making use of the
provided optimization library. Since the minimization algorithms do not necessarily find
global minima, all parameter identification processes have been performed with various
initial guesses for the starting parameter vectors and different optimization algorithms,
i.e. zero-order and gradient-based methods as well as evolutionary algorithms.
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Figure 1: Engineering drawing of the specimen (a) and load displacement curves obtained from the
experiments (b).

In general, it is possible to compare any values of the simulation with the experimental
data. In this work, the optimization procedure is always applied to the full body response,
i.e. the load displacement curve. To this end, the objective function is defined as

f(κ) :=

√√√√
nsp∑
i=1

[
w(i)

[
f sim(κ, i)− f exp(i)

]]2
, (18)

which is a least-square-like error function, where i denotes the summation index, with
i ∈ nsp and nsp represents the number of sample points. It measures the difference between
the numerically and experimentally obtained reaction forces f exp and f sim, respectively,
weighted by w.

To this end, experiments have to be carried out in order to generate data for comparison
to the simulation results. Notched tensile tests are performed to induce a localization
of the deformation and to impose an inhomogeneous stress field throughout the entire
experiment. The resulting load displacement curves, as depicted in Figure 1(b), show
variations in curvature, as well as differences in the point of crack initiation and failure.
Since the response of specimen 1 yields an average behaviour, the following parameter
identification processes are performed with respect to its associated experimental data.

Since isotropy is considered, the parameters associated with the Hill operator are chosen
as r0 = r45 = r90 = 1. The elastic properties, i.e. the Young’s modulus and the Poisson’s
ratio, are determined analytically as E = 210000 MPa and ν = 0.3, see [11].
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Table 1: Identified parameters for elasto-
plastic continuum model in conjunction with
fracture criteria.

A 9.332 ·102 MPa
α0 1.196 ·10−3

n 1.575 ·10−1

CCL 5.912 ·102 MPa
CF 4.069 ·102 MPa
CO 9.859 ·10−1

Table 2: Identified parameters for fully cou-
pled continuum model.

A 1.043 ·103 MPa
α0 5.630 ·10−3

n 2.095 ·10−1

κ 3.087 ·100

S 3.226 ·100 MPa
Y0 3.710 ·10−2 MPa
β 1.989 ·101

Dcrit 4.607 ·10−1

3.1 FE-Model for the Notched Tensile Test

The FE-model including the geometry, the mesh and the boundary conditions of the
notched tensile test is shown in Figure 2(a). Axisymmetry, as well as symmetry with
respect to the horizontal plane is considered. The geometry is discretized with 230 four-
noded, axisymmetric, quadrilateral elements with reduced integration (type CAX4R) and
an edge length of 4.3 mm. The load is applied linearly over time as displacement boundary
conditions on the thread. In the experiment, the displacements were tracked with an
extensometer, with its sensors positioned 20 mm above and below the plane of horizontal
symmetry, as indicated in Figure 2(a). The displacements are evaluated at a node at the
same exact position to reproduce the load displacement curve correctly.

For the depiction of cracks in FE analyses, element deletion is used. To this end, the
parameter Dcrit is introduced as a threshold value to trigger the removal of elements. The
simulations are performed with Abaqus/Explicit.

3.2 Identification of Plasticity Parameters

In this section, a parameter identification is performed for elasto-plasticity with Swift-
type hardening, as introduced in Section 2.2. To this end, the error in the load dis-
placement curves in the elasto-plastic area, which is the region before the crack starts to
develop, is minimized.

The associated load displacement curve is depicted in Figure 2(b). The numerical
results for the optimized parameter set, as shown in Table 1, are in good agreement with
the experimental data.

3.3 Parameter Identification for the Fracture Criteria

In the following, an identification of the parameters for the fracture criteria, i.e. CF, CCL

and CO, as shown in eqs. (3) to (4), is carried out. These constants are used as threshold
values for material failure and therefore trigger element deletion. The fracture criteria are
used in conjunction with a Swift-type hardening model with the optimized parameter set
identified in the previous section.

Performing the test, the specimen fully fails immediately after crack initiation. Since
there is no material softening, an excessive amount of elastic energy is released upon
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Figure 2: Illustration of the FE-model of the notched tensile test (a). The node, where the displacement
is recorded for the load displacement curves, is marked by the red dot. The load displacement curves of
the experiment and the simulations (b) are performed with optimized parameter sets.

failure, resulting in unrealistic large vibrations. The resulting oscillations in reaction
forces are removed for visualization purposes. Since the time discretization is identical
for all simulations, the resulting load displacement curves are identical for all fracture
criteria, as depicted in Figure 2(b). The identified threshold values are shown in Table 1.

3.4 Parameter Identification for the Continuum Damage Model

In this section, a parameter identification process for the continuum damage model is
performed. In general, various options exist to realize this. One way is the identification of
only the damage related parameters, based on the optimized plasticity, as done in Section
3.2. The load displacement curve does not hold any information about the initiation of
the damaging process, because the decrease in the reaction force does not necessarily has
to be damage induced and can be caused solely by cross section reduction of the specimen.
Thus, the optimization of the plasticity and damage associated parameters simultaneously
could be another possible way for performing the parameter identification process. This
implies, that the damage evolution can start at basically any point.

Here, the latter approach is implemented, because it is more reasonable that the dam-
age evolution is a steady process, that most likely occurs before the crack initiation on
macroscopic scale. Since the stress state is purely tensional, the parameter h has no in-
fluence on the results and has to be obtained from different experiments. To this end, h
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is set to zero.
The resulting load displacement curve is depicted in Figure 2(b). The numerical data

is associated with the optimized parameter set in Table 2. While the specimen fails
immediately after crack initiation using the fracture criteria, a developing crack can be
observed for the continuum damage model.

4 SIMULATION AND ANALYSIS OF COLD EXTRUSION PROCESSES

In the following, the simulation of a cold extrusion process is presented, based on the
parameter sets identified in the previous sections.

Simulations are performed for two experimental setups with different extrusion strains,
i.e. ϕ1 = 0.5 and ϕ2 = 1.0. The extrusion strain ϕ is defined as ϕ = ln(A0/A1), where A0

and A1 represent the cross sections before and after the extrusion, respectively. The initial
workpiece diameter is D0 = 30 mm. A friction coefficient of µ = 0.04 between workpiece
and die is used. The shoulder opening angle of the die is defined as α∗ = 45◦, the transition
radii are set to 3 mm and an undercut is used. For the sake of saving computational
time, axisymmetry is considered for the FE model. The billet is discretized with 4260
four-noded, axisymmetric, quadrilateral elements with reduced integration (type CAX4R)
with an edge length of 4.3 mm. The die is modeled as a linear-elastic solid with a Young’s
modulus of Edie = 210000 MPa and a Poisson’s ratio of νdie = 0.3. The parameter sets
identified in the previous sections are used. The workpiece is pushed trough the die by a
constant velocity of 6.1 mm/s over 7.1 s of process time.

Figure 4 depicts the damage distribution for the continuum damage model for the two
experimental setups. It can be observed that the maximum damage appears beneath the
surface of the billet. The level of damage for the smaller extrusion strain ϕ1 is higher on
the central axis compared to ϕ2, which is also observed in the experiments, as seen in
Figure 4.

(a) ϕ = 0.5 (b) ϕ = 1.0

Figure 3: SEM micrographs of 16MnCr5 for extrusion strains of ϕ = 0.5 (a) and ϕ = 1.0 (b). Taken
from [16].

The contour plots of damage for the fracture criteria are shown in Figure 5. Here,
damage is defined by the actual value of the associated damage criterion C• divided by
the critical value C•,crit identified in Section 3.3. Comparing all contour plots for ϕ1, they
show significant variations in values and distribution. While the maximum damage in the
stationary region is 1.5 %, and therefore, rather low, the maximum damage for the criteria
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of Cockcroft-Latham, Freudenthal and Oyane is 42 %, 292 % and 51 %, respectively. Using
the criteria of Cockcroft-Latham and Oyane, most damage occurs in the center, while the
criterion of Freudenthal predicts the highest damage beneath the surface.

Isik et al. investigated damage in terms of void volume fraction experimentally. It was
shown that the damage in the dual phase steel DP600 was below 1 % for equivalent plastic
strains of up to 0.8. Since 15MnCr6 shows a similar mechanical behavior to DP600, the
results of the CDM model seem reasonable, while the damage predicted by the fracture
criteria is significantly overestimated.

D in %
1.500

1.125

0.750

0.375

0.000

(a) ϕ = 0.5

(b) ϕ = 1.0

Figure 4: Contour plot of damage D distribution for cold extrusion for extrusion strains of ϕ = 0.5 (a)
and ϕ = 0.1 (b) with the use of the continuum damage model.
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Figure 5: Contour plot of damage D distribution for the fracture criteria of Cockcroft-Latham (a),
Freudenthal (b) and Oyane (c) for the cold extrusion process with ϕ1. The damage value is defined by
the actual value of the criterion, divided by the critical value identified in Section 3.3.

5 CONCLUSION

From the simulation results it can be concluded that the use of the presented fracture
criteria is very limited and only reasonable in certain cases. In this work, the coupling
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between the fracture criteria and the stresses is not implemented, so the effect of damage
induced softening cannot be captured explicitly, leading to an overestimated stiffness.
Fracture criteria depend on a single stress-dependent function and cannot distinguish
between different damage mechanisms, which may lead to errors. Cracks can be depicted
by coupling those fracture criteria to an element deletion criterion. Removing undamaged
elements, however, is associated with the removal of energy and mass, which may influence
the physical behavior. A fine discretization would diminish this effect, but is related to
increasing computational effort.

A CDM model generally yields a better prediction of the damage, up to the point of
fracture. Elasticity is coupled to the damage evolution and therefore the effect of damage
induced softening can be captured. Here, the removal of elements with damaged material
is not as significant as for the fracture criteria due to the decrease in stiffness. The CDM
model presented in this work can be adapted to the problem more accurately, since the
evolution of damage is controlled by several parameters. While the fracture criteria only
depend on a single stress dependent function, the constitutive damage model can distin-
guish between different stress states.

ACKNOWLEDGEMENT

Funding of project S01 within the Collaborative Research Centre CRC/Transregio 188
”Damage-controlled forming processes” by the German Research Foundation (DFG) is
highly acknowledged.

REFERENCES

[1] D.C. Chen, S.K. Syu, C.H. Wu, S.K. Lin, Investigation into cold extrusion of alu-
minum billets using three-dimensional finite element method, Journal of Materials
Processing Technology 192-193, pp. 188-193, 2007.

[2] M.G. Cockcroft, D.J. Latham. Ductility and the Workability of Metals, Journal of
the Institute of Metals, 96, pp. 33-39, 1968.

[3] F. Dunne, N. Petrinic. Introduction to computational plasticity, Oxford: Oxford
University Press, 2005.

[4] A.M. Freudenthal. The inelastic behaviour of engineering materials and structures,
Wiley, New York, 1950.

[5] R. Hill. A theory of the yielding and plastic flow of anisotropic metals. Proceedings
of the Royal Society of London, 1948.

[6] K. Isik, G. Gerstein, T. Clausmeyer, F. Nürnberger, A.E. Tekkaya, H.J. Maier, Evalu-
ation of Void Nucleation and Development during Plastic Deformation of Dual-Phase
Steel DP600. Steel research int. 87, No. 9999, 2016.

11

206



Alexander Schowtjak, Till Clausmeyer and A. Erman Tekkaya

[7] E. Lee. Elastic-Plastic Deformation at Finite Strains. ASME. J. Appl. Mech 36(1):1-
6, 1969.

[8] J. Lemaitre, R. Desmorat. Engineering Damage Mechanics. Springer, 2005.

[9] C. McVeigh, W.K. Liu. Prediction of central bursting during axisymmetric cold ex-
trusion of a metal alloy containing particles, International Journal of Solids and
Structures 43, pp. 3087-3105, 2006.

[10] M. Oyane, T. Sato, K. Okimoto. Criteria for ductile fracture and their applications,
Journal of Mechanical Working Technology 4, pp. 65-81, 1980.

[11] F. Richter. The 100 Steels Programme (https://www.tugraz.at/fileadmin/
user upload/Institute/IEP/Thermophysics Group/Files/Staehle-Richter.pdf).

[12] K. Saanouni, J.F. Mariage, A. Cherouat, P. Lestriez. Numerical prediction of discon-
tinuous central bursting in axissymmetric forward extrusion by continuum damage
mechanics, Computers and Structures 82, pp. 2309-2332, 2004.

[13] C. Soyarslan, A.E. Tekkaya. U. Akyuz, Application of Continuum Damage Mechanics
in discontinuous crack formation: Forward extrusion chevron predictions, ZAMM -
Journal of Applied Mathematics and Mechanics, Volume 88, Issue 6, pp. 436-453.
WILEY-VHC, 2008.

[14] C. Soyarslan, A.E. Tekkaya. Finite deformation plasticity coupled with isotropic dam-
age: Formulation in principal axes and applications, Finite Elements in Analysis and
Design archive, Volume 46, Issue 8, pp. 668-683, 2010.

[15] H. W. Swift. Plastic instability under plane stress. Journal of the Mechanics and
Physics of Solids 1, pp. 1-18, 1952.

[16] A.E. Tekkaya, N. Ben Khalifa, O. Hering, R. Meya, S. Myslicki, F. Walther. Forming-
induced damage and its effects on product properties, CIRP Annals Manufacturing
Technology, accepted for publication 2017.

12

207



Effect of taper angle on processing load in forward extrusion

XIV International Conference on Computational Plasticity. Fundamentals and Applications 
COMPLAS 2017 

K. Konishi, T. Matsuno, S. Mayumi, Y. Taniguchi and S. Enoki 
 
 
 

EFFECT OF TAPER ANGLE ON PROCESSING LOAD IN FORWARD 
EXTRUSION 

K. KONISHI*, T. MATSUNO†, S. MAYUMI†, Y. TANIGUCHI# AND S. ENOKI# 

* Faculty of Advanced Engineering 
National Institute of Technology, Nara College  

22 Yata, Yamatokoriyama, Nara, 639-1080 Japan 
e-mail: a0833@stdmail.nara-k.ac.jp 

 
† SAKAMURA INDUSTRIES, INC. 

6-11-18 Hishie, Higashiosaka, Osaka, 578-0984 Japan 
 

# Department of Mechanical Engineering 
National Institute of Technology, Nara College  

22 Yata, Yamatokoriyama, Nara, 639-1080 Japan 
e-mail: shinichi_enoki@mua.biglobe.ne.jp , taniguchi@mech.nara-k.ac.jp 

Key words: Forward extrusion, Friction coefficient, Contact pressure, Plastic strain, Strain 
rate, Processing load. 

Abstract. There is actuality that forward extrusion processing is difficult when taper angle of 
die is less than 2°. Aim of this study is to reveal the reason why the forward extrusion 
processing is difficult in the case of 2°. To know the reason, we simulated forming processes 
with two-dimensional axisymmetric models under the same processing conditions. Each of 
two-dimensional axisymmetric model has different taper angles. Processing conditions are 
same reduction rate in area and taper angles from 25° to 2°. As a result, the smaller the taper 
angle, the bigger the processing load. To investigate the reason, we compared with contact 
pressure distributions in these angles. And then, it was revealed that the smaller the taper 
angle, the bigger the contact pressure distribution at the upper of taper section. When the 
contact pressure is large, it seems that friction force and the processing load become big. 
From the above, in the case of 2°, processing load is large. Therefore, depending on the 
machine, it is difficult to process the blank. 

1 INTRODUCTION 

In production site, there is actuality that forward extrusion processing is difficult when 
taper angle of die is less than 2°. In the forward extrusion, engineers have decided the taper 
angle of die along their experiences. Aim of this study is to reveal the reason why the forward 
extrusion processing is difficult in the case of 2°. To know the reason, we simulated forming 
processes with two-dimensional axisymmetric models under the same processing conditions. 
Each of two-dimensional axisymmetric model has different taper angles. Processing 
conditions are same reduction rate in area and taper angles from 25° to 2°. In this paper, the 
formability of forward extrusion is investigated by deformation pattern, contact pressure, load 
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 2 

value, plastic strain and strain rate. 

2 ANALYSIS PROCEDURE AND METHOD 
We used Simufact forming 13.0 (MSC Software Corporation) for analysis and made two-

dimensional axisymmetric models of die with the taper angle of 2°,4°, 6°, 8°, 10°, 15°, 20° 
and 25°. Figure 1 shows two-dimensional axisymmetric models of die we made. Extrusion die 
used in this work having reduction factor of 10:5 (Inlet diameter: Outlet diameter).Therefore, 
reduction rate in area is 0.25. The work piece data used S45C with the dimension of 10mm, 
60mm and 80mm in length and 10mm diameter. In the case of 2°, work piece length is 80mm, 
because amount of work piece for filling the tapered portion is insufficient. For perform 
analysis under the same conditions, in the case of 6° and 15°, work piece length is 80mm. In 
the case of less than 10°, work piece length is 60mm. On the other hand, In the case of more 
than 20°, work piece length is 10mm. Material property in database of Simufact formig was 
used for workpiece. Punch speed is 200mm/s. To observe the effect of friction, coulomb 
friction and shear friction are 0.1 and 0.3. From the above conditions, we performed analysis 
and investigated formability. 

Figure1    Analysis model in a variety of taper angle 

3 RESULTS AND DISCUSSION  

3.1 Investigation by deformation pattern 

Analysis of forward extrusion was conducted to observe the deformation pattern near 
outlet part. Figure 2 shows difference of deformation pattern between 2° and 25°. This 
difference shows following two factors. The one case of less than 8°, the center of work piece 
was flowed out immediately after flowing through the taper section, because it seems that 
effect of friction is more dominant than more than 10°. The other case of more than 10°, 
circumstance part of work piece was flowed out, because it seems that effect of material flow 
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is more dominant than less than 8°. From the above, deformation pattern of work piece 
attribute to friction.  

 
(a) Taper angle 25°             (b) Taper angle 20°              (c) Taper angle 15°            (d)Taper angle 10° 

Stroke 3.6mm                     Stroke 4.2mm                      Stroke 5.7mm                    Stroke 8.4mm 
 

 
(e) Taper angle 8°               (f) Taper angle 6°              (g) Taper angle 4°       (h) Taper angle 2°    

Stroke 11.5mm                     Stroke 14.5mm                    Stroke 21.6mm        Stroke 53.7mm 
Figure2 Difference of deformation pattern in different taper angle 

3.2 Effect of deformation pattern and load value by friction 
To investigate the effect of friction, analysis was conducted with different friction 

coefficient value. When both Coulomb friction and shear friction are 0.1, it is expressed as 
f=0.1. When both Coulomb friction and shear friction are 0.3, it is expressed as f=0.3. Figure 
3 shows the comparison between when friction coefficient is 0.1 and when it is 0.3. We 
compare deformation pattern in case of both 6° and 15° because they have difference of 
deformation pattern.  
 

 
       (a)          Coulomb friction 0.1    (b) Coulomb friction 0.1 
              Shear friction 0.1                  Shear friction 0.1 
         Taper angle 15°     Taper angle 6° 
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        (c)          Coulomb friction 0.3    (d)       Coulomb friction 0.3 
              Shear friction 0.3                Shear friction 0.3 
         Taper angle 15°                Taper angle 6° 

Figure 3 Effect of friction on deformation pattern 
 

Figure 3 shows deformation pattern in case of changing friction coefficient. As a result, the 
bigger friction coefficient, the bigger center flow amount because it seems that deformation 
pattern is affected by friction coefficient. From the above, it may be suspected that  friction 
coefficient affect processing load value. Therefore, we investigated contact pressure under the 
same condition at the time of  passing through the taper section. Figure 4 shows contact 
pressure under the same case. To compare at each location, Table 1 Shows contact pressurein 
case of 2°, 6° and 15°. 
 

Table 1 Contact pressure occurred between work piece and die 
 

 Contact 
puressure [MPa] Contact 

puressure [MPa] Contact 
puressure [MPa] 

 
Taper angle 

15° 
Taper angle 

6° 
Taper angle 

2° 

 f=0.1 f=0.3 f=0.1 f=0.3 f=0.1 f=0.3 

A Near the punch 1400 3000 1500 3600 1550 6400 

B Just before inflow 700 1200 1000 2200 2000 5200 

C Immediately after inflow 1800 2200 2000 3000 3100 6300 

D After processing 1000 1100 900 1000 800 900 
 

Figure 4 shows that, there was no difference in contact pressure distribution by difference in 
taper angle when friction in the case of f=0.1. However, the bigger the friction coefficient, the 
bigger the contact pressure distribution at the upper of taper. From the above, due to work 
hardening in the vicinity of the outlet part, the material flow becomes worse. As a result, the 
extrusion load was increased. Therefore, processing load value required for machining 
increases. As can be seen from the Table 1, contact pressure is big when the taper angle is 
small and the frictional coefficient is large. This is because, compression deformation occurs 
before the material flows into the taper section by hardening in the vicinity of the outlet part  
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        (a) f=0.1                           (b) f=0.3                        (c) f=0.1                        (d) f=0.3         

                       Taper angle 15°               Taper angle 15°             Taper angle 6°              Taper angle 6° 
Figure 4 Difference of contact pressure 

 

15° 6° 

212



K. Konishi, T. Matsuno, S. Mayumi, Y. Taniguchi and S. Enoki 

 6 

and friction will occur on the inner wall surface of the die. Therefore, to clarify the causal 
relation between the contact pressure and the processing load, processing load is shown 
Figure 5. 

 
Figure 5 Difference of processing load 

 
In the case of f=0.1, interval in the processing load value between 15 ° and 6 ° is 15 kN. Also, 
in the case of f=0.3, interval in the processing load value between 15 ° and 6 ° is 80 kN. When 
the taper angle is 6 ° and friction coefficient is 0.3, the contact pressure is big as compared 
with the case of 15 °. Therefore, it seems that processing load is increased by influence of 
friction increasing when taper angle is small. Therefore, as the processing load value vibrates, 
fatigue fracture punch and die can occur. In addition, we analysed processing load value in the 
case of 2°. Figure 6 shows processing load value in the case of 2°. Result of analysis, 
necessary processing load is 220 kN when f=0.1. Also, necessary processing load is 524 kN 
when f=0.3. The necessary processing load is the biggest when taper angle is 2° in each taper 
angle. Therefore, there is a possibility of causing die cracking, since the processing load to be 
used is large. 

 

 
Figure 6 Processing load in the case of 2° 
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3.3 Investigation by plastic strain 
It has been reported that deformation resistance which  increases due to work hardening 

and the work hardening has velocity dependence.[5] In addition, the faster the strain rate, the 
bigger the work hardening, but deformation resistance becomes smaller. Therefore, the reason 
why the processing load increases as the taper angle becomes smaller is considered to be in 
work hardening due to plastic strain. Figure 7 shows results of analysis of plastic strain. 
 

 
                             (a) f=0.1                              (b) f=0.3                    (c) f=0.1      (d) f=0.3      (e)f=0.1 (f)f=0.3 
                                                 Taper angle 15°                                             Taper angle 6°            Taper angle 2° 

Figure 7 Difference of plastic strain distribution in friction coefficient 
 

Figure 7 shows plastic strain has occurred in the tapered portion, and deformation resistance is 
increased by work hardening. It has been reported that the deformation resistance rapidly 
increases when the plastic strain is bigger than 0.7, but this tendency does not appear when 
the strain rate is 102 s-1 or more. [6] Therefore, it is considered that deformation resistance is 
occurred in the portion where the strain rate is small and plastic strain is big. In order to 
investigate the extent of work hardening, we analyzed strain rate. Figure 8 shows that when 
the taper angles are 15 ° and 6 °, the strain rate becomes big around the outlet section. Also, it 
has been reported that the hardness increases as the strain rate increases during compression 
processing. It can be seen that when the taper angles are 15 ° and 6 °, the hardness after 
extrusion is bigger than in the case of 2°. It has been reported that as the strain rate increases, 
the deformation resistance decreases[6]. the processing load becomes bigger as compared with 
processing at 15 ° and 6 ° when the taper angle is 2 °. This is due to the effect of friction 
between inside of the die and the work piece and increase deformation resistance with small 
strain rate. 

15° 

6° 

6° 2° 
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                               (a) f=0.1                     (b) f=0.3                     (c) f=0.1     (d) f=0.3        (e) f=0.1  (f) f=0.3 
                                              Taper angle 15°                                         Taper angle 6°                 Taper angle 2°                      

Figure 8 Strain rate in each angle 

4 CONCLUSIONS 

In forward extrusion processing, we analyzed the taper angle from 25 ° to 2 °. As a result, 
the smaller the taper angle, the bigger the processing load. Also the bigger friction coefficient, 
the bigger deformation resistance. For this reason, plastic strain has occurred in the tapered 
portion, and deformation resistance is increased by work hardening due to this, and friction by 
contact pressure increases deformation resistance. From the above, processing load causes 
cracking of the mold due to increase of processing load. It was revealed that processing is 
difficult when the taper angle is 2 ° or less. 
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Abstract. This work addresses identification of inelastic parameters based on an opti-
mization method using a multi-objective technique. The problem consists in determining
the best set of parameters which approximate three different tensile tests. The tensile
tests use cylindrical specimens of different dimensions manufactured according to the
American ASTM E 8M and Brazilian ABNT NBR ISO 6892 technical standards. A ten-
sile load is applied up to macroscopic failure. The objective functions for each tensile
test/specimen is computed and a global error measure is determined within the optimiza-
tion scheme. The Nelder-Mead simplex algorithm is used as the optimization tool. The
proposed identification strategy was able to determine the best set of material parameters
which approximate all tensile tests up to macroscopic failure.

1 INTRODUCTION

A proper set of material parameters is one of the most important aspects for a suc-
cessful simulation of metal forming processes. The present work discusses techniques to
obtaining constitutive parameters based on a multi-objective optimization method for
the 304 stainless steel. In order to ensure greater generality, the identification strategy is
applied simultaneously to tensile tests using specimens of different sizes, defined by the
American ASTM E 8M [1] and Brazilian ABNT NBR ISO 6892 [2] standards. The pa-
rameter identification method is based on optimization and can approximate the material
response up to macroscopic failure with greater accuracy. Noticeably, after the maximum
load, the stress state becomes triaxial and the classical calibration techniques cannot be
applied.

Identification of elasto-plastic parameters using optimization techniques has long been
used in the literature. In the last ten years, many identification strategies have been
proposed based on optimization techniques. Most authors agree that the non-linearity of
the direct problem (elastoplasticity at finite strains) and the yield curve itself can cause

1
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difficulties in finding the global optimum. A final verdict of best method is temerarious
and, so far, the best strategy has proved to be problem dependent. For the sake of
objectivity, the reader is referred to Vaz Jr. et al. [3, 4] and references therein for
further insights on the application of optimizations techniques to identification of inelastic
parameters.

2 PARAMETER IDENTIFICATION AND THE OPTIMIZATION PROB-
LEM

Parameter identification is a class of inverse problems which determines material or
system parameters from a known response. The present problem is formulated using un-
constrained optimization and accounts for experimental data obtained from three different
tensile tests. Therefore, the multi-objective problem is formulated as

Minimise g(p) =
ns∑
s=1

λsgs(p) p ∈ Rnd

Such that pinfi ≤ pi ≤ psupi i = 1, . . . , nd

, (1)

where g(p) is the objective function (global fitness) of the multi-objective problem, p =
[p1 p2 · · · pi · · · pnd

]T is the design vector containing nd material parameters pi, and psupi

and pinfi are lateral constraints. The global fitness, g(p), comprises contributions from ns

individual problems, so that λs is the weight function (
∑ns

s=1 λs = 1), and gs(p) is the
individual and represents a quadratic relative error measure between the experimental,
RExp

s , and corresponding computed forming load, R (p)Num
s , of a mechanical test “s”,

gs (p) =

���� 1

Ns

Ns∑
j=1

ξs,j

(
RExp

s,j −R (p)Num
s,j

RExp
s,j

)2

, (2)

in which Ns is the number of experimental points and ξs (0 ≤ ξs,j ≤ 1) is the weight curve
of each individual set of experimental data.

The optimization technique adopted in this work uses the gradient-free downhill sim-
plex method, also known as Nelder-Mead algorithm (NM) [5]. The technique defines a
regular polytope of nd + 1 vertices (in a nd dimensional design space), which moves to-
wards the optimum by replacing the worst vertex by a new one selected along a search
line. The Nelder-Mead algorithm contains three basic elements: (i) creation of the initial
simplex from an initial estimate; (ii) search along a given direction and formation of a new
polytope by replacing the worst vertex after the following possible operations: reflexion,
expansion, or contraction; and (iii) shrinkage of the polytope towards the best vertex.
The reader if referred to References [4, 6, 7] for further insights on the algorithm used in
this work.

The Nelder-Mead method has already been used in identification of material consti-
tutive parameters. For instance, Banabic et al. [8] applied to identification of inelastic
parameters based on biaxial tensile tests, and Pannier et al. [9] used to find elastic-plastic

2
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constitutive parameters based on the Virtual Fields Method associated to tensile tests.
Further details on the application of the NM scheme to mechanical problems are given in
Luersen and Le Riche [10]. Noticeably, the authors have already investigated application
of the NM scheme for both classical von Mises [4, 6] and damaged materials [7].

3 NUMERICAL RESULTS AND DISCUSSIONS

The identification procedure is based on tensile tests of cylindrical specimens prepared
according to the American ASTM E 8M [1] and Brazilian ABNT NBR ISO 6892 [2]
technical standards. It is used extensometers with initial gauge length l0 = 25 mm or
l0 = 50 mm according to the specimen with maximum crosshead speed 3 mm/min. The
specimens used in this work are illustrated in Figure 1 and referred as follows:

ASTM #1: initial gauge length l0 = 25 mm and diameter d0 = 6.0 mm,

ASTM #2: initial gauge length l0 = 50 mm and diameter d0 = 12.54 mm,

NBR #3: initial gauge length l0 = 50 mm and diameter d0 = 10.0 mm,

(a) Specimen ASTM #1 : l0 = 25 mm, d0 = 6 mm. 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

33 mm 

 6 mm 

130 mm  

12,5 mm 

6 mm 

(b) Specimen ASTM #2 : l0 = 50 mm, d0 = 12.54 mm.

 
 
 
 
 
 
 
 
 
 
 
 
 
 

59,4 mm 

162 mm 

 20 mm 

12,54 mm 
13 mm 

(c) Specimen NBR #3 : l0 = 50 mm, d0 = 10 mm.

 
 
 
 
 
 
 
 
 
 
 
 

 
 

70 mm 

10 mm 
15 mm 

175 mm  

20 mm  

Figure 1: Specimen geometry for ASTM and ABNT-NBR standards.
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The finite element mesh used for specimen ASTM #2 is presented in Figure 2. The
geometrical model considers axisymmetry around the rotation axis Z−Z ′ and symmetry
about the R−R′ axis, making possible to model only 1/4 of the specimen. It was adopted
a structured, eight-noded quadrilateral finite element mesh with 200 elements and 661
nodes with progressive refinement towards the specimen R − R′ axis. The meshes used
for ASTM #1 e NBR #3 specimens were geometrically proportional to ASTM #2 with
identical element topology.

U6.27 mm

25 mm
R

R’

Z’Z

Figure 2: Finite element mesh for the ASTM #2 specimen.

It is important to highlight that, contrary to the classical calibration procedures, the
objective of the present identification process is to determine the material parameters
up to macroscopic failure of the specimens. This strategy accounts for larger plastic
deformations, making possible to use the material parameters in metal forming processes
which present equally large plastic strains. Therefore, instead of using the well-known
Swift’s [11] equation, this work adopts Voce’s [12] modified hardening equation to model
isotropic hardening, as

σY = σ0 + ζr + (σ∞ − σ0) [1− exp (−δr)] , (3)

where σ0 is the initial yield stress, σ∞ is the saturation stress, and ζ and δ are the
exponential and linear hardening parameters, respectively, so that the parameters to be
determined are {p} = {σ0 , σ∞ , ζ , δ}.

3.1 The identification process

This section summarises an investigation on convergence aspects of the optimization
problem. An initial assessment indicates that the individual (each specimen) and global
(combining all specimens) optimization problems are convex, making possible to use the
Nelder-Mead optimization scheme. The control parameters for the NM algorithm used
in the simulations are ρ = 1, γ = 2, β = 0, 5 e σ = 0, 5, whereas the initial estimate and
lateral constraints are presented in Table 1.

One can define three basic identification problems according to individual tensile tests.
In Case (A) identification is performed taking into account only the experimental curve
for specimen ASTM #1. Cases (B) and (C) are solved in similar fashion, accounting for
only experimental curves for specimens ASTM #2 and NBR #3, respectively. Therefore,

4
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Table 1: Lateral constraints and initial estimate.

Parameter pi Lower limit pinfi Upper limit psupi Initial estimate p0i

σ0 [MPa] 200 800 500
σ∞ [MPa] 400 1200 800
ζ [MPa] 300 1200 750

δ 0 50 25

identification based on experimental data for specimens ASTM #1, ASTM #2 and NBR
#3 are solved for the following sets of weight parameters, λs: Case (A) λ

(A)
1 = 1.0 and

λ
(A)
2 = λ

(A)
3 = 0.0, Case (B) λ

(B)
2 = 1.0 and λ

(B)
1 = λ

(B)
3 = 0.0, and Case (C) λ

(C)
3 = 1.0

and λ
(C)
1 = λ

(C)
2 = 0.0.

In addition to the aforementioned cases, in Case (D), identification is also performed
assuming that each tensile test imposes the same effect in obtaining the material param-
eters, i.e. the global objective function, g(p), is computed using weights λ

(D)
1 = λ

(D)
2 =

λ
(D)
3 = 1/3.

Figure 3 shows evolution of the convergence index, ϕ(k) = [g(p)
(k)
nd+1−g(p)

(k)
1 ]/[g(p)

(0)
nd+1−

g(p)
(0)
1 ], which represents the relative difference between the worst and best vertices of

the polytope with respect to the initial simplex. In this work, convergence is assumed
for ϕ(k) ≤ 10−9. It can be observed that evolution of the identification process is similar
for Cases (A), (B) and (C) and somewhat faster for the equally balanced identification
problem, Case (D).
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Figure 3: Convergence evolution of the optimization problem.

The Nelder-Mead algorithm requires an initial estimate, from which the initial simplex
is constructed. Therefore, the tolerance to changes of the initial estimate yet able to
achieve success must also be evaluated. In this case, in addition to the mean values

5
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Table 2: Initial estimates, p0i , and final parameters for λ1 = λ2 = λ3 = 1/3.

Test σ0 [MPa] σ∞ [MPa] ζ [MPa] δ Success?

Mean 500.00 800.00 750.00 25.0000 Yes
1 200.00 400.40 1084.09 5.0203 Yes
2 638.21 812.33 879.40 0.7273 No
3 301.86 1013.47 947.91 7.1787 Yes
4 496.42 1039.51 621.66 6.1902 Yes
5 313.91 614.02 789.68 35.7311 Yes
6 507.68 555.84 696.61 36.4500 Yes
7 509.39 497.26 937.77 19.5037 Yes
8 382.30 504.89 1186.05 27.9432 Yes
9 738.71 766.36 940.71 4.2220 Yes
11 520.93 695.71 958.31 17.6329 Yes

Final
Parameters 399.68 686.16 878.30 9.9677

(shown in the last column of Table 1), ten random initial estimates located within the
search space are also used. This test was performed for uniform weight parameters (λ1 =
λ2 = λ3 = 1/3). Table 2 presents the initial estimates, a success indication and final
parameters. The simulations show that only one set of initial parameters was not able to
obtain the expected results. The reason probably lies on the small value of parameter δ
assumed as initial estimate.

3.2 The loading process

The experimental and numerical load curves are shown in Figure 4, from which the
three well-known regions can be distinguished: (a) elastic loading, (b) load increase owing
to hardening and (c) load decrease due to reduction of the specimen cross-section area.
The transition between (b) and (c) is indicated by the maximum load (also known as
instability point). Table 3 presents the individual weights, λs, and corresponding mate-
rial parameters for Cases (A)−(D). Case (D) considers that each individual tensile test
contributes equally to determine the inelastic parameters.

Table 3: Individual weights, λs, and material parameters, p.

ASTM #1 ASTM #2 NBR #3

Case λ
(·)
1 λ

(·)
2 λ

(·)
3 σ0 [MPa] σ∞ [MPa] ζ [MPa] δ

(A) 1.0 0.0 0.0 405.89 839.36 714.47 5.3900
(B) 0.0 1.0 0.0 421.45 991.70 372.92 4.6021
(C) 0.0 0.0 1.0 409.16 878.59 597.24 5.1941
(D) 1/3 1/3 1/3 399.68 686.15 878.31 9.9684

Identification for Case (A) requires minimization of the global objective function, g(p),
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Figure 4: Load curves for tensile tests based on specimens ASTM #1, ASTM #2, and NBR #3.

computed using only the experimental data of specimen ASTM #1 (λ
(A)
1 = 1.0, λ

(A)
2 =

λ
(A)
3 = 0.0). Therefore, the numerical loading curve presents the minimum possible error

for specimen ASTM #1, measured by the individual fitness g
(A)
1 (p) = 7.2273 × 10−3

(the numerical curve visually matches the corresponding experimental data). However,
some discrepancies are found when using set (A) of material parameters to simulate
tensile tests for ASTM #2 and NBR #3 specimens (the corresponding individual fitness

g
(A)
2 (p) = 1.4112× 10−1 and g

(A)
3 (p) = 5.9591× 10−2).

A similar assessment is also performed for tensile tests of ASTM #1, ASTM #2
and NBR #3 specimens using data sets (B) and (C) of Table 3. Table 4 shows that
identification for the corresponding data set yields also very small individual fitness,
g
(B)
2 (p) = 7.9852 × 10−3 and g

(C)
3 (p) = 7.9447 × 10−3. Nevertheless, as discussed in

the previous paragraph, cross-simulations give rise to substantially large individual er-
rors, g

(B)
1 , g

(B)
3 , g

(C)
1 and g

(C)
2 .

The material data and individual fitness obtained for for Case (D) (λ
(D)
1 = λ

(D)
2 =

λ
(D)
3 = 1/3) are also presented in Tables 3 and 4. In this case, the numerical curves for

ASTM #1, ASTM #2 and NBR #3 specimens present also some differences, especially
after the maximum load is reached (see the thick solid line in Figure 4).

The best set of material parameters is not obvious from visual assessment of Figure
4. Furthermore, the differences of the weight parameters, λs, for Cases (A)−(D) also
preclude use of the global objective function, g(p) =

∑ns

s=1 λsgs(p), to determine the best
set of parameters. Therefore, a global index, G(·)(p), consisting the mean ratio between

the individual fitness and the corresponding minimum value, g
(·)
s /gmin

s , is evaluated as

G(·)(p) =
1

3

3∑
s=1

g(·)s /gmin
s . (4)
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Table 4: Individual, g
(·)
s (p), and relative, g

(·)
s /gmin

s
(∗), fitness for Cases (A)−(D).

Specimen

Case ASTM#1 ASTM#2 NBR#3 g
(·)
1 /gmin

1 g
(·)
2 /gmin

2 g
(·)
3 /gmin

3 G(·)(p)

g
(·)
1 (p) g

(·)
2 (p) g

(·)
3 (p)

(A) 7.2273E-03 1.4112E-01 5.9591E-02 1 17.6721 7.5008 8.7243
(B) 2.9773E-01 7.9852E-03 1.5886E-01 41.1946 1 19.9964 20.7303
(C) 1.0617E-01 1.0171E-01 7.9447E-03 14.6897 12.7378 1 9.47.58
(D) 3.7466E-02 1.1179E-01 3.1782E-02 5.1839 13.9991 4.0004 7.7278

(∗) The minimum individual fitness are gmin
1 = g

(A)
1 , gmin

2 = g
(B)
2 and gmin

3 = g
(C)
3 .

Table 4 indicates that, based on the global index, Case (D) yields the best numerical
approximation to the experimental data of all three tensile tests (G(D) = 7.7278). It
means that, in average, the error for an individual tensile test is approximately 7.7278
times the minimum possible individual fitness. On the other hand, Case (B) provides
the worst set of material parameters with a global index G(B) = 20.7303, owing to the
excessive load decrease after the maximum load when simulating tensile tests for ASTM
#1 and NBR #3 specimens, as shown by the dashed lines in Figure 4.

4 FINAL REMARKS

Hardening parameters for the AISI 304 stainless steel were determined based on three
tensile tests using specimens defined by the American ASTM E 8M (l0 = 25 mm, d0 =
6.0 mm, and l0 = 50 mm, d0 = 12.54 mm) [1] and Brazilian ABNT NBR ISO 6892
(l0 = 50 mm, d0 = 10.0 mm) [2] technical standards. The tensile tests were carried
out up to macroscopic failure aiming at determining inelastic parameters associated with
large plastic strains. The non-uniformity of the stress state after the maximum load
precluded application of the classical calibration techniques. Therefore, the identification
process used optimization schemes based upon a multi-objective strategy. The global
objective function used a weighted combination of individual fitness computed for each
tensile test/specimen. The simulations have shown that the size of the specimen plays an
important role in the identification problem, thereby requiring a careful balance between
effects of individual tensile test/specimen. In the present work, an equally balanced global
fitness provided the best approximations for all specimens. However, some differences were
observed after the maximum load.
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Abstract. Mesh dependence of the results of a finite element model are well known in
many fields such as in structural design. This problem is however not much addressed in
the literature for machining modelling although it is crucial for the quality of the results
and the predictive aspect of the model. In this work, an orthogonal cutting model of the
titanium alloy Ti6Al4V is exploited. The model formulation is Lagrangian and a damage
criterion with eroding elements is used. A strong sensitivity of the results to the size of the
elements is observed and the results do not converge when the size of the mesh decreases.
To address this issue, a non-local damage criterion that reduces the mesh dependence of
the results is introduced. The results show a strong decrease of their dependence to the
size of the mesh. The recommendation is to use elements length that is not too far from
the size of the grains of the material to avoid a dramatic increase of the computing time
for very small elements and the absence of converged results for too large elements.

1 INTRODUCTION

The problem of mesh dependence of the results of a finite element model of machining
is not much addressed in the literature. It is however crucial for the quality of the results
and the predictive aspect of the model. Some works were identied on this subject in the
literature, and particularly when segmented (also called saw-toothed) chips are formed.
Karpat [1] observed that a decrease of the elements length decreases the width of the
adiabatic shear band. Zhang et al. [2, 3] worked with four different elements sizes and
studied their influence on the modelled cutting force. Larger elements lead to a cutting
force value lower than the experimental value. Hortig ans Svendsen [4] noticed that a
decrease in the elements length leads to a decrease of the adiabatic shear band width
and a lower value of the cutting force. It is important to note that this last result is
in contradiction of what Karpat [1] observed. Ambati and Yuan [5] concluded that the
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cutting force is not dependent on the mesh density. They also observed that the width
of the adiabatic shear band decreases with the size of the elements and that the chip
becomes segmented although it was continuous for larger elements.

This literature review shows that a mesh dependence of the results can be highlighted
but all the conclusions do not go in the same direction, and particularly for the cutting
force. In this paper, an orthogonal cutting model of the titanium alloy Ti6Al4V is used
to highlight and then reduce the influence of the mesh on the results when a segmented
chip is formed.

2 FINITE ELEMENT MODEL PRESENTATION

The finite element model has previously been introduced by Ducobu et al. [6] to form
realistic segmented Ti6Al4V chips, with the major difference that in this study damage
properties are given to the whole workpiece. Its main characteristics are that it is a
Lagrangian orthogonal cutting model developed with Abaqus. It is composed of a fixed
workpiece and a tool moving horizontally at the cutting speed (Figure 1). The machined
material, Ti6Al4V, is described by the TANH constitutive model [7], a modified Johnson-
Cook material constitutive model [8] taking the strain softening into account. The cutting
speed is 75 m/min and the uncut chip thickness is 0.28 mm. The tool has a rake angle of
15 , a clearance angle of 2 and a cutting edge radius of 20 m. These cutting conditions
experimentally lead to the formation of a segmented chip [9].

Figure 1: Configuration and boundary conditions of the model

With a Lagrangian formulation, a damage criterion has to be introduced to allow the
chip to come off the workpiece. The adopted criterion is the temperature dependent
tensile failure of Ti6Al4V [10,11]. To limit the number of elements of the model and the
computation time, only the first segment of the chip is modelled. This allows to consider
a rather short workpiece (Figure 1). The size of the square elements ranges from 1 m to
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10 m with a step of 1 m. As shown in Figure 2, the computation time, with one Intel
CPU at 3 GHz, increases much when the mesh density increases. For 84 s of simulation
time, the computation time is close to 500 h for a mesh of 1 m while it is less than 5
minutes for a mesh of 10 m.

Figure 2: Evolution of the computation time with the mesh density (125 s corresponds to the formation
of the first segment, 84 s is the maximum simulation time computed for 1 m due to the very long
computation time for that mesh size)

3 RESULTS FOR DIFFERENT MESH DENSITIES

Figure 3 presents the chip morphology for the 10 different meshes. They are globally
close, except at 1 m: a fracture propagates inside the primary shear zone very quickly
(within 1 s, the output frequency of the results) and a second fracture appears in the
whole segment to cut it in two parts. When the mesh is 2 m, the crack propagates
quickly in the primary shear zone as well, but not in all of it and it takes longer than at
1 m. Secondary fracture in the segment is also present at 2 m and 3 m. For all the
meshes, the fracture propagates inside the primary shear zone, from the free surface of
the chip to the tool radius.

As shown by Figure 4, the width of the adiabatic shear band decreases with the length
of the elements. It is composed of 3-4 elements that are highly sheared. The decrease of
the elements length leads to elements that are sooner highly sheared in the primary shear
zone (the simulation time in Figure 4 decreases when the size of the elements decreases),
which involves a quicker increase of the temperature.

The cutting and feed forces are presented in Figure 5 for the 10 meshes, together with
the experimental reference of Sun et al. [9]. From 5 m to 10 m, the evolution and the
values of the cutting force are close. Under 5 m, the value of the first peak is reached
sooner and its magnitude decreases. The fall of the cutting force is more abrupt (the
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Figure 3: Chip morphology for different mesh densities (after 84 s for elements of 1 m and 125 s
from elements of 2 m to elements of 10 m)

Figure 4: Width of the adiabatic shear band for an elements size of (a) 1 m, (b) 5 m and (c) 10 m

width of the peak is smaller) and of a higher intensity (the minimal value is lower and it
is reached sooner). This is due to the higher deformation of the elements and a higher
temperature inducing a lower material strength. The fall is quicker and has a higher
intensity because the fracture propagates quickly and is longer. For the feed force, it
is the contrary (the force decreases when the elements length increases) but still with a
significant mesh sensitivity.

In conclusions, the results do not converge when the mesh density increases, contrary
to the expectations. The results remain close when the elements size is larger than 5 m
but then, if the elements size continues to decrease, they start to significantly diverge.
This is particularly remarkable for the cutting force.

4 INTRODUCTION OF THE NON-LOCAL DAMAGE CRITERION

A significant mesh sensitivity of the results has been observed. This is mainly due
to the introduction of damage and the softening of the material [12]. This leads to a
strong localization inside the adiabatic shear band. To decrease this mesh sensitivity
of the results, several methods can be found in the literature in other fields than metal
cutting [12, 13]. Most of them consist of non-local methods that introduce an internal
length. This internal length should be linked to the microstructure of the material (the
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Figure 5: Cutting forces for the different mesh densities (experimental reference: Sun et al. [9])

grain size of Ti6Al4V is close to 5 m) [12].
In Abaqus, the Johnson-Cook damage model, with initiation and propagation of dam-

age, should allow to decrease the mesh dependence of the results once the damage initi-
ation criterion has been reached in an element. This criterion has already been used in
modelling of machining [14–16] and is composed of two steps (Figure 6 (a)). In the first
step, the initiation of damage is computed in each element by

ω =
∑ ∆ε

εD=0

(1)

With ∆ε the increment of equivalent plastic strain, εD=0 the equivalent plastic strain when
damage is initiated (ω = 1). It is computed by the Johnson-Cook damage model [17]

εD=0 = [D1 +D2 exp (D3 σ∗)]

[
1 +D4 ln

ε̇

ε̇0

]

[
1−D5

(
T − Troom

Tmelt − Troom

)]
(2)

Where σ∗ = σm

σ
is the stress triaxiality, σm is the mean stress and σ is the equivalent

Von Mises stress. Variables D1 to D5 are model parameters and the other variables have
the same meaning as for the Johnson-Cook material constitutive model: ε̇ is the plastic
strain rate, ε̇0 is the reference plastic strain rate, Troom is the room temperature and Tmelt

is the melting temperature.
After the initiation criterion has been reached, the damage propagates in a second step.

The reduction of the mesh dependence to localization during damage evolution is carried
out by introducing the fracture energy during crack propagation [18], Gf . It represents
the stress-displacement relation rather than the stress-strain relation:
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Gf =

∫ εD=1

εD=0

Lc σ dε =

∫ uD=1

0

σ du (3)

With Lc the element characteristic length and u the equivalent displacement. Before the
onset of damage, u = 0 and after, u = Lc ε. In this model, the element characteristic
length is the square root of the element surface [19]. The evolution of damage, D, is
exponential:

D = 1− exp

(
−
∫ uD=1

0

σ

Gf

du

)
(4)

When damage is initiated, D is equal to 0 and ω = 1. At material failure, D = 1. When
this second step is reached in an element, it is deleted which allows the chip to come off
the workpiece and the crack can propagate.

Figure 6 compares schematically the behaviour of the material with the non-local dam-
age criterion (a) and with the TANH constitutive model (b). In both cases, the objective
is the same: taking into account the strain softening phenomenon that contributes to
form a segmented chip.

Figure 6: Behaviour of a material (a) with and without damage with the Johnson-Cook model, (b)
without damage and the Johnson-Cook and TANH models

5 RESULTS WITH THE IMPROVED DAMAGE CRITERION

The chip morphology for the 10 meshes is presented in Figure 7. All the chips look
similar. No damage localization, nor secondary crack are observed. A noticeable im-
provement is therefore brought. However, for 1 m, some highly deformed elements are
not deleted, which terminates prematurely the computation. The results for the width of
the adiabatic shear band are improved as well. From 1 m to 6 m, its width remains
constant and the number of elements inside of it grows as expected. Longer elements are
too large to describe it.
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Figure 7: Chip morphology for different mesh densities after 125 s (except 64 s for 1 m) with the
non-local damage criterion

In Figure 8, it is seen that the cutting force has similar evolution and values for all the
mesh densities up to 100 s. Indeed, the initial effort rise is identical and the maximal
value is reached at the same time. Only the 10 m mesh has different values and high
variations, which shows that the elements are too large. A similar observation is carried
out for the feed force. The only difference is that the difference between the meshes begins
at around 80 s. In both cases, elements smaller than 4 m lead to high forces variations
after 100 s.

Figure 8: Cutting forces for the different mesh densities (experimental reference: Sun et al. [9]) with
the non-local damage criterion

From the chip morphology results, the size of the elements should not be larger than
6 m and small elements of 1 m lead to highly deformed elements that are not deleted.
For the forces, elements of 10 m are too large and elements smaller to 4 m should
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not be used. In the end, although the mesh sensitivity is reduced, it has not completely
disappeared and an element length of 5 m would lead to good results in terms of chip
morphology and cutting force.

6 CONCLUSIONS

A strong dependence of the results to the mesh density has been observed for the initial
model with a local damage criterion. The reduction of this dependence has been carried
out by introducing a non-local damage criterion based on the Johnson-Cook damage
model. The results showed that localization of damage is reduced and that the sensitivity
of the cutting forces to the mesh is significantly reduced. Some highly deformed elements
that do not delete are however encountered, which can end prematurely the computation.
An elements length of 5 m is recommended, which is close to the grains size of the
machined material.
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Abstract. In this contribution we present an overview of our work on a novel approach
to topology optimization based on growth processes [1, 2, 3]. A compliance parameter to
describe the spatial distribution of mass is introduced. It serves as an internal variable
for which an associated evolution equation is derived using Hamilton’s principle. The
well-known problem of checkerboarding is faced with energy regularization techniques.
Numerical examples are given for demonstration purposes.

1 INTRODUCTION

The objective of topology optimization is to find the topology of a mechanical structure
that possess maximum stiffness at minimum weight for given boundary conditions. The
topology of a structure can be described by the spatial distribution of mass density within
a design space Ω which is subject the boundary conditions i.e. loading and supports. The
spatial distribution of mass density serves as indicator function for areas where material
and no material (i.e. void) is located. We introduce a continuous interpolation between
full material and void for the spatial distribution of density mass as ρ(x) ∈ [0, 1] ∀ x ∈ Ω.
With a non-linear interpolation for the material stiffness (or compliance), intermediate
densities ρ ∈ ]0, 1[ can be penalized to provide solution containing only full material
(ρ = 1) and void (ρ = 0). This principle is similar to the well-known SIMP (Solid
Isotropic Material with Penalization) method [5]. According to Bendsøe [5], the problem
of topology optimization for a linear-elastic material then reads

min
E∈Ead

min
σ∈S

{
1

2

∫

Ω

σ : C(x) : σ dV

}
(1)

with S = {σ | ∇ · σ + b = 0 in Ω, σ · n = t on ∂σΩ}
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where σ are the stresses, b are the body forces, and t are the given external tractions
that act on the boundary ∂σΩ. The interpolated material compliance is given by C(x) =
(ρ(x)E0)

−1 with the full material stiffness E0. The set of admissible stiffness tensors Ead
can be defined in various ways, see [5].

In the proposed approach, we do not solve the problem of topology optimization in a
strict way as demanded by Eq. (1). In contrast, we interpret that subject as a problem of
optimized and localized growth of material. For this purpose, we introduce a compliance
parameter (i.e. the inverse of the mass density ρ) which is the additional unknown at the
material point (= integration point) level. The governing equations are determined using
fundamental principles of thermodynamics which minimize the Gibbs energy. To account
for a dissipative behavior, we apply Hamilton’s principle. In this way, we are able to
determine an evolution equation for the spatial distribution of density mass, which can be
evaluated in an iterative update process within a solitary finite element environment like
it is common in (microstructural) material modeling e.g. phase transformations, damage,
and plasticity.

The evolution equation describes the pseudo-time dependent and local material growth
for the current loading conditions. It hence predicts for each structure volume the single
topology exhibiting maximum stiffness, depending on the time history. Surely, a com-
pletely filled design space Ω possesses per se maximum stiffness (which is equivalent to
minimum compliance); however, it is not optimal regarding that only a minimum of mass
shall be used. It is thus necessary to constraint the volume structure by either prescribe
the total structure volume or model the continuous growth of the structure. In our work,
we model the structure growth with two different approaches. Firstly, we introduce evo-
lution equations with a visco-plastic ansatz providing a yield surface for the structure
growth: the local density ρ(x) only increases in areas where the stresses σ are higher
than a specific threshold. Secondly, we combine a viscous ansatz for the evolution equa-
tion with a Lagrange multiplier which allows us to directly control the structure volume
within time. With the Lagrange shift approach we define a special growth function which
depends only on one parameter, but results in natural growth behavior.

An well-known phenomenon in SIMP-like approachs is the so called checkerboarding
which become visible in the form of oscillating mass distributions (see Figure 1): spatial
points that possess mass are directly neighbored to spatial points that are mass-free.
This numerical artifact produces results that depend on the finite element mesh used for
mathematical discretization and repeats (locally at the smallest discretization level) in a
periodic manner. In the case of SIMP approaches, this phenomenon is present if tri-linear
shape functions are used. In our case, comparable problems are observed which result from
a non-convex Helmholtz free energy which is necessary to penalize the gray solution. We
solve this problem with two different energy regularization approaches: on the one hand,
we penalize the gradient of the spatial distribution of mass by introducing a field function
which is coupled to the local compliance parameter. Penalizing the gradient of the field
function thus penalizes also the spatial gradient of the compliance parameter. On the other
hand, we directly penalize the gradient of the spatial distribution of mass. To condense
the resulting field equation again to an evolution equation which can be evaluated locally,
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we employ special shape functions for the balance equation of the compliance parameter
using a discontinuous Galerkin approach.

Figure 1: Schematic plot [2] of the usual inter-element checkerboarding (a) for approaches where the
spatial distribution of mass is discretized element-wise, and (b) of the intra-element checkerboarding
which was observed for our approach with the density field discretized within the integration points of
each finite element. Whereas for “regular” checkerboarding entire elements are fluctuating between mass
and no mass, mass fluctuates between zero and one within elements for the intra-element checkerboarding.

2 VARIATIONAL MODEL

2.1 Hamilton’s principle

The Hamilton principle for dissipative continua reads

δG +

∫

Ω

∂D
∂χ̇

δχ dV + δP = 0 (2)

where G is the Gibbs energy, D is the dissipation function, χ is a internal variable to
describe the spatial distribution of mass, and the functional P accounts for the problem-
specific constraints. For linear elastic materials the Gibbs energy can be defined as

G =

∫

Ω

Ψ dV −
∫

Ω

b · u dV −
∫

∂Ω

t · u dA (3)

with the Helmholtz energy

Ψ = Ψm +Ψr =
1

2

∫

Ω

σ : C(x) : σ dV +Ψr (4)

composed of the part for the regularization Ψr and the mechanical part Ψm containing
the constitutive law with σ = (C−1(x)) : ε and the strains ε = 1

2
(∇u + u∇) containing

the displacement field u. As we can see here, by minimizing the Gibbs energy G we also
find the minimum of the Helmholtz energy which solves the minimization problem in Eq.
(1). We introduce the compliance parameter χ(x) ∈ [0, 1] as internal variable to describe
the spatial distribution of mass with χ = 0 → full material and χ = 1 → void. As
stated before, we apply a non-linear interpolation for the material compliance penalizing
intermediate solutions χ ∈]0, 1[

C(χ) = χ2 Cvoid + (1− χ2)C0 (5)

For numerical reasons, the material stiffness of the void material cannot be zero. Thus,
the material compliance of the void Cvoid must be finite but much larger than the full
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material compliance C0. We introduce the small but non-zero numerical parameter κ and
define Cvoid = 1

κ
C0 which yields

C(χ) = f(χ)C0 ⇔ E(χ) =
1

f(χ)
E0 (6)

with the interpolation function f(χ), which is the inverse of our density function ρ(x)
(due to numerical reasons the domain for the density function becomes ρ(x) ∈ [κ, 1]).

f(χ) =
1

ρ(χ)
= 1 +

(
1

κ
− 1

)
χ2 (7)

We define the constraint functional P as

P :=

∫

Ω

γ χ dV (8)

with the Kuhn-Tucker parameter γ which constrains the interval of the internal variable
χ ∈ [0, 1]. The Dissipation function D and the regularization part of the Helmholtz energy
Ψr vary for the different approaches and will be presented in the following section.

The Gibbs energy constitutes as functional depending on the displacement field u(x)
and the spatial distribution of the internal variables χ(x), which are also the unknowns for
the optimization problem. Thus, the variation in Eq. (2) has to be performed for u and
χ which can be evaluated independently. The variation with respect to the displacement
field u yields the well-known the balance of linear momentum in its weak form

δuG =

∫

Ω

∂Ψm

∂ε
: δε dV −

∫

Ω

b · δu dV −
∫

∂Ω

t · δu dA = 0 ∀ δu (9)

which can be solved with a common finite element method. The variation with respect
to the internal variable χ yields the evolution equation for the compliance parameter in
the form χ̇ = func(σ, ε, χ, ...). With the results from the finite element method, the
evolution equation can be evaluated in an explicit manner after each iteration step i as

χ(i+1) = χ(i) +∆tχ̇(σ(i)) (10)

which closes the system of equations to solve the optimization problem. The whole
procedure can be incorporated in a Newton-Raphson iteration as done in e.g. damage
and plasticity modeling. The actual form of the evolution equation vary for the different
approaches shown in the following sections. However, all approaches share the same
(mechanical) driving force

pχ := −∂Ψm

∂χ
= −1

2
σ : f ′(χ)C0 : σ (11)
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2.2 Regularization of a field function

In our first appraoch [1], we chose a dissipation function D which yields an evolution
equation of elasto-viscoplatic type, as

D = r1|χ̇|+ r2
χ̇2

2
⇒ ∂D

∂χ̇
= r1 ∂|χ̇|+ r2 χ̇ (12)

with the subdifferential ∂|χ̇| reading

∂|χ̇| =





{|χ̇| ≤ 1} for χ̇ = 0
χ̇

|χ̇|
else

(13)

We apply the method of gradient-enhanced free energy for the regularization.The en-
ergy Ψr contains two term: the first one couples the local information carried by χ to
a field function ϕ(x). The second term penalizes “large” gradients of ϕ. We define the
regularization part of the Helmholtz energy Ψr as

Ψr =
α

2
|∇ϕ|2 + β

2
(ϕ− χ)2 (14)

Since χ is coupled to ϕ, penalization of the gradient of ϕ also influences the gradi-
ent of χ: “large” gradients of χ will be penalized. Because the oscillating pattern of
checkerboarding possess “large” gradients of χ, checkerboarding is energetically less fa-
vorable and will be suppressed. The slip between the compliance parameter and the field
function holds the advantage that local evolution and the far-field behavior of χ can be
controlled individually so that the width of the transition zone can be adjusted. This
advantage is accompanied by the drawback of a highly increased numerical effort due to
the increased number of nodal unknowns.

The variation of Eq. (2) with respect to the internal variable χ yields the evolution
equation

χ̇ =
1

r2

[
|pχ + β(ϕ− χ)| − r1

]
+
sgn(pχ + β(ϕ− χ)) (15)

where
[
x
]
+
:= (x + |x|)/2 implies that only positive values are taken into account to

ensure structure growth. The the sgn-function reads

sgnp =




1 for p > 0

−1 for p < 0

{p̃ ≤ 1} for p = 0

(16)

In addition, we have to calculate the variation of Eq. (2) with respect to the field
function ϕ, which yields∫

Ω

β (ϕ− χ) δϕ dV +

∫

Ω

α ∇ϕ ∇δϕ dV = 0 (17)

Eqs. (17) and (9) can be solved with the finite element method where the field function
ϕ can be discretized with common shape-functions and becomes an additional nodal
unknown (besides the 3 degrees of freedom of the displacement field) for the Newton-
Raphson scheme.
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2.3 Regularization by direct gradient penalization

In our second approach [2], we penalize the gradient of the internal variable χ directly
without introducing a field function ϕ by applying the energy

Ψr =
α

2
|∇χ|2 (18)

The variation of the Gibbs energy with respect to the internal variable χ yields a con-
dition similar to Eq. (17). Instead of using this equation to add the internal variable
χ as additional nodal degree of freedom as done for ϕ, we approximate the gradient of
the internal variable with a discontinous Galerkin approach. The tri-linear discontinuous
shape functions Nχ discretize values for the internal variable within the Gauß (integra-
tion) points of the finite element mesh. Thus, the gradient of the internal variable will
be evaluated within each finite element. As shown in Figure 1, checkerboarding occurs
in an intra-element way in our approach. Therefore we do not need any penalization of
the gradient “over element borders” to suppress checkerboarding. We apply the same
dissipation function D given in Eq. (12) and find the evolution equation

χ̇ =
1

r2

[
|p−∆χ| − r1

]
+

sgn
[
p−∆χ

]
(19)

with

∆χi :=
1

|Ωe|

(∫

Ωe

α (∇Nχ)
T · (∇Nχ · χ̃) dV

)

i

(20)

where the index refers to a local evaluation at the Gauß (integration) points in each
element (xGP,i,e) with volume |Ωe|. Except for the integral in ∆χi, equation (14) can be
completely evaluated locally at the Gauß (integration) points as done in e.g. plasticity:
the internal variable χ can be evaluated locally without monolithically solution for the
whole finite element mesh. The quantity ∆χi is the only one which also depends on other
χk, k �= i: the compliance parameters enter∇Nχ·χ̃ for all Gauß (integration) points in the
single element in which χi is located. Hence, ∆χi is a measure for the gradient within each
element and thus ensures the gradient-penalization which regularizes the Gibbs energy
and suppresses the intra-element checkerboarding.

2.4 Controlled growth

In [3], we introduce a Lagrange multiplier to directly control the structure volume
within the iteration process. The Lagrange multiplier prevents the trivial solution and
therefore the plasticity part in the Dissipation function is not needed anymore. We define

D = r2
χ̇2

2
(21)

and the constraint for controlled growth

g(χ) =
1

|Ω|

∫

Ω

ρ(χ) dV − �(t) =
1

|Ω|

∫

Ω

1

f(χ)
dV − �(t)

!
= 0 (22)
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where �(t) denotes a prescribed growth function. To incorporate this constraint, we
have to expand the constraint functional P as

P := g(χ) +

∫

Ω

γ χ dV (23)

We apply the regularization scheme including the discontinuous Galerkin approach
given in the previous section. The final evolution equation reads

χ̇ =
1

r2

[
λ

|Ω|
f ′(χ)

f(χ)2
+ pχ −

∆χ

|Ωe|

]
(24)

with the Lagrange multiplier

λ = |Ω|

∫

Ω

(
−pχ +

∆χ

|Ω|e

)
f ′(χ)

f(χ)2
dV − r2 |Ω| �̇(t)

∫

Ω

(
f ′(χ)

f(χ)2

)2

dV

(25)

Any arbitrary growth (discretized) function �(t(i)) can be inserted into the Lagrange
multiplier in Eq. (25) as

�̇
(
t(i+1)

)
=

|Ω| �
(
t(i+1)

)
−
∫

Ω

ρ(χ) dV

∆t
(26)

For the growth function, we introduced the Lagrange shift approach with

�(t) :=
1− λS

VΩ

∫

Ω

1

f (χ(t))
dV

∣∣∣∣
λ=0

(27)

where 0 < λS < 1 is a numerical parameter. For the Lagrange multiplier follows

λ = λS VΩ

∫

Ω

(
−pχ +

∆χ

Ve

+ γ

)
f ′(χ)

f(χ)2
dV

∫

Ω

(
f ′(χ)

f(χ)2

)2

dV

(28)

The parameter λS shifts the model behavior between two “extreme cases”: if λS = 1,
there is no growth and the model preserves the structure volume. Choosing λS = 0 would
lead to a model without any restrictions for the structure growth which would obviously
result in the trivial solution since the density would increase simultaneously in the entire
design space. The Lagrange shift approach is numerically quite stable and leads to natural
growth behavior. The benefit of the Lagrange shift approach is that only one bounded
parameter λS ∈ ]0, 1[ must be chosen to define the growth function. If the solution for
a given structure volume is desired, the growth function can be switched according to
Eq. (26) (with �

(
t(i+1)

)
= const. as the target volume) as soon as the structure volume

exceeds the given target volume.
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3 NUMERICAL RESULTS

Let us now present some numerical results for the three different approaches. Our
first example is a simply supported beam given in Figure 2. The essential process of the
evolution of the structure is similar for all approaches given in [1, 2, 3]. Figure 2 shows
the results for the model given in [3] representative for all models. The model given in
[3] differs from the other models in one point: this model allows us to hold the structure
volume constant for additional iteration steps, in which the structure is further optimized
so that the structural stiffness (S = 1/f̂ · û) is increased for the same structure volume
(see Figure 3). In contrast, the results from the other two approaches are just snapshots
for structures with the respective volume structure while the model leads to a continuous
growth towards the trivial solution of a structure volume that equals the design space.
A comparison of the final results from all approaches for a structure volume � = 45.65%
are given in Figure 3 and 3. The difference between Firgure 3 and 3 is the fineness of the
finite element mesh to show the mesh-independence of our models.

As a second example, we introduce a three-dimensional bending problem. The bound-
ary conditions and final results for each model are given in Figure 3.

4 CONCLUSIONS

We presented a novel approach to topology optimization based on the thermodynamic
principles known from variational material modeling. The numerical results of all ap-
proaches showed overall fine, smooth and reasonable structures, although relatively coarse
meshes were used. Checkerboarding was suppressed by energy regularization with two dif-
ferent approaches. The regularization by aid of a field function in [1] holds the advantage
that the transition zone between material and void phase can be controlled independently
from the actual regularization. This is not possible with the direct gradient penalization
of the internal variable in [2]. However, the approach in [2] does not need to introduce
additional nodal degrees of freedom by using a discontinuous Galerkin discretization for
the internal variable. This reduces the calculation effort remarkably (≈ 10% of [1]). In
[3], we added a way to directly control the structure mass by aid of a Lagrange multiplier
which allows us mimic natural growth and find further optimized structures for given
structure volumes. The Lagrange shift approach led to easy-to-handle and numerically
stable growth.

The usage of a variational approach based on thermodynamic principles holds the
advantage that the general experience and research results in material modeling (e.g. from
phase transformation and plasticity modeling) can be accounted for the development of
topology optimization approaches. For example, additional design characteristics for the
structure (e.g. the material orientation for anisotropic materials [4]) can be incorporated
as additional design variables. Due to the growth-based approaches we are using a close
link also to biological systems seems feasible and will be subject of future investigations.
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Figure 2: Resulting structural evolution from the model given in 2.4. As soon as the structure volume of
� = 45.65% is reached, the structure volume is held constant for additional 100 iteration steps according
to Eq. (26)
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Abstract. To evaluate the cyclic behaviour under different loading conditions using the
kinematic and isotropic hardening theory of steel a Chaboche visco-plastic material model
is employed. The parameters of a constitutive model are usually identified by minimization
of the distance between model response and experimental data. However, measurement
errors and differences in the specimens lead to deviations in the determined parameters.
In this article the Choboche model is used and a stochastic simulation technique is applied
to generate artificial data which exhibit the same stochastic behaviour as experimental
data. Then the model parameters are identified by applying a variaty of Bayes’s theorem.
Identified parameters are compared with the true parameters in the simulation and the
efficiency of the identification method is discussed.

1 Introduction

In order to predict the behaviour of loaded metallic materials, constitutive models are
applied, which present a mathematical frame for the description of elastic and inelastic
deformation. Miller, Krempl, Korhonen, Aubertin, Chan and Bodner models can be
addressed as such well-known constitutive models for isotropic materials [1, 2, 3, 4, 5].
In 1983, Chaboche [6, 7] put forward what has become known as the unified Chaboche
viscoplasticity constitutive model, which has been widely accepted.

All inelastic constitutive models contain parameters which have to be identified for a
given material from experiments. In the literature only few investigations can be found,
dealing with identification problems using stochastic approaches. Klosowski and Mleczek
have applied the least-squares method in the Marquardt-Levenberg variant to estimate
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the parameters of an inelastic model [8]. Gong et al. have also used some modification
of the least-squares method to identify the parameters [9]. Harth and Lehn identified
the model parameters of a model by employing some generated artificial data instead of
experimental data using stochastic technique [10]. A similar study by Harth and Lehn
has been done for other constitutive models like Lindholm and Chan [11].

In this paper, a viscoplastic model of Chaboche is studied. The model contains five
material parameters which have to be determined from experimental data. It should be
noted that virtual data are employed instead of real experimental data. In addition, a
cyclic tension-compression test is applied in order to extract the virtual data.

Section 3 explains how to propagate the uncertainty in the model. Probabilistic model
is reformulated from the deterministic model and once the forward model is provided, the
model parameters are updated using a stochastic approach.

In section 4 the desired parameters are identified from the measured data. In fact, the
parameters which have been considered as uncertain parameters are updated and their
uncertainties are narrowed using Bayesian techniques. The results are thoroughly studied
and the identified parameters as well as the corresponding model responses are analysed.
Finally the prediction of the models is then compared with the measured data.

2 Model problem

The mathematical description of metals under cyclic loading beyond the yield limit
that includes the viscoplastic material behaviour as well as the characterization of com-
pulsatory isotropic-kinematic hardening is here given in terms of a modified Chaboche
model introduced by [12]. As we consider classical infinitesimal material behaviour, we
assume an additive strain decomposition. The material behaviour is described for the
elastic part by isotropic homogeneous elasticity, and for visco-plasticity the dissipation
potential is given by

φ(σ) =
k

n+ 1

〈
σeq − σy

k

〉n+1

=
k

n+ 1

〈
σex

k

〉n+1

. (1)

with 〈·〉 = max(0, x). Here σeq is the equivalent stress which reads

σeq =

√
3

2
tr((σ − χ)D.(σ − χ)D) (2)

in which χ is the kinematic hardening which is defined later. σex = σeq −σy in equation 1
is the over-stress and σy is the yield stress. In addition, k and n in equation 1 are material
parameters. The partial derivative of the dissipation potential φ with respect to σ leads
to the equation for the inelastic strain rate

ε̇vp =
∂φ

∂σ
=

〈
σex

k

〉n
∂σex

∂σ
(3)
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It should be pointed out that the over-stress σex is the second invariant of the deviatoric
stress tensor and reads the equation below.

σex = σeq − σy −R =

√
3

2
tr((σ − χ)D.(σ − χ)D)− σy −R (4)

in which R is the isotropic hardening which is introduced in the following. The visco-
plastic model allows for isotropic and kinematic hardening, which is considered in order
to describe different specifications. Assuming R(t) and χ(t) with R(0) = 0 and χ(0) = 0
to describe isotropic and kinematic hardening respectively, these two are parametrised
according to

Ṙ = bR(HR −R)ṗ (5)

and

χ̇ = bχ(
2

3
Hχ

∂σeq

∂σ
− χ)ṗ (6)

respectively. It should be mentioned that ṗ is the visco-plastic multiplier rate given as:

ṗ =

〈
σex

k

〉n

(7)

which describes the rate of accumulated plastic strains. The parameter bR indicates the
speed of stabilization, whereas the value of the parameter HR is an asymptotic value
according to the evolution of the isotropic hardening. Similarly, the parameter bχ denotes
the speed of saturation and the parameter Hχ is the asymptotic value of the kinematic
hardening variables. The complete model is stated in Table 1. Note that E represents
the Young’s modulus.

By gathering all the desired material parameters to identify into the vector q =
[κ G bR bχ σy], where κ and G are bulk modulus and shear modulus, respectively, the
goal is to estimate q given measurement displacement data, i.e.

u = Y (q) + ε (8)

in which Y (q) represents the measurement operator and ε the measurement (also possibly
the model) error. Being an ill-posed problem, the estimation of q given u is not an easy task
and requires regularisation. This can be achieved either in a deterministic or probabilistic
setting. Here, the latter one is taken into consideration as further described in the text.

3 Bayesian identification

By acquiring additional (prior) knowledge on the parameter set next to the observation
data, the probabilistic approach regularise the problem of estimating q with the help of
Bayes’s theorem

πq|u(q|u) ∝ L(q)πq(q) (9)

in which the likelihood L(q) describes how likely the measurement data are given prior
knowledge πq(q). This in turn requires the reformulation of the deterministic model into
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Table 1: The constitutive model of Chaboche

Strain
ε(t) = εe(t) + εvp(t)

Hooke’s Law
σ(t) = E : εe(t)

Flow Rule

ε̇vp(t) = 〈σeq(t)−σy−R(t)

k
〉n ∂σex

∂σ

Hardening

Ṙ = bR(HR −R)ṗ

χ̇ = bχ(
2
3
Hχ

∂σeq

∂σ
− χ)ṗ

Initial Conditions
εvp(0) = 0, R(0) = 0, χ(0) = 0

Parameters
σy (Yield Stress)
k, n (Flow Rule)

bR, HR, bχ, Hχ (Hardening)

the probabilistic one, and hence the propagation of material uncertainties through the
model —the so-called forward problem— in order to obtain the likelihood [13].

The main difficulty in using equation 9 lies in computation of the likelihood. Var-
ious numerical algorithms can be applied, the most popular example of which are the
Markov chain Monte Carlo methods. Being constructed on the fundamentals of the er-
godic Markov theory, these methods are characterized by very slow convergence. To avoid
this, the approximate method based on Kolmogorov́ definition of conditional expectation
as already presented in [14] is considered here.

Let the material parameters q be modelled as random variables on a probability space
S := L2(Ω,B,P). Here, Ω denotes the space of elementary events ω, B is the σ-algebra and
P stands for the probability measure. This alternative formulation of Bayes’s rule can be
achieved by expressing the conditional probabilities in equation 9 in terms of conditional
expectation. Following the mathematical derivation in [15, 16], this approach boils down
to a quadratic minimisation problem:

qa(ω) = PQsnqf = arg min
η∈Qsn

‖qf − η‖2L2
, (10)

in which PQsn is the orthogonal projection operator of qf onto the space of the new
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information Qsn := Q⊗ Sn where the space Qsn is the space of the measurement.
Constraining the space of all functions to the subspace of linear maps, the minimisation

problem in equation 10 leads to a unique solutionK. Note that the projection is performed
over a smaller space than Qsn. An implication of this is that available information is not
completely used in the process of updating, introducing an approximation error. This
gives an affine approximation of equation 10

qa(ω) = qf (ω) +K(z(ω)− uf (ω)), (11)

also known as a linear Bayesian posterior estimate. Here, qf represents the prior random
variable, qa is the posterior approximation, uf is the forecasted measurement and K
represents the very well-known Kalman gain

K := Cqfuf

(
Cuf

+ Cε

)−1
(12)

which can be easily evaluated if the appropriate covariance matrices Cqfuf
, Cuf

and Cε

are known.
An advantage of equation 11 compared to equation 9 is that the inference in equation 11

is given in terms of RVs instead of conditional densities. Namely, qa(ω), qf (ω), z(ω) and
uf (ω) denote the RVs used to model the posterior, prior, observation, and forecasted
observation, respectively.

In this light the linear Bayesian procedure can be reduced to a simple algebraic method.
Starting from the functional representation of the prior

q̂f =
∑
α

q
(α)
f ψα(ω) (13)

where ψα is the Hermit function. Considering the proxy in equation 13, one may discre-
tise 11 as:

Qa = Qf +K
(
Z − Uf

)
, (14)

where Z ∈ RL×Z are the PCE coefficient of the measurement. Here, K in equation 14 is
the Kalman gain evaluated in an algebraic way knowing that

Cqf ,uf
=

∑
α>0

α! q
(α)
f (u

(α)
f )T . (15)

Note that in the numerical computation Qf := [qf (ω1), ..., qf (ωZ)] is the PCE coefficient
of the prior and Qa := [qa(ω1), ..., qa(ωZ)] is the PCE coefficient of the posterior with
cardinality Z determined by (L + 1) RVs and polynomial order p. Here, the number
(L+ 1) subsumes all the RVs describing the prior and the RVs {θi}Li=1 used to model the
measurement error ε.
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Table 2: The model parameters

κ G σy n k bR HR bχ Hχ

1.66e9 7.69e8 1.7e8 1 1.5e8 50 0.5e8 50 0.5e8

4 Numerical results

The identification of the material constants in the Chaboche unified viscoplasticity
model is a reverse process based on virtual data. In case of the Chaboche model the best
way of parameters’ identification is using the results of the cyclic tests, since more informa-
tion can be obtained from virtual data rather than creep and relaxation tests, specifically
information regarding hardening parameters. The aim of the parameter identification is
to find a parameter vector q introduced in the previous section. The bulk modulus (κ),
the shear modulus (G), the isotropic hardening coefficient (bR), the kinematic hardening
coefficient (bχ) and the yield stress (σy) are considered as the uncertain parameters of the
constitutive model.

Preliminary study is on a regular cube, modelled with one 8 node element, completely
restrained on the back face, and with normal traction on the opposite (front) face. The
magnitude of the normal traction and a stress in the plane of the front face is plotted in
Figure 1. Purple and orange colours represent the stress value in normal and in plane
directions, respectively. Considering the parameters listed in Table 2, the related σ-ε

Figure 1: Decomposed applied force on node 6 according to time

hysteretic graph obtained which can be seen in Figure 2.
The displacements of a node on the front surface in normal and in plane directions

are observed as the virtual data in this study. Applying stochastic identification and
introducing likelihood in such a way that 10 percent of mean values are equal to the
variance of the related parameter, the probability density function of prior and posterior
of the identified parameters can be seen in Figure 3. From the sharpness of the posterior
PDF of κ, G and σy, it can be concluded that enough information from virtual data is

6
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Figure 2: σ-ε for node on the front surface in plane and normal directions
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Figure 3: PDF of identified parameters

received and updating the parameters considering their uncertainty is done much easier
than the hardening parameters. One reason that can be mentioned is that the process
is not always in the states that hardening equations are involved like the elastic states.
Therefore less information from the whole simulation can be analysed for estimating the
hardening parameters and updating their parameters’ uncertainties.

Summarising the results, the true values and the mean and variance of the estimated
parameters are compared in Table 3.

5 Summary

Using the stochastic methods explained in section 3 to identify the model parameters
of the Choboche model indicates that it is possible to identify the model parameters using
Gauss-Markov Kalman filter. The parameters are well estimated and the uncertainty of
the parameters is reduced while the probability density function of the parameters are
updated during the process. The model is going to be developed by adding a damage
model and then the efficiency of the methods used and their developments will also be
studied in the near future.

Acknowledgment This work is partially supported by the DFG through GRK 2075.
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Table 3: The identified model parameters

Parameters qtrue qest(mean) qest(standard deviation)
κ 1.66e9 1.66e9 1.13e7
G 7.69e8 7.68e8 3.47e6
bR 50 52.36 3.71
bχ 50 52.04 3.01
σy 1.7e8 1.69e8 1.35e6
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Ehsan Adeli, Bojana Rosić, Hermann G. Matthies and Sven Reinstädler
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Abstract. In this paper we studied the uncertainty quantification in a functional
approximation form of elastoplastic models parameterised by material uncertain-
ties. The problem of estimating the polynomial chaos coefficients is recast in a
linear regression form by taking into consideration the possible sparsity of the so-
lution. Departing from the classical optimisation point of view, we take a slightly
different path by solving the problem in a Bayesian manner with the help of new
spectral based sparse Kalman filter algorithms.

1 INTRODUCTION

Uncertainty quantification currently becomes the focus of many scientific ar-
eas, especially engineering ones, due to the presence of aleatoric and epistemic
uncertanties in the models describing for example heterogeneous media, loadings,
geometry, etc. Due to the rapid development of experimental devices and mas-
sive production of sensors, uncertainty quantification is also extensively used in
the process of probabilistic solving of inverse problems, i.e. in the prediction step
of the Bayesian inference, for example. However, most of the practically used
methods are still based on some kind of sampling either in the process of solving
the forward problem or estimation itself. The forward propagation of uncertainty
usually employs a large number of determinic software calls. However, real time
applications cannot afford this, as the estimation has to be performed under severe
time constraints.
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The focus of this paper is to show that both stages of Bayesian inference can be
resolved in essentially the same manner—by resolving the corresponding inverse
problem. Namely, the forward loop of Bayesian inference can be seen as an inverse
problem in which the measurement data are given samples. Since the number of
samples is usually much smaller than the number of parameters which describe
the model response (i.e. random variables or their functional representative —
polynomial chaos coefficients), the corresponding problem is ill-posed and thus has
to be regularised. This can be done in a Bayesian setting similar to the process of
estimation of model parameters given real measurement data. Such an approach
turns out to be the generalisation of �1 and �2-norm optimisation problems by
taking the appropriate priors on the approximation coefficients. However, the
sparsity of the solution appearing in the �1 minimisation in the Bayesian point
of view turns out to be computationally difficult, because the distributions in
Bayes rule are not conjugate. To resolve this, the sparsity priors are usually
assumed in a hierarchical setting such as the normal prior with Gamma distributed
hyperparamers used in relevance vector machine approaches [5]. On the other
hand, the stochastic search can be also done in a numerical Markov chain Monte
Carlo (MCMC) setting [6], however, this can lead to high computational costs.
Instead, in this paper the conditional expectation setting of Kolmogorov is used
in order to estimate the unknown polynomial chaos coefficients of the solution.
The methods were recently developed by the authors and formulated in a purely
algebraic setting [1, 3]. Here, the approaches are extended to include the sparsity
of the solution.

The paper is organised as follows: in Section 2 the model problem is introduced,
Section 3 is discusses its functional approximation. Section 4 presents Bayesian
regression, and the new approach is presented in Section 5. Finally, numerical
results are depicted in Section 6.

2 MODEL PROBLEM

Let (Ωθ,Bθ,Pθ) be a probability space, in which Ωθ denotes the space of all
events, Bθ is a σ-algebra of subsets of Ωθ, and Pθ is a probability measure. In
the presence of material uncertainties, here assumed to have finite variance and
belonging to L2(Ωθ), the elastoplastic material model is described by an uncertain
infinitesimal elastoplastic state w(ω) := (u(ω), εp(ω), η(ω)) in which u denotes the
displacements, εp is the plastic strain, and η is an internal variable. The state
satisfies the equilibrium equation Pθ-almost surely, i.e.:

−div σ(x, ω) = f(x, ω) ∀x ∈ Gt,

σ(x, ω) · n(x, ω) = σN(x, ω) ∀x ∈ ΓN , (1)

u(x, ω) = u0(x, ω) ∀x ∈ ΓD, ,
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with appropriate Dirichlet and Neumann boundary conditions implied on parts
ΓD and ΓN of the piecewise smooth Lipschitz continuous boundary Γ = ∂G such
that ΓD ⊆ ∂G and ΓN ⊂ ∂G, respectively. For reasons of simplicity, the last ones
are assumed to be deterministic.

The constitutive law for the elastic part is assumed to be of Hooke’s type and
is described by an uncertain isotropic homogeneous C(ω) constitutive tensor mod-
elled via bulk κ(ω) and shear G(ω) moduli taken as independent positive definite
lognormally distributed random variables. Finally, the rate of the plastic strain
is assumed to follow the associative plastic flow rule Ėp(x, ω) ∈ NK (Σ(x, ω)) in
which NK (Σ(x, ω)) is the normal cone on the convex set of addmissible stresses
K(ω) = {Σ(ω) | φK(Σ(ω)) ≤ 0 Pθ a.s.} described by the von Mises yield function
φK with uncertain yield stress σy(ω) and the hardening variables h(ω) as argu-
ments. Here, Ep := (εp, η) denotes the generalised plastic strain, and Σ := (σ, χ)
stands for the generalised stress.

For computational purposes the problem given in Eq. (1) is rewritten on weak
form following discussions in [2]. The goal is to estimate the state w ∈ H1(T ,Z )
with w(0) = 0, its dual w∗ ∈ H1(T ,Z ∗), w∗(0) = 0 and ẇ ∈ K ∞ such that

a(w(t), z) + 〈〈ẇ(t), z〉〉 = 〈〈f, z〉〉 (2)

for all z = (v, (µ, υ)) ∈ Z and

〈〈ẇ, z∗ − w∗〉〉 ≤ 0, ∀z∗ ∈ K ⊂ Z∗. (3)

hold a.s. in Ωθ and a.e. in T . Here, and 〈〈·, ·〉〉 is the duality pairing given in
terms of the mathematical expectation E(〈·, ·〉) =

∫
Ωθ
〈·, ·〉Pθ(dω), and 〈s1, s2〉 =∫

G s1s2dx. The existence and uniqueness are already studied by authors in [2],
and will be not be discussed here. After time (by the implicit Euler) and spa-
tial finite element disretisation, the formulation in Eq. (2)-Eq. (3) reduces to a
nonlinear stochastic residual equation to be solved globally for the increment of
the displacement ∆un(ω), and the first order variational inequality which corre-
sponds to the constrained stochastic quadratic convex optimisation problem (the
so-called closest point projection scheme) to be solved locally in each integration
point of the finite element scheme and the stochastic space for the increments of
the strain-like ∆Epn and the stress like ∆Σn variables. These algorithms are very
well known in the classical deterministic setting [9], albeit, their extension to the
stochastic counterpart is not an easy task, see [2].

In this paper we would like to keep the deterministic algorithms per se, and
to use them to estimate the statistics of random variables (fields) ∆wn(ω) and
∆w∗

n(ω), i.e. moments

E(∆wm
n ) =

∫

Ωθ

(∆wn(ω))
mPθ(dω), E((∆w∗

n)
m) =

∫

Ωθ

(∆w∗
n(ω))

mPθ(dω) (4)
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non-intrusively. This matches with the high-dimensional numerical integration
and the Monte Carlo type of algorithms. Due to their slow convergence rates,
a large number of evaluation points (i.e. deterministic executions of the finite
element code) are needed to achieve the desired accuracy. Therefore, to reduce
the computational cost, here we consider the functional approximation algorithms
as further described in the text.

3 FUNCTIONAL APPROXIMATION

Instead of integrating the functions y := {∆wn,∆w∗
n} directly, one may ap-

proximate the integrand in Eq. (4) by some known elementary functions, the inte-
gration of which is algebraically computable. A typical example is the generalised
polynomial chaos expansion

y(x, ω) =
∑
α∈J

y(α)(x)Ψα(θ(ω)) (5)

in which Ψα are the multi-variate polynomials with the standard random variables
θ(ω) as arguments, and x denotes the spatial position (i.e. the finite element node
for displacements or the Gauss integration point for stress- and strain-like vari-
ables). Other kinds of approximation functions can be also used, however this will
not be further discussed here. The random variables θ(ω) represent the parame-
terisation of existing uncertanties in model parameters. They are usually taken as
independent, uncorrelated random variables of a simpler kind such as normal or
uniform random variables corresponding to the Askey scheme as discussed in [10].

Given N samples of y(x, ω) one may rewrite Eq. (5) as a linear system of
equations

y(x, ωi) =
∑
α∈J

y(α)(x)Ψα(θ(ωi)), i = 1, ..., N (6)

with y(α) being unknown coefficients. Denoting s := [y(x, ωi)] ∈ RN , Ψ :=
[Ψα(θ(ωi))] ∈ RN×P and v := [y(α)(x)] ∈ RP , one may rewrite the previous equa-
tion in a matrix-vector form

s = Ψv (7)

which is equivalent to the more robust projected version

d := ΨTu = ΨTΨv =: Wv. (8)

The system in the previous equation or in Eq. (7) is quite often depicted as
underdetermined, especially when one deals with very expensive solvers, i.e. finely
discretised problems, for which N < P with P being the cardinality of the polyno-
mial expansion in Eq. (5). To tackle this problem, different kinds of regularisation

4
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procedures are used in the literature, the most popular among which are the reg-
ularised least square (i.e. the Tikhonov regularisation)

v = arg min

(
1

2
‖Wv − d‖22 +

λ

2
‖v‖22

)
(9)

and the basis pursuit denoising

v = arg min

(
1

2
‖Wv − d‖22 +

λ

2
‖v‖1

)
(10)

methods, also known as �2 and �1 minimisation procedures. These consist of the
squared error part used to enforce closeness of v to the data, and the regularisation
term enforcing the smoothness of v. To balance these two terms, the regularisation
parameter λ is used. However, in general the regularisation parameter λ represent-
ing the noise variance is known to be an uneducated guess, and it is difficult to find
the most optimal value. If λ = 0 both of problems are equivalent and correspond
to the classical least squares procedure. If λ > 0, then the �1 minimisation is
preferable here compared to the �2 minimisation as it promotes the sparisty of the
solution. On the other hand, in a computational setting the �2 problem is easier
to solve as the solution v is linear in the data b in contrast to the �1 minimisation.
The objective function in Eq. (10) is convex but not differentiable and thus requires
special methods such as subgradient methods [8]. In computational practice the
problem in Eq. (10) is transformed to the quadratic convex optimisation with lin-
ear inequality constraints, which can be solved by interior point methods. On the
other hand, in order to be able to recover the sparse solution, the sensing matrix
W in Eq. (10) has to satisfy the so-called restricted isometry property [11], which
is usually not the case. To ensure this, the principle of random projections [12] is
used, such that the d in Eq. (8) is projected onto a basis that consists of random
linear combination of basis functions in Ψ, i.e. the problem given in Eq. (8) is
rewritten to

b := Wd = WΨTΨv = Av (11)

in which W denotes the carefully chosen random sensing matrix. This problem
will be considered further instead of the one in Eq. (8).

4 BAYESIAN REGRESSION

In this paper the generalisation of the regularisation approach will be considered.
The method relies on the probabilistic view of Eq. (8), in which the coefficients
are assumed to be unknown, and hence priorly modelled as independent random
variables vf in (Ωξ,Bξ,Pξ),with the joint probability density function (pdf) given
as

pf (v) =
∏
α∈J

p(v(α)) (12)
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Figure 1: The stochastic version of the polynomial chaos expansion. Each realisation represents
the pdf of the expansion given one realisation of the coefficient

with p(v(α)) being the pdf of individual parameters. Following this, the linear
system in Eq. (8) becomes uncertain and is described by prediction:

bf (ξ) = Avf (ξ). (13)

This can be seen in Fig. 1, in which the schematic representation of the stochastic
version of the polynomial chaos expansion from Eq. (8) is depicted.

The pdf of the coefficients can be further updated given data via Bayes’s rule

π(v|b) ∼ p(b|v)pf (v) (14)

in which π(v|b) denotes the posterior density, p(b|v) corresponds to the likelihood,
and pf (v) is the prior. Assuming that the prior is normally distributed

pf (v) ∼ exp

(
−1

2
‖v‖22

)
(15)

as well as the likelihood, the posterior pdf obtains the form

π(v|b) ∼ exp

(
−1

2
‖Av − b‖22

)
exp

(
−1

2
‖v‖22

)
(16)

Its maximum aposteriori (MAP) estimate is the minimiser of the objective function
given in Eq. (9). Under the same assumptions, only taking the prior to follow the
Laplace distribution

pf (v) ∼ exp

(
−1

2
‖v‖1

)
, (17)
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Figure 2: The Gaussian (left) and Laplace (right) probability distributions

one may show that the posterior MAP estimate is the minimiser of the objective
function given in Eq. (10).

Similar to the deterministic setting, the process of computing the posterior
distribution given the Gaussian prior is easier than in the Laplace case. The reason
is that in the former case the prior and the likelihood are conjugate, whereas in the
latter case they are not. Hence, the posterior corresponding to the �1 minimisation
cannot be estimated algebraically, but only using some of the sampling based
approaches such as the Markov chain Monte Carlo algorithm. To avoid this, one
may consider a hierarchical type of prior which mimics the Laplace behaviour,
but it is easier to evaluate. Following [5], one may model the polynomial chaos
coefficients by normal distribution

p(v|w) =
∏
α

N (0, w−1
α ) (18)

with zero mean and the precision (inverse variance) w that follows the Gamma
distribution. The posterior distribution is then represented as

p(v,w|y) ∝ p(y|v,w)p(v|w)p(w) (19)

and cannot be computed analytically. Therefore, the posterior is re-written as

p(v,w|y) = p(v|y,w)p(w|y) (20)

in which the first term p(v|y,w) follows the normal posterior distribution, whereas
the second term is approximated by the delta function at its mode. The latter
corresponds to the maximisation of the marginal likelihood as presented in [5].
However, this kind of approach relies on the hierarchical estimation in which the
marginalisation over the hyperparameters have to be introduced, which in this
paper will be avoided.
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5 COMPRESSIVE SENSING SPRECTRAL KALMAN FILTER

To allow for the algebraic evaluation of the posterior, this paper considers a
more fundamental Kolmogorov’s approach to estimation. The method is based
on the definition of the conditional expectation as a projection onto the subspace
generated by the σ-algebra of data:

E(v|b) = Pσ(b)v (21)

Being an orthogonal projection, the conditional expectation matches the minimum
mean square estimate [1, 3]

minE(‖v − E(v|σ(b)‖2) (22)

which according to [1] implies an orthogonal decomposition

v = Pσ(b)v + (I − Pσ(b))v. (23)

However, as Pσ(b)v is difficult to compute directly, one may further refer to the
Doob-Dynkin lemma and search for an optimal map, i.e. a measurable function ϕ
such that

E(v|σ(b)) = Pσ(b)v = ϕ(b)

holds. Therefore, Eq. (23) becomes

v = ϕ(b) + (v − ϕ(b)). (24)

The first term is the projection and is altered by data, whereas the remaining
orthogonal part stays unchanged, i.e. described by our prior knowledge. This
finally leads to the filtering formula:

va(ξ) = vf (ξ) + (ϕ(b)− ϕ(bf (ξ))). (25)

Assuming that the optimal map ϕ is linear, the formula reduces to the so-called
Gauss-Markov-Kalman filter

va(ξ) = vf (ξ) +K(b− bf (ξ)), (26)

a generalisation of the classical Kalman filter form. For more details please see
[1, 3]. Here, the factor K is the Kalman gain

K = covvf ,bf (covbf + covε)
† (27)

with † denoting the pseudo-inverse, and the covariance functions defined as

covq,y := E ((q − E(q))⊗ (y − E(y))) . (28)

8
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The modelling error ε is here introduced as an additional term representing the
error of the truncated approximations in Eq. (11).

The linear filter as presented previously will not be optimal in the nonlinear
case. To better account for nonlinearity, one may use higher order polynomial
approximations as in [1], or turn to the iterative version of Eq. (26). The latter
one approximates the nonlinear measurement operator Y (v) in b := Y (v) + ε by
[4]

Yλ(v) = M (v − v̌) + a = M ṽ + a (29)

in which ṽ := v − v̌ (also known as the fluctuating part of the random variable v
when v̌ := E(v)) and M is the linear measurement matrix. Then, following [4],
one may design the iterative formula:

v(i+1)
a = vf +K

(i)
λ (b− a(i) −M (i)(vf − v̌(i))− ε). (30)

Here, M (i) and a(i) denote either the exact Jacobian and a := Y (E(vf )), or the
inexact Jacobian and a := E(Y (vf )) in case of an unbiased estimate [4].

The previously described filtering formulas become especially interesting when
considered in the functional approximation setting. Instead of sampling, the ran-
dom variables of interest in Eq. (26) or Eq. (30) can be represented by the poly-
nomial chaos approximations similar to those given in Eq. (5). This leads to the
purely deterministic (algebraic) filtering formula:

∑
β∈I

v(β)
a Γβ(ξ) =

∑
β∈I

v
(β)
f Γβ(ξ) +K(

∑
β∈I

b(β)Γβ(ξ)−
∑
β∈I

b
(β)
f Γβ(ξ)) (31)

in which Γ denote the polynomials corresponding to the distribution on the poly-
nomial chaos coefficients, and are not necessarily same as Ψ. Note that the first
term in the innovation part corresponds to the deterministic measurements, and
hence has only non-zero mean. By projecting the formula onto the polynomial
basis Γβ one obtains

va = vb +K(b− bf ) (32)

in which vf := [v
(β)
f ]β∈I = [v

(α,β)
f ]α∈J ,β∈I . Similarly, the Kalman gain K can be

computed using the algebraic expression for the covariance matrix

Cvf = Eξ((v̂f − v̄f )⊗ (v̂f − v̄f )) =
∑

α,β∈Jp

Eξ(ΓαΓβ)v
(α)
f ⊗ v

(β)
f − v̄f ⊗ v̄f (33)

in which v̄f := Eξ(vf ). The last relation can be further rewritten in a matrix form
as

Cvf = Ṽ f∆Ṽ T
f (34)

9
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in which (∆)αβ = Eξ(ΓαΓβ) = diag(α!) and Ṽ f is equal to vf := (...,v
(α)
f , ...)T

without the mean part. In a similar manner one derives algebraic formula for the
iterative filter.

The filter in Eq. (32) does not lead to the sparse solution, as only the �2 min-
imisation is performed. To allow for the sparsity of the solution, one solves

min E(‖v − E(v|σ(b))‖2) (35)

such that ‖E(v|σ(b))‖1 ≤ ε

The inequality in Eq. (35) is nonlinear, and its subgradient can be rewritten as
the pseudo-measurement equation

Z(v) := H(v)v − ε = 0 (36)

instead of Eq. (22). Here, H(v) := sign(v), and ε is the given tolerance with
the covariance Cε chosen as the regularisation parameter. The computational
algorithm consists of a sequential estimation in which the first update is obtained
by using the real measurement and Eq. (26), and the second by using the pseudo-
one and the iterative formula in Eq. (30).

6 NUMERICAL RESULTS AND CONCLUSIONS

The algorithm as described previously is tested on Cook’s membrane benchmark
problem in five loading steps (two of which are plastic). The three material param-
eters (bulk and shear moduli, as well as yield stress) are modelled as independent
lognormally distributed random variables, and the response is approximated by
Hermite polynomial chaos expansion of fourth order leading to 35 polynomial co-
efficients. The approximation is computed by using 15 random evaluation points,
and its accuracy is tested against the result obtained given 1e4 Monte Carlo simu-
lations. As depicted in Fig. 3, for the last time increment the error in both stress
and strain variables is low. Hence, the Bayesian method can catch the sparsity
of the solution. However, the error in strain-like variables is slightly higher. The
reason lies in the polynomial chaos basis which does not change in time. This can
be seen in Fig. 4, where clearly the approximation error increase with time.

According to the previous results, the suggested methods seem to be promissing,
and they will be further analysed with respect to the adaptivity of the polynomial
chaos scheme.
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Bojana Rosić and Hermann G. Matthies
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Abstract. This paper presents a numerical study of the desiccation processes of low-plasticity clayey 
soils that usually result in shrinkage and often in cracking. For the theoretical development of the 
numerical model, concepts of Unsaturated Soils Mechanics and of classical Strength of Materials are 
used as a framework for formulating phenomena such as water flow in deformable porous media and 
cracking. The mathematical formulation of the problem and its implementation in a hydro-mechanical 
coupled model is presented, in order to simulate fluid flow and cracking in soils, for which the FEM 
and the node release technique is combined. The code developed has been used to perform several 
numerical analyses on radial sections of cylindrical soil specimens subjected to a drying process for 
which experimental laboratory data was available. The objective of these simulations is to determine 
the mechanisms by which the soil shrinks and cracks during desiccation. The results show the 
capabilities of the approach to reproduce the main features of the problem, with desiccation, 
shrinkage, and cracking being reproduced consistently during a desiccation cycle. The model also 
highlights the key role of the displacement and suction boundary conditions in the development of 
cracks as a consequence of tensile stress fields. Finally, the model has revealed the necessity of further 
research in the study of the soil-container and soil-atmosphere interaction in order to reproduce with 
more accuracy the changes in the main variables. 

Key words: cracking, desiccation, shrinkage, flow in deformable porous media, fracture, numerical 
simulation. 
 
 
1 INTRODUCTION 

The topic of drying cracks in soils has been the object of considerable experimental 
research, and many significant contributions have been made in recent decades. However, 
until the development of Unsaturated Soil Mechanics, the problem has not received proper 
theoretical research taking into account the parameters that govern the behavior of soil in the 
unsaturated state, mainly suction. Tensile strength, which is suction dependent, and fracture 
toughness are shown to be also relevant parameters if the initiation and propagation of the 
cracks have to be studied.  

The main variables involved in this problem are the temperature and relative humidity of 
the environment, but several other factors are involved in the process. In laboratory tests, 
specimen size, soil-container type of contact, drying rate and specimen’s characteristics (such 
as heterogeneity, anisotropy, imperfections, water content, particle size, tensile strength or 
fracture toughness) condition how cracking develops. In the field, the soil’s fabric, position of 
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the water table, wind velocity, solar radiation, etc. need also to be considered. 
When the soil is dried under laboratory conditions or in an environmental chamber, the 

first cracks that can be seen on the top surface of the specimen are usually boundary cracks 
that start at the interface between the soil mass and the container wall. These cracks propagate 
until the entire soil mass is separated from the wall. During the propagation of this boundary 
cracks, other cracks may appear in the middle of the specimen. These cracks may initiate at 
the top or bottom surfaces, or at the middle of the specimen, and propagate simultaneously 
with the first ones.  

Crack formation and propagation in drying soils is a coupled thermo-hydro-mechanical 
process (not considering the chemical processes that may also take place). However, in the 
present work and in order to simplify the analysis the thermal component is left out, assuming 
that the process is isothermal.  

The main objective of the numerical analysis is to reproduce the time evolution of the 
recorded variables (suction, water content, and deformation) during laboratory tests 
performed in recent years [1, 2] and to estimate the stress evolution before and after the 
initiation of the cracks. The numerical analysis is carried to simulate the formation and 
propagation of the first crack, which usually appears at the soil-container interface and 
initiates from the upper external surface of the specimen and propagates toward the bottom 
along the interface.  

2 NUMERICAL MODEL 

The model was formulated assuming that the process of desiccation and cracking take 
place mainly in unsaturated conditions. In the unsaturated porous medium, the equilibrium 
equation in terms of the total stresses is: 

∇ ∙ 𝛔𝛔 − 𝑢𝑢&𝟏𝟏 + ∇𝑢𝑢& + 𝜌𝜌𝐠𝐠 = 𝟎𝟎 (1) 

which is an elliptic partial differential equation where 𝛔𝛔 𝐱𝐱, 𝑡𝑡  is the total stress tensor, 
𝛔𝛔 − 𝑢𝑢&𝟏𝟏  is the net stress tensor, 𝑢𝑢& is the air pore pressure, 𝜌𝜌 is the average density of the 

multiphase medium (soil, water and air) and 𝐠𝐠 is the gravity vector. 
The stress-strain relation used in the present model can be written as 

𝑑𝑑𝛔𝛔 = 𝐃𝐃 𝑑𝑑𝛆𝛆 − 𝑑𝑑𝛆𝛆3 = 𝐃𝐃 𝑑𝑑𝛆𝛆 +𝐦𝐦
𝑑𝑑𝑢𝑢5
3𝐾𝐾83

 (2) 

where 𝑑𝑑𝛔𝛔 is the increment of the total stress tensor, 𝐃𝐃 in the elastic tangent stiffness matrix, 
𝑑𝑑𝛆𝛆 and 𝑑𝑑𝛆𝛆3 are the total and suction related infinitesimal deformations, 𝑢𝑢5 is the suction or 
negative pore water pressure, 𝐾𝐾83 is the suction modulus and 𝐦𝐦 = 1 1 1 0 0 0 ; is 
the identity tensor in vector form. 

The generalized Darcy’s law for unsaturated soils, which is the constitutive equation for 
the flow problem, is written as 

𝐪𝐪 = −𝐊𝐊 𝑆𝑆? ∙ ∇𝑢𝑢5 − 𝜌𝜌5𝐠𝐠  (3) 

where 𝐪𝐪 is Darcy’s velocity vector; ∇𝑢𝑢5 is the porewater pressure gradient; 𝐊𝐊 𝑆𝑆?  is the 
permeability tensor which depends on the saturation degree (𝑆𝑆?); and 𝜌𝜌5 is the water density.  
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The fluid mass balance equation is 

∇ ∙ 𝜌𝜌5𝐪𝐪 +
𝜕𝜕
𝜕𝜕𝜕𝜕 𝜌𝜌

5𝑛𝑛𝑆𝑆? = 0 (4) 

For the present formulation, it is assumed that the air flow is produced without friction and 
without phase changes. After the application of the finite element method, the system of 
partial differential equations (1) that emerges can be written in matrix notation as: 

𝟎𝟎 𝟎𝟎

𝟎𝟎 𝐇𝐇

𝐮𝐮

𝐩𝐩
+
𝐊𝐊E 𝐐𝐐E
𝐏𝐏 𝐒𝐒

𝜕𝜕𝐮𝐮
𝜕𝜕𝜕𝜕
𝜕𝜕𝐩𝐩
𝜕𝜕𝜕𝜕

=
𝜕𝜕𝐟𝐟J

𝜕𝜕𝜕𝜕
𝐟𝐟K

 (5) 

where 𝐮𝐮 is the nodal displacement vector; 𝐩𝐩 is the nodal porewater pressure vector; 𝐇𝐇 is the 
diffusion matrix; 𝐊𝐊; is the mechanical stiffness matrix; 𝐒𝐒 is the storage matrix; 𝐐𝐐; and 𝐏𝐏 are 
coupling matrices between the mechanical and hydraulic problems; and 𝐟𝐟J and 𝐟𝐟K are the 
external nodal displacement and flow vectors respectively. The Dirichlet boundary conditions 
of this problem are written in terms of suction and displacements. 

3 SIMULATION OF A TEST ON A 80´20 CYLINDRICAL SAMPLE  

Several cylindrical specimens of clayey soils were tested at the laboratory to study the 
problem of desiccation. The sizes of the specimens were 40/80 cm in diameter and 10/20 cm 
height. The tests were performed in laboratory conditions or in an environmental chamber [3].  

The simulation of the desiccation of a 2D radial section (40´20 cm) of an 80´20 
cylindrical specimen is presented (Figure 1). This simulation reproduces the initiation and 
propagation of a crack between the soil and the container on the right lateral edge of the 
specimen which is typically the first crack to appear in the experiments. The suction boundary 
condition is applied to the top of the section and the displacement boundary conditions are 
applied to the right and bottom edges. The left edge of the radial section is the axis of 
symmetry of the specimen. 

The formation of cracks at the soil-container interface is justified by the presence of tensile 
stresses larger than the tensile strength of the soil, which depends on moisture content. The 
crack propagates from the top to the bottom of the container. Although the direction of 
propagation in terms of the maximum principal stress would have to be roughly calculated, 
vertical propagation was simulated. To simulate crack propagation, the node separation 
technique has been applied, which modifies the boundary conditions as the tensile strength of 
the soil is reached. In the numerical simulation, the condition for the first crack was reached 
during the first day. Although in the laboratory experiments the start of cracking in the 80´20 
specimen occurred on day 8, with the 80/40´10 cm specimens the first crack appeared 
between days 1 and 10. This shows that the variability in the initial cracking time is very large 
and the repeatability of the tests and cracking start times cannot be guaranteed neither in the 
laboratory nor in the numerical simulations. 

It has been possible to simulate quite accurately the evolution of the moisture content and 
of shrinkage of the soil due to desiccation. Also, the simulations of the specimen’s shrinkage 
agree quite well with the experimental observations. 
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Figure 1 – 80´20 cylindrical specimen with the radial section (40´20 cm, yellow) used in the numerical 
simulation of the desiccation process. The two reference points are shown with the white crosses.	

 
Although there were some small temperature fluctuations in the laboratory during the 

experiments, the process can be assumed to be isothermal. The relative humidity during the 
laboratory tests was maintained around 40% for most of the test. In the simulation, a constant 
suction equal to 60 MPa has been imposed on the boundary exposed to the atmosphere. This 
value has allowed the best possible adjustment although it can be considered a somewhat low 
value compared to what was measured in the laboratory which reached 100 MPa. 

Figure 2 shows the evolution of the suction field during the 120 days of the simulation. It is 
assumed in this case that there is no adherence between the soil and the bottom of the 
container, although the separation from the container is prevented. Thus, once the crack 
reaches the bottom of the container there is no possibility that other cracks will form. The 
propagation of the crack has been fast because the tensile stress conditions rapidly exceeded 
the tensile strength, which is consistent with the tests.  

The tensile strength depends largely on the moisture content of the soil. The following  
equation, that governs the initiation of the crack [4], has been adopted: 

𝜎𝜎8 = −0.0191𝑤𝑤P + 0.6874𝑤𝑤 − 2.88 (6) 

where 𝜎𝜎8 is the tensile strength and 𝑤𝑤 is the moisture content of the soil. 
The dimensions of the cracks in the simulations correspond also well with the dimensions 

obtained in the laboratory. Crack formation and propagation modifies the normal stress field 
and how it changes with time.  

Figure 3 shows the evolution of the moisture content and of suction during the test at the 
reference points shown in Figure 1. 

Table 1 summarizes the parameters used in the simulation. A fairly small permeability is 
needed, but it does not deviate too far from the usual values for clays. 

Table 2 lists the parameters of the water retention curve for the used soil [4] obtained using 
the van Genuchten function [5]: 

𝑆𝑆? = 1 +
𝑠𝑠

𝑃𝑃X ∙ 𝑓𝑓Z

[
[\]

\]

											𝑓𝑓Z = exp −𝜂𝜂 𝑛𝑛 − 𝑛𝑛X  (7) 
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Figure 2 – Evolution of the suction field during drying and propagation of a crack between the soil and the 

container. Suction an interface crack after a) 7 days of drying; b) 12 days of drying; c) 37 days of drying; d) 62 
days of drying; e) 72 days of drying; and f) 120 days of drying. 
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Figure 3 – Simulation of a cracking test: a) change with time of the specimen’s moisture content; and b) change 

of suction at the three reference points in the radial section. 

 

Table 1 – Parameters used in the numerical simulation 

Mechanical parameters 

𝑎𝑎[ 𝑎𝑎P 𝑎𝑎d 𝑎𝑎e 
(MPa) 

𝑃𝑃?fg 
(MPa) 

𝜈𝜈 
𝐺𝐺  

(MPa) 
𝜎𝜎j               

(MPa) 

-0.02 -0.0025 -0.000039 0.023 0.1 0.4 
3𝐾𝐾(1 − 2𝜈𝜈)
2(1 + 𝜈𝜈)

 0.0035	

Retention curve parameters 

 

Hydraulic parameters 

𝑃𝑃X 
(MPa) 𝜆𝜆 𝑛𝑛X 𝑘𝑘X (m/s) 𝑏𝑏 𝑛𝑛X 𝑟𝑟 

1.05 1.55 0.6 9.27×10-10 25 0.6 3 

 

Table 2 – Parameters of the water retention curve [4] 

e 𝛾𝛾
r

 (kN/m3) 𝑓𝑓Z 𝜆𝜆 n (porosity) 

0.87 14.5 0.828 1.524 0.545 
0.75 15.5 0.756 1.447 0.527 
0.64 16.5 0.485 1.554 0.479 
0.55 17.5 0.033 3.052 0.373 
0.53 17.7 0.066 2.420 0.380 
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4 CONCLUSIONS 
The behaviour of the numerical model is adequate to simulate the process of desiccation 

and soil cracking. It has been possible to implement an algorithm capable of triggering crack 
initiation and of simulating crack propagation using a tensile strength criterion and a node 
release technique. The hydraulic problem needs special care because of its nonlinearity and 
because the suction boundary condition generates some instability to the system. The 
propagation of the cracks introduces still greater instability and requires care to maintain the 
balance, since imbalances are introduced whenever a node is released. The change in 
boundary conditions affects the stress field in the vicinity of the crack and these stresses must 
be redistributed in the soil matrix. In spite of the complications derived from the 
implementation and the development of the model, it has been demonstrated that it is possible 
to simulate the drying and cracking process with a relatively simple technique. 

In the laboratory experiments, the first crack usually appears at the specimen’s boundary 
(soil/container interface) and propagates from the top surface towards the bottom of the 
container. This process can be studied numerically in two dimensions, using a radial section. 

Laboratory experiments show a great variability in the time of beginning of the first visible 
crack on the surface, between 1 and 10 days in the tests. Previous research also shows that 
there is no guarantee that the first crack will always begin at the upper boundary, although this 
is likely to be the case when adequate boundary conditions are imposed and a minimum of 
homogeneity is ensured in the specimen. The numerical model has demonstrated the reasons 
for cracking to start at the edges, because of a state of tensile stresses that the specimen cannot 
sustain. 

The rate of crack propagation is relatively large during the tests. The model allows to 
propagate the crack in lengths proportional to the length of the edge of the finite element so 
that in principle it can be adjusted to the measurements made in the laboratory. 

The model parameters have been calibrated using all available test information. However, 
in order to properly calibrate the hydromechanical parameters, simpler tests should be 
designed on which a smaller number of variables are controlled. On the other hand, due to the 
natural variability of the phenomenon, it is necessary to perform a large number of tests and 
conduct a statistical study on the behaviour of some variables, such as the time at which the 
first crack appears. 
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Abstract: The present study focuses on degradation of concrete by external sulfate attack. 

The numerical model developed by the MECMAT/UPC group, incorporates coupled C-M 

analysis using a meso-mechanical approach with discrete cracking, using the MEF and zero 

thickness interface elements with a constitutive law based on nonlinear fracture mechanics 

concepts. Examples of application are run on 2D and 3D samples, with geometries and FE 

meshes generated with a code developed also in-house. The numerical analysis is carried out 

using two independent codes and a “staggered” procedure. The first code performs the 

mechanical analysis and the second the diffusive/reaction chemical problem. 2D uncoupled 

and coupled analysis are presented and discussed. Preliminary coupled 3D results are also 

presented and compared with equivalent 2D results, and the differences are detected and 

analyzed. 

 

1 INTRODUCTION 

External sulfate attack is a chemical-mechanical degradation process that can lead to 

differential material expansions producing the type of cracking known as concrete "spalling" 

(figure 1), loss of strength and even the complete disintegration of the material under severe 

attack conditions. The main conditions that have to be fulfilled are the existence of a medium 

rich in sulfates, a high permeability (or diffusivity) of the concrete and the presence of a 

humid environment, which favors the general diffusion of sulfates [1]. Three processes are 

present in the attack: 

1) Transport of sulfate ions through the pore network, mainly controlled by the 

permeability of the concrete (being the water/cement ratio the key parameter), as well as 

through the cracking system, 

2) chemical reactions between the cement paste components and the sulfate ions (once 

these ions have entered the material, the type of cement and the content of aluminates will 

mainly determine the importance of reactions that may occur), 

3) expansion phenomena as a consequence of the formation of new crystalline phases. 
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Figure 1: Cubic mortar specimen under the effects of the external magnesium sulfate attack at 360 days [2] 

The presence of sulfates from external sources results in the formation of new phases 

inside the concrete such as secondary ettringite and gypsum. Most of the experimental 

evidence has shown that secondary ettringite formation is the major factor involved in 

expansions [3-5]. 

The intensity of the attack (or degree of degradation) depends on the quality of the 

concrete (cement type, w/c ratio, mineral additions or the concrete deterioration before the 

sulfate attack) and the environmental conditions (concentration, distribution and type of 

sulfates, humidity, temperature, pH of the solution, combined effect of different degradation 

processes, etc.). A complete treatment of the problem should involve both chemical and 

mechanical aspects of sulfate ingress, and its consequences on overall behavior, in order to 

reliably predict the durability of the concrete structures under sulfate attack. 

In recent years, the research group of “Mechanics of Materials” at UPC has developed and 

consolidated a methodology for the numerical analysis of concrete and other heterogeneous 

quasi-brittle materials under mechanical and environmental actions, considering the 

corresponding THMC couplings. In the approach employed, a main focus is on cracking and 

fracture via a discrete approach using zero-thickness interface elements, which is combined 

with a meso-level representation of the main aggregate particles. Interface elements are pre-

inserted along all lines in the FE mesh, which therefore become potential crack lines, 

equipped with a traction-separation constitutive model based on principles of non-linear 

fracture mechanics [6, 7]. 

This work focuses on the study of the external sulfate attack problem in concrete. First, 

results of a 2D analysis are presented, and then preliminary results of the extension of the 3D 

analysis are also presented. The study is an extension of a previous work [8, 9], in which the 

numerical formulation of the model was developed and some application examples in 2D 

were also presented. Subsequently, the study was continued in [10, 11] with an extension of 

the analysis with different size samples in 2D and 3D. 

2 DESCRIPTION OF THE DIFUSSION/REACTION MODEL 

The model is based in the formulation proposed by Mobasher [12] with the introduction of 

some improvements [8]. Due to the complexity of the problem, in [12] a simplified point of 

view of the problem has been considered, in which the external sulfate attack can be analyzed 

by the diffusion of a single type of ion, the sulfate ions.  

It is assumed that the incoming sulfates react first with the portlandite to form gypsum 

(CSH), and subsequently react with the different phases of non-diffusive calcium aluminates 
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in the hydrated cement paste, eventually forming secondary ettringite. A further reaction of 

ettringite formation, not considered in the original model [12], can also be added from the 

alumina-ferrite phase, resulting in a total of 4 possible reactions shown in expression (1). 

( ) ( )

34 13 2 6 32

34 12 2 6 32

33 2 6 32

4 2 6 3 32 3

C AH 3CSH 14H C AS H CH

C ASH 2 CSH 16H C AS H

C A 3CSH 26H C AS H

3C AF + 12CSH + xH 4 C AS H 2 A, F H

+ + → +

+ + →

+ + →

 → +  

 

(1) 

While in [12] a grouped reaction is considered to simplify the analysis, in the formulation 

developed it is possible to treat each of the reactions separately, thus allowing consideration 

of different kinetics for each individual reaction [8].However, the kinetics of the individual 

reactions for the formation of ettringite are a priori unknowns, so that it may be convenient to 

proceed as in [8] where the first three reactions presented in (1) have been grouped, in a 

unique expression given by: 

36 32CA qS C AS H+ →  (2) 

where q is the  stoichiometric weighted coefficient of the grouped reaction. Reaction (2), 

takes place according to the availability of calcium sulfates and aluminates, which is 

determined in time and space through a second order diffusion-reaction equation for the 

concentration of sulfates (U [mol/m
3
]) plus an equation for the decrease of calcium aluminate: 

U

U U
D - kUC

t x x

∂ ∂ ∂ =  ∂ ∂ ∂ 
 

(3) 

C UC
- k

t q

∂ =
∂

 (4) 

where C [mol/m
3
] is the quantity of calcium aluminate equivalent by the grouping of the 

reactions (CA in equation (2)), and k is the grouped sulfate reaction rate. 

The formulation presented in [12] considers an increase of the chemical diffusion 

coefficient when microcracking of the concrete occurs, using a damage variable. In the model 

developed in [8, 9] and used in this work, an improvement is included, considering that the 

diffusion coefficient decreases as the pores are filled with the precipitated chemicals. On the 

other hand, the diffusion through the cracks is explicitly considered with the use of the 

interface elements. In this way, the model used considers the decrease of the diffusivity due to 

the filling of the pores, simultaneously with an increase of the effective general diffusivity due 

to cracking phenomena [8, 9]. For this, a variation of the diffusion coefficient has been 

adopted in terms of a scale function according to the following expressions: 

( ) ( ) ( )βΦ Φ = + − Φcap 0 1 0 D capD D D D f ,  (5) 

with ( ) ( )
β

β

ξβ
ξ

−

−
Φ =

+ −

D

D
D cap

e
f ,

1 e 1

 and ( )cap iniξ = Φ Φ  (6) 

/ 0.36

/ 0.32
ini c

w c
v

w c

α− Φ = ⋅ + 
  

(7) 
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αΦ =Φ −cap ini s reactCA  if  α <Φs react iniCA  (else 0) (8) 

where D0, D1, are lower and upper reference values, respectively, βD is a parameter that 

determines the non linearity of the function, 
iniΦ  is the initial capillary porosity, 

capΦ  is the 

updated capillary porosity that takes into account the increase of ettringite, νc is the 

volumetric fraction of cement, w/c is the ratio water-cement, α is the hydratation level and αs 

y 
reactCA are defined later. Figure 2 shows the variation of the proposed law for βD = 1.5, which 

is compared with other formulations of the literature (normalized values of diffusion 

coefficient and capillary porosity). 

 

Figure 2: Comparison of the law of variation of the diffusion coefficient proposed in this work [8] with other 

formulations. 

It is assumed that ettringite is the only product of the reactions that produce expansions. 

The volumetric strain is obtained from the amount of reacted calcium aluminate and the 

volume change associated therewith. For any of the individual reactions shown above, the 

volumetric change can be calculated as [12]: 

1
ettr

i

i gypsum

i i

V m

V m a m

∆ = −
+ ⋅

 
(9) 

where m
i
 is the molar volume [m

3
/mol] of each chemical species and ai is the stoichiometric 

coefficient involved in each reaction. To calculate the total volumetric strain, it is necessary to 

calculate the amount of reacted alumina phases (
reactCA in the case of the grouped reaction and 

i

reactC  for the extended model). For the complete version of the model, the volumetric 

deformation is calculated as: 

1

( )
n

i i
iv react ini

i i

V
t C m f

V
ε

=

∆= − ⋅Φ∑  
(10) 

gypsum
i i im m a m= + ⋅     and     

0= −i i i

react unrC C C  (11) 
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where 
0

iC  represents the initial concentration of the different alumina phases, i

unrC  is the 

amount of non-reacted aluminates (given by the updated values of the internal values) and f is 

the porosity fraction of the capillary porosity that has to be filled before any expansion occurs.  

For the simplified model, an average scheme for the different phases is used again, in 

which the increase of volume is related to the calcium aluminate reacted by a coefficient αs. 

The typical values of f found by inverse analysis are in the range of 0.05-0.40 [12]. Additional 

details of the model and the verification tests can be found in [8, 9]. 

3 MESOMECHANICAL MODEL 

3.1 Geometry and mesh generation 

The numerical simulation is based on a meso-structural model in which the largest 

aggregate particles are represented explicitly, surrounded by a homogeneous matrix 

representing the average behavior of mortar plus the smaller aggregates. The shape and 

distribution of the large aggregate particles are randomly generated by a procedure based on 

the Voronoi-Delaunay theory [13]. In order to capture the main potential crack trajectories, 

zero-thickness interface elements are inserted a priori of the analysis, along all the aggregate-

mortar and some of the mortar-mortar mesh lines. 

3.2 Constitutive law for interface elements 

The zero-thickness interface elements are equipped with a nonlinear constitutive law based 

on elasto-plasticity and concepts of fracture mechanics, which is formulated in terms of 

normal and shear components of the stress on the interface plane and the corresponding 

relative displacement variables. The initial loading (failure) surface F = 0 is given as three-

parameter hyperbola (tensile strengthχ, asymptotic cohesion c and asymptotic friction angle 

tanφ). The evolution of F (hardening-softening laws), is based on the internal variable Wcr 

(work spent in fracture processes), with the two material parameters GF
I 

and GF
IIa

 that 

represent the classical fracture energy in Mode I, plus a second fracture energy for an 

“asymptotic” Mode IIa under shear and high confinement. A more detailed description of this 

elasto-plastic constitutive law can be found in the literature [6, 7]. Results of the meso-

mechanical model for normal concrete specimens subject to a variety of loading cases in 2D 

and 3D can also be found elsewhere [7, 8, 14, 15].  

3.3 Chemo-Mechanical Coupling 

The chemo-mechanical coupling (CM) has been achieved using a "staggered" approach 

that relates the two independent codes. For each time step, the first code performs the 

nonlinear diffusion-reaction analysis, and the results in terms of local expansions are imposed 

in the second code, solving the mechanical problem. The new displacement field obtained 

from the mechanical problem will modify the diffusion-reaction process due to the cracking, 

accelerating the sulfate ingress inside the specimen. As a result, this loop must be 

successively repeated within each time step until a certain tolerance is satisfied. The same 

FEM mesh is used for both analyses, using zero-thickness interface elements with double-

nodes, whose formulation for the diffusion problem is explained in [16]. 
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4 RESULTS 

Results of 2D and 3D coupled calculations are presented in which the samples are 

immersed in a solution of 5% sodium sulfate, corresponding to a concentration of 35.2 

mol/m
3
. Both the 2D and 3D meshes have a 26% aggregate fraction of the total volume and 

the same parameters that characterize a CEM I52.5N/SR concrete have been adopted. The 

parameters of the chemical-reaction problem are: D1=1.70x10
-03

, k= 2x10
-05

(m
3
/(mol·day)), 

q=3, f=0.05, w/c=0.5, ⍺=0.9, D0/D1=5x10
-02

, βD=1.5, ⍺s=1.33x10
-04

, [C3A]inicial=200(mol/m
3
). 

For the mechanical analysis, the aggregate and the mortar are considered linear elastic with 

parameters: =70000  (aggregates), =25000  (mortar) and =0.20 (both). For the 

aggregate-mortar interfaces the parameters are: ==100000 /, 0=0.70, 

res=0.40, 0=2, 0=7, I
F=0.03 , II

F=0.3 , =40. For the 

mortar-mortar interfaces the same parameters are used with the exception of 0=4, 

0=14 and =0.06  (and therefore, II
F=0.6 ). 

4.1 2D mesh 

A mesh of 6 cm side with 4 aggregates per side is used (1720 nodes, 1272 continuous 

medium elements and 650 zero-thickness inteface elements). It is simulated that the mesh is 

immersed in a solution of sodium sulfate on the four outer edges (Dirichlet condition). The 

mechanical calculation is carried out under conditions of plane stress. Figure 3 shows the 

evolution of sulfate penetration for four different ages, Figure 4 shows the concentrations of 

precipitated ettringite for those same times and in Figure 5 presents the deformed 

configuration corresponding to 540 and 740 days. 

Figure 3 shows the progressive ingress of sulfates from the edges to the center of the 

sample. For the last time shown (740 days) sulfates have advanced considerably with values 

similar to the external concentration in most areas except in the central zone (Fig. 3d).  

Figure 4 shows that the ettringite formation front advances towards the center of the 

sample as time passes. Ettringite precipitation is delayed with respect to the advance of the 

sulfates, due the reaction rate. Figure 5, shows the deformation of the mesh at 540 and 740 

days. In that figure, one can see a perimeter cracking that practically has formed a closed line 

(spalling) for the last graphical age (740 days). 

4.2 3D mesh 

In this case, a 4cm side 3D cubic mesh with 28 aggregates is used (35673 nodes, 12749 

continuum elements and 18346 zero-thickness interface elements). The specimen (Figure 6) 

represents a quarter of a pillar, with boundary conditions for the mechanical problem that 

restrict the movement in the normal direction of all faces in contact with the rest of the pillar 

material (see Figure 9). For the diffusion problem, unlike the 2D case, a convective boundary 

condition is applied to these free faces. The reason for applying this condition is that, unlike 

the 2D mesh and due to its complexity, the 3D mesh has not been refined in the area close to 

the surfaces in contact with the sulfates, and when applying plain Dirichlet conditions it 

results in numerical oscillations and negative values of sulfate concentrations, both in the 

matrix and in the aggregates. In contrast to the 2D case, in 3D there are faces of aggregates 

that are on the edges of the specimen, and for this reason the code has been modified and the 

aggregates do not intervene in the diffusion-reaction analysis. 
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a) 210 days  b) 420 days  

 

 

 

 

 

c) 540 days  d) 740 days  

 

 

 

 

 

Figure 3: Sulfate progress for the following time values: a) 210 days, b) 420 days, c) 540 days and d) 740 days. 

a) 210 days  b) 420 days  

     

 

      

 

 
c) 540 days  d) 740 days  

     

 

      

 

 

Figure 4: Ettringite precipitation due to the intrusion of the sulfates for the following time values: a) 210 days, 

b) 420 days, c) 540days and d) 740 days. 
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                    a) 540 days   b) 740 days 

 

  

 
Figure 5: Deformed mesh for the following time values: a) 540 days and b) 740 days (deformation factor x50). 

Figure 7 shows the distribution of sulfates and Figure 8 shows the precipitation of ettringite 

for the ages of 250, 450 and 740 days, from two different perspectives and without 

representing the aggregates, which allows to appreciate the corresponding penetration towards 

the interior of the mortar matrix. 

 

 
Figure 6: 3D mesh: representation of the mortar and aggregate phases (left), only the aggregates (center) and the 

two families of interfaces (right): aggregate-mortar (dark gray) and mortar-mortar (gray) interfaces. 

As expected, the sulfate penetration front (Fig. 7) and the formation of ettringite (Fig. 8) in 

the mortar matrix from the two lateral edges towards the center of the sample are observed. 
However, Figure 7 shows that the sulfate advance occurs in a more attenuated and uniform 

manner if compared to the 2D results shown in Figure 3. These 3D results seem to be closed 

to the 2D uncoupled behavior, as shown in Figure 9, where the sulfate advance of the 3D case 

(right) is compared with the 2D case decoupled (left) at the age of 740 days. 

Figure 10 shows the results of the deformation and the work consumed during the cracking 

process at 740 days. The column on the left shows the results as seen from a top view, and the 

right column shows them in side-view. Figure 10a clearly shows that at the corner of the faces 

in contact with the sulfate there is a concentration of volumetric deformations, which results 

in the formation of fractures. In Figures 10c and 10e it is observed that these fractures are 

located in vertical planes inclined with respect to the corner. The graphs on the right show that 

the main planes of fracture propagate vertically along the sample, running in between two 

rows of aggregates. It is observed that the cracks reach the edges in contact to the sulfates, and 
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therefore should become preferential paths of penetration and accelerate the deterioration 

process. However, this effect appears in the 2D analysis but does not occur in the 3D case.  

Probably, the anomalous behavior is due to the fact that the convective-type boundary 

condition generates lower sulfate concentration values at the interface nodes located on the 

boundaries,  resulting in much lower localized inflow via open cracks than in the 2D analysis. 

 

 
 

a) 250 days 

 
 

b) 450 days 

 
 

c) 740 days 

 

Figure 7: 3D representation of sulfate concentrations for: a) 250 days, b) 450 days and c) 740 days. 
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a) 250 days 

 
 

b) 450 days 

 
 

c) 740 days 

 

Figure 8: 3D representation of ettringite precipitation for the following time values: a) 250 days, b) 450 days and 

c) 740 days. 

 

 

Figure 9: Representation of the sulfate advance front: 2D decoupled (left) and 3D coupled (right) at the age of 

740 days. 
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a) Top view of deformed specimen 

    

b) Side-view of the deformed specimen 

    
c) Top view of fracture planes with aggregates 

    

d) Side-view of fracture planes with aggregates 

    
e) Top view of fracture planes 

    

f) Side-view of fracture planes 

    
Figure 10: 3D deformed mesh (factor x50) and work dissipated by the fracture process at the age of 740 days. 

 

5 CONCLUDING REMARKS 

The 2D coupled results show that the model is able to simulate that, as the interfaces open, 

creating new channels, the sulfate ingress increases drastically thus forming penetration fronts 

into the sample. A preliminary 3D coupled analysis has shown that, in terms of depth and 

penetration of the sulfates and cracking scheme, the results obtained are more similar to those 

obtained from the 2D uncoupled analysis than to the coupled 2D analysis. In a first 

interpretation this fact could be explained on the basis of the boundary conditions imposed (of 

the Newmann-convective type) which were used in order to overcome a lack of mesh 

refinement near the specimen surface. Current work is oriented to verify this conjecture, and 

to run the analysis of a more refined 3D cube specimen so that Dirichlet boundary conditions 

can be applied directly on the specimen surface.  
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Abstract. Modelling of concrete at the mesoscale is needed in many applications, but 
developing a realistic mesoscale model for the analysis of concrete behaviour under general 
loading conditions is challenging. This paper presents an overview of the development of 
mesoscale modelling of concrete within a finite element framework for both quasi-static and 
high strain rate applications. A 2D mesoscale model incorporating random aggregates and 
equivalent interfacial transition zones enables examination into the effects of random 
aggregate structure and the sub-scale non-homogeneity within the mortar matrix on the 
macroscopic behaviour of concrete. In applications where multi-axial stresses and 
confinement effects are significant, such as under high-strain rate loading where the inertial 
confinement plays an important role, a realistic representation of the multi-axial stress 
condition becomes necessary, and this requires 3D mesoscale model. Two types of 3D 
mesoscale concrete model have been developed, namely a pseudo-3D mesoscale model and a 
full 3D mesoscale model. For the explicit representation of the fracture process, a cohesive-
contact approach has been implemented, at present in a 2D mesoscale framework. Illustrative 
examples are given to demonstrate the performance of the mesoscale models and the results 
are discussed. 

1 INTRODUCTION 
The behaviour of concrete has a strong influence by the composition of the concrete mix 

and the process of damage and fracture within the mortar matrix and at the interfacial 
transition zone (ITZ). To capture the underlining damage process requires appropriate 
representation of the material composition and this means a mesoscale model.  In fact 
modelling of concrete at the mesoscale is needed in many applications, for example for 
investigation into the micro-meso mechanics underlying the macroscopic behaviour of the 
concrete material, and for realistic simulation of damage evolution in critical regions of 
concrete structures where complex stress conditions take place.

In standard computational modelling of concrete structures, concrete is typically modelled 
as homogeneous material with macroscopic material properties. Such an approach is 
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computationally economical, and can be suited for a wide range of applications. However, the 
constitutive laws in homogenised models for concrete are derived from the nominal stress-
strain response of standard specimens, therefore the applicability of the macroscopic model 
are generally limited to problems which does not involve drastic spatial variation of the stress 
and strain within a certain characteristic dimension. For an analysis where finer spatial 
resolution than the characteristic size of bulk concrete or representative volume element RVE 
is required, homogenization can no longer be justified. It is clear that the properties of the 
material would exhibit a much increased scatter as the element size is reduced into the sub-
RVE regime [1].   

For a conceptual discussion, four levels of spatial discretization may be defined for the 
purpose of classifying the material descriptions [2], as schematically illustrated in Fig. 2. 
Spatial discretization at levels I and II may be suitable mainly in quasi-static loading analysis 
and for relatively large structures, and homogenization is most appropriate for these levels of 
discretization. On the other hand, for problems such as high strain rate loading, spatial 
discretization at levels III and IV are commonly used due to the need of capturing the 
transient stress wave effects. As the discretization refines, the properties of the material within 
individual elements will tend to vary distinctively, and eventually resembles the variation in a 
mesoscale framework, i.e. between mortar and aggregates. 

Figure 1: Representative levels of discretization (left) and variability of material properties (right) [2] 

Modelling of concrete at the mesoscale has been a subject of much research over the last 3 
decades. Three main alternative approaches have been employed, namely lattice models (e.g. 
[3]), discrete element models (e.g. [4-5]), and continuum based FE models. A main challenge 
with the lattice models is the difficulty in determining the equivalent model parameters. 
Similar issues exist in the DEM approach where the interface between aggregates and the 
mortar matrix, which effectively is continuous, has to be represented through contacts. The 
determination of the modelling parameters in a continuum based FE model, on the other hand, 
is relatively more straightforward.  

Mesoscale modelling of concrete using a continuum-based finite element framework 
allows for the multi-phasic continuous nature of concrete to be explicitly represented. The 
evolving discontinuity due to fracture can be simulated by damage laws of the constituent 
materials.  Most of the early mesoscale models were actually developed in this framework 
(e.g. [6-8]). However, Generation of the meso-geometry and the FE meshing are the main 

1.0 2.0 3.0 4.00.0

IIIIIIIV

Size ratio (element/aggregate)

V
ar

ia
bi

lit
y

1.0 2.0 3.0 4.00.0

IIIIIIIV

Size ratio (element/aggregate)

V
ar

ia
bi

lit
y

289



Yong Lu and Rongxin Zhou 

3

challenges. Especially for 3-dimensional (3D) mesoscale models, simplified geometries with 
spherical or elliptical inclusions are often employed, while alternative methods include the use 
of regular FE method and create the heterogeneity by joining adjacent elements to form 
aggregates (e.g. [9]). 

A series of studies has been undertaken in recent years by the authors and co-workers in 
developing a holistic mesoscale modelling framework for general analysis of concrete under a 
variety of loading conditions. A 2D mesoscale model incorporating random aggregates and 
equivalent interfacial transition zones enables examination into the effects of random 
aggregate structure and the sub-scale non-homogeneity within the mortar matrix on the 
macroscopic behaviour of concrete. In applications where multi-axial stresses and 
confinement effects are significant, including high-strain rate loading where the inertial 
confinement plays an important role, a realistic representation of the multi-axial stress 
condition becomes necessary, and this requires 3D mesoscale model. Two types of 3D 
mesoscale concrete model have been developed, namely a pseudo-3D mesoscale model and a 
full 3D mesoscale model. In the latest development, a cohesive-contact approach has been 
adopted in the description of the ITZ to allow for explicit representation of complex fracture 
and interaction between fractured surfaces. This approach has been implemented in a 2D 
mesoscale framework and work is to be carried out to extend this approach to 3D mesoscale 
analysis. 

2 THE GENERAL 2D MESOSCALE MODEL 
The creation of a 2D (as well as 3D) mesoscale model for concrete starts with the 

generation of the random geometric structure encompassing random polygon (or polytope) 
aggregates following a specified size distribution, e.g., a Fuller curve. A standard take-and-
place procedure is employed in which individual aggregates are randomly generated and 
placed into the space representing the target concrete specimen. Checks are carried out to 
ensure that aggregates do not overlap and that a minimum gap is preserved between 
aggregates. Once a target packing density (defined by the volume ratio of the aggregates) is 
satisfied, the geometric structure creation phase is completed and the geometric data are taken 
to a mesh generator for meshing. Fig. 2 depicts a sample of the generated mesoscale geometry 
and the FE mesh for the three individual phases. Note that the ITZ phase here is represented 
by an equivalent thin layer of solid elements in the model shown.   

Figure 2: A typical 2D mesoscale model for concrete and FE mesh with equivalent ITZ 

The material models for aggregates and mortar matrix can be adapted to represent the 
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specific properties for these distinctive materials. For quasi-static loading aggregates do not 
normally fail and so use may be made of elastic material model for aggregates. For mortar 
matrix a generic geomaterial constitutive model may be appropriate, and in the present study 
we use the concrete damage model (K&C model [10]) which is available in LS-DYNA, the 
software utilised to carry out the mesoscale model analysis in the present study. 

It is worth noting that further variability of the material properties within each of the three 
individual phases may be incorporated by a stochastic sampling approach such that each 
element will acquire a specific property from a target property distribution. Fig. 4 shows a set 
of simulated cubic compressive stress-strain curves for 30-MPa concrete using the 2D 
mesoscale model. The variation in the post-peak regime reflects the influence of varying the 
material properties within each individual phase. 

(a) Stress-strain curves: variation in descending branch attributable to random properties within each material 

     
(b) Damage patterns: High friction (left) and Low friction (right) 

Figure 3: Computed compressive stress-strain curves for 30-MPa concrete for two levels of loading face 
frictions and the damage patterns 

3 A PSEUDO 3D MESOSCALE MODEL 
For concrete under multi-axial stresses, a 3D mesoscale model would be desirable, which 

however means significantly increased computational cost. As an alternative to a true 3D 
mesoscale model, a pseudo 3D mesoscale model has been devised. Fig. 4 illustrates such a 
pseudo 3D mesoscale scheme. The actual mesoscale description is contained in a slice of 2D 
mesoscale model, in which the mesoscale features are fully represented. The 3D effect is 
achieved by sandwiching the mesoscale layer between two half-sized homogeneous bodies to 
complete the whole specimen. The interface between the mesoscale layer and the 
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homogeneous parts is made to be friction free but fully coupled in the normal direction, so 
that any incompatibility within the mesoscale plane will have no effect on the mesoscale 
model part while transmission of the pressure (confining stress) on the mesoscale model is 
almost fully preserved.  

A schematic of the pseudo 3D mesoscale model setup for cylinder and cube specimens is 
given in Fig. 4(a). Fig. 4(b) shows the effects of the model in creating a realistic 3D stress 
field for the mesoscopic observations. 

    
 (a) Model setup: cylinder (left) and cube (right) specimens 

(b) Pseudo 3D cylinder under fast compression: 3D stress field is clearly visible 

Figure 4: Pseudo 3D mesoscale models and simulation effects [11] 

4 A FULL 3D MESOSCALE MODEL 
For a fuller description of the 3D mesoscale structure and the associated 3D effects, 

especially under high strain rate loading, a true 3D mesoscale model with random polytopes 
has also been developed. The procedure of creating such a 3D mesoscale model is similar to 
the 2D mesoscale model, but the complexities in the generation of the random mesoscale 
geometry increase. In the present scheme, we create the aggregate particles by bounded 
polyhedrons in convex hulls according to computational geometry. Flaky and elongated 
aggregates are realised from the regular polytopes by shrinking or elongation operations. In 
the subsequent ‘place’ process, a pre-selection algorithm is used to identify the existing 
polytopes that may have a chance to intersect with the one being placed. Subsequent 
intersection check only needs to be carried out for polytopes whose bounding spheres 
intersect with that of the current particle. To improve the efficiency of the existing “place” 
procedure, in the event an aggregate being placed is found to intersect with any aggregates 
already in place, a translate-and-rotate procedure is employed on the aggregate being placed.  

Fig. 5(a) shows a typical 3D mesoscale aggregate structure. The remaining space in the 
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sample domain is automatically occupied by the mortar matrix, while the interface between 
the aggregates and the mortar matrix may be treated as the ITZ. It should be mentioned that 
meshing for a 3D mesoscale model in not a trivial task. Due to randomly shaped aggregates, 
the meso-structure is highly unstructured. Specific smoothing algorithms such as Octree, 
advancing front and Delaunay refinement need be involved for meshing unstructured domain. 
Fig. 5(a) also shows an example of the 3D FE mesh. In the model shown the interface in 
treated an equivalent thin layer of solid elements surrounding the aggregates. 

The 3D mesoscale model can then be subjected to any loading by applying appropriate 
boundary conditions. Fig. 5(b) shows an example analysis under high rate compression with a 
nominal strain rate at 50 s-1, The phenomenon of distributed damage and the 3D inertia 
confinement effect is clearly reproduced in a the 3D mesoscale model. 

                     
 (a) A full 3D mesoscale model: meso-geometry 

                      
 (b) Pseudo 3D cylinder under high rate compression 

Figure 5: 3D mesoscale model and example simulation  

5 A COHESIVE-CONTACT INTERFACE MODEL FOR THE ITZ 
In the above-described mesoscale models, fracture within the material is generally 

represented by failure of the corresponding solid elements through the constitutive 
descriptions. Although the effect of fracture can be reproduced to a large extent through the 
deterioration and loss of strength and stiffness in the elements, the inability of depicting 
explicitly the discontinuity induced by fractures limits the capability of the model in 
replicating the fracture evolution, and fracture opening and closure processes. 

To tackle this issue a cohesive-contact model has been incorporated in a mesoscale 
framework. The incorporation of the contact process is to address the problem with the 
classical cohesive model in which complex stress condition at the interface is often ignored or 
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treated poorly, resulting in poor performance of the model under general loading other than 
simple tension or shear ([12]). 

Fig. 6 depicts the generation of the zero-thickness interface elements for the ITZ in the 
mesoscale model, and Fig. 7 shows the simulated stress-strain curves under uniaxial tension 
and compression using such a mesoscale model. It is clearly observed that, while the new 
interface model maintains similar effect as the cohesive-only model in a tension condition, 
significant improvement is achieved under compression. As the interface is always subjected 
to complex stress conditions in a mesoscale model even though the whole specimen is under a 
uniaxial loading, the satisfactory performance of the cohesive-contact approach indicates that 
this approach is effective in practically any interface stress conditions. 

    
(a) Generation of interface element                            (b) Incorporation of contact in interface element 

Figure 6: Interface elements with cohesive and contact-friction functions 

(a) Uniaxial tension                                       (b) Uniaxial compression 

Figure 7: Simulation of uniaxial tension and compression with the cohesive-contact mesoscale model 

At present the cohesive-contact modelling approach has been implemented in 2D 
mesoscale models. The extension to general 3D mesoscale will clearly incur significant 
increase in the computation cost but in principle it is doable. 

6 CONCLUSIONS 
A series of studies has been undertaking to develop a holistic mesoscale modelling 

framework for numerical simulation of concrete and concrete-like materials under general 
loading and stress conditions. The mesoscale model in 2D allows realistic representation of 
the material composition and is suitable for characterisation of the mesoscopic damage 
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processes and quantitative simulation of the concrete behaviour under uniaxial and biaxial 
stress conditions. The incorporation of the cohesive-contact interface for the ITZ enables 
explicit simulation of the fracture and the induced discontinuity, and therefore allows for 
direct simulation of complex processes involving discontinuity such as cyclic process of crack 
opening and closure, as well as shear interlock.

The development of the 3D mesoscale models allows simulation of loadings in which 
significant pressure (hydrostatic stress) component is involved, such as confined concrete, and 
concrete under high strain rate compression where lateral inertia confinement is known to 
play a significant role. 

The mesoscale modelling approach can be employed to assist in the material investigation, 
characterisation, and the analysis of concrete structures in critical regions where the true 
behaviour of the material has so far been understood on a largely empirical basis. 
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Abstract. Even in the simple linear elastic range, the material behavior is not deter-
ministic, but fluctuates randomly around some expectation values. The knowledge about
this characteristic is obviously trivial from an experimentalist’s point of view. However,
it is not considered in the vast majority of material models in which “only” deterministic
behavior is taken into account.

One very promising approach to the inclusion of stochastic effects in modeling of ma-
terials is provided by the Karhunen-Loève expansion. It has been used, for example,
in the stochastic finite element method, where it yields results of the desired kind, but
unfortunately at drastically increased numerical costs.

This contribution aims to propose a new ansatz that is based on a stochastic series
expansion, but at the Gauß point level. Appropriate energy relaxation allows to derive
the distribution of a synthesized stress measure, together with explicit formulas for the
expectation and variance. The total procedure only needs negligibly more computation
effort than a simple elastic calculation. We also present an outlook on how the original
approach in [7] can be applied to inelastic materials

1 INTRODUCTION

The real behavior of materials is influenced by many different aspects. Examples
are grain size and grain size distributions, dislocations, segregations, crystal orientation,
defects, inclusions, and many more. Since these phenomena cannot be predicted for en-
gineering materials, they have to regarded as random. Thus, the respective material
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behavior, which is realized e.g. in terms of stress/strain diagrams, shows stochastic fluc-
tuations. For a material prediction with increased accuracy, material models are desired
which account for the stochastic properties of materials: a simulation yielding the expec-
tation value of important quantities as elastic constants and stresses along with an error
estimate or, to be more precise, along with with the variance would be of major interest.

There exist different strategies to include stochastic information to material modeling.
A prominent example is the use of the so-called Chaos Polynomial Expansion and the
derived Karhunen-Loève expansion. It has been successfully applied in sensitivity analysis
[2], nonlinear random vibration [10] the analysis of human faces [9] and selection and
ordering [5]. The key idea is to approximate the stochastic quantities like elastic constants
by a broken series expansion while the stochastic dependence is expressed in terms of a
stochastic vector ξ = (ξ1, . . . , ξkmax) with kmax the maximum number of terms considered.
The space-dependent stochastic elastic tensor is thus approximated by

E(x, ξ) = E0(x) +
kmax∑
k=1

ξk Ek(x) (1)

with the spatial coordinate x and the expectation value E[E(x, ξ)] = E0(x) [6]. For scalar
random fields, the coefficients in the series are obtained from an eigenvalue decomposi-
tion of the covariance operator, see [13] and [1]. An analogous series expansion for the
displacements u yields the stochastic finite element method (see e.g. [4, 11, 3]). Here,
the expected value u0 together with the series terms uk are the unknowns in a coupled
algebraic equation system. It is obvious that the calculation of both the eigenfunctions
Ek and the vector of unknown displacements (u0,u1, ...,ukmax) is of high numerical effort
compared to the simple elastic simulation. Of course, the benefit of the increased com-
putation time is a stochastic displacement field from which the strains and thus stresses
may be derived. The level of accuracy is increased with increasing length of the series
expansion, i.e. with higher values for kmax resulting in higher computational costs.

In this contribution, we recall a novel approach for the calculation of stochastic infor-
mation for the elastic constants and stresses at the Gauß point level, which was presented
in [7]. In this approach, also a stochastic series expansion as in (1) is applied. How-
ever, since there is no mathematical theory for the the general expansion of tensor-valued
fields, we start with a general representation as in (1), where we assume that the ξk are
independent random variables with

E[ξ] = E[ξ3] = 0, E[ξ2] = 1, (2)

and the coefficients Ek(x) satisfy the symmetry conditions Eijkl = Eklij = Ejikl = Eijlk

and such that the expectation and variance

E[E(x, ξ)] = E0(x) and Var(E(x, ξ)) =
kmax∑
k=1

Ek(x) : Ek(x) (3)

are stationary, i.e., they do not depend on the location. This allows to model a wide range
of random distributions and is not restricted to Gaussians like in the case of the stochastic
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finite elements. Furthermore, it turns out that in the new approach we may choose kmax

very large without a substantial increase in the numerical cost. We present the derivation
based on [7] and recall several numerical results which compare the analytical solution
with Monte Carlo calculations.

200 µm

Figure 1: Microstructure in steel. Result of a scanning electron microscopy after [12].

2 THE STOCHASTIC MATERIAL POINT BEHAVIOR

An example for a typical microstructure is presented in Figure 1. Here, steel is investi-
gated by scanning electron microscopy showing very nicely the random areas of different
gray level. Each area with constant gray level possesses a constant orientation of the
crystallographic lattice and is referred to as grain. Due to orientation, segregation, lo-
cal defects and others, see also the introduction, the material properties are subjected
to stochastic fluctuations even in the elastic regime. Since the same “chaotic” picture
is present for different sampling points in a construction part, the local spatial behavior
is stochastic even in a homogenized way, i.e. in terms of effective elastic constants and
stresses for the entire microstructural domain.

To model this stochastic behavior in a numerically efficient and physically very reason-
able manner, basically two homogenized and effective quantities have to be specified

1. a stochastic measure for the elastic constants denoted by Ē = Ē(ξ) and

2. a stochastic measure for the strains denoted by ε = ε(ξ)

Combining these two measures results in a homogenized and effective but also stochastic
measure for the stress

σ = σ(ξ) = Ē(ξ) : ε(ξ) (4)

A subsequent calculation of the expectation and variance of the elastic constants and the
stress is then quite feasible.

The previously defined goal is achieved in two steps. In a first step, a stochastic series
expansion as described in the previous section is employed to the elastic constants. A
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Figure 2: Material point in a finite element setting which is expanded by the microstructural coordinate
χ to account for the discretized domains in a real microstructure as shown in 1. Figure 2 after [7].

relaxation of an associated energy yields the desired effective but stochastic measure for
the elastic constants. In a second step, a stochastic series expansion is also employed to
the strains. Relaxation of the modified energy yield the unknown coefficients of the series
expansion for the strains and thus the desired stochastic measure for the effective strains.

2.1 First step: stochastic measure for the effective elastic constants

The material point is defined as the ensemble of grains (or more generally: domains) as
exemplary showed in Figure 1. To merge the local behavior in each domain to an effective
behavior at the material point level, we introduce a “microstructural coordinate” χ on
the domain level, see Figure 2. Here, the domains are presented in a discretized way using
the index i. For each discretized microstructural coordinate χi – referring to one discrete
domain in the real material – varying stochastic elastic constants are present yielding to
varying stochastic strains in each domain χi.

The elastic constants are expressed in terms of a stochastic series for each domain by

Ei = E(χi, ξ) = E0,i +
kmax∑
k=1

ξk Ek,i (5)

with the assumptions on ξ and Ek,i as outlined in Section 1. For the strains in each
domain, we do not make any assumption at this stage nor do we approximate them by a
series expansion but leave them completely general. Then, the Helmholtz free energy of
each domain is given by

Ψ(χi, ξ) = Ψi =
1

2
εi : Ei : εi. (6)

which allows for formulating the associated relaxation problem as

Ψ = inf
εi

{
1

n

n∑
i=1

Ψi

∣∣∣∣∣
1

n

n∑
i=1

εi = ε

}
. (7)
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The parameter n accounts for the number of domains in each material point ensemble.
The unknown strains in each domain are computed by the minimization problem

L =
1

2n

n∑
i=1

εi :

(
I+

kmax∑
k=1

ξk Ek,i

)
: εi + σ :

[
ε− 1

n

n∑
i=1

εi

]
→ min

εi,σ
(8)

in which for simplicity we rescaled the elastic constants such that E0,i = I. For more
details we refer to [7]. The Lagrange parameter σ accounts to the constraint that the
mean of all strains in the individual grains equals the (given) homogenized strain of the
material point ensemble ε. This Lagrange parameter is indeed the stress measure we
are looking for. Solving the Lagrange equations yields the homogenized energy Ψ =
1/n

∑n
i=1 Ψi = 1/2ε : Ē : ε with the effective, stochastic elastic constant

Ē = Ē(ξ) =


 1

n

n∑
i=1

[
I+

kmax∑
k=1

ξkEk,i

]−1



−1

(9)

which is the harmonic mean of the individual elastic constants in the respective domains.
The expectation value for the harmonic mean is highly inaccessible. Thus, we approximate
it with a Taylor series of order two. This yields

Ē ≈ I+
1

n

n∑
i=1

kmax∑
k=1

ξkEk,i −
1

n

n∑
i=1

(
kmax∑
k=1

ξkEk,i

)2

+
1

n2

(
n∑

i=1

kmax∑
k=1

ξkEk,i

)2

. (10)

2.2 Second step: stochastic measure for the effective strains

The purpose of this second step is the search of an appropriate stochastic measure of
the effective strains, i.e. we are seeking for a formulation for ε = ε(ξ). To this end, we
employ the same stochastic series expansion to the strains in each domain εi which we
also used for the elastic constants. This means

εi = ε(χi, ξ) = ε0,i +
kmax∑
k=1

ξk εk,i (11)

with the unknown expectation values in each domain ε0,i and series coefficients εk,i. To
compute them, we employ a second relaxation approach for the homogenized energy, more
precisely

ΨE = inf
ε0,i,εk,i

{
1

n

n∑
i=1

ΨE
i

∣∣∣∣∣
1

n

n∑
i=1

ε0,i = ε0

}
(12)

The superscript refers to the expectation value of the respective quantities. This procedure
is similar to the derivation of the stochastic finite elements and is required to find the
(deterministic) series coefficients. More details are given in [7].
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The expected homogenized Helmholtz free energy is given by

ΨE =
1

n

n∑
i=1

ΨE
i =

1

n

n∑
i=1

(
1

2

kmax∑
k=0

εk,i : I : εk,i + ε0,i :
kmax∑
k=1

Ek,i : εk,i

)
, (13)

see [7]. Again, the elastic constants are rescaled to yield Ei,0 = I. The associated mini-
mization problem reads

∂L
∂ε0,i

= 0 =
1

n

(
I : ε0,i +

kmax∑
k=1

Ek,i : εk,i

)
− 1

n
σ̂ (14)

∂L
∂εk,i

= 0 =
1

n
(I : εk,i + ε0,i : Ek,i) (15)

∂L
∂σ̂

= 0 = ε0 −
1

n

n∑
i=1

ε0,i. (16)

with a new Lagrange parameter σ̂ which, however, is very closely related to σ. Solving
the minimization conditions for the unknown coefficients in the series expansion results
finally in the desired formulation for the effective stochastic strain of the homogenized
microstructure as

ε = ε(ξ) =
1

n

n∑
i=1

εi =
1

n

n∑
i=1

(
I−

kmax∑
k=1

ξkEk,i

)
: ε0. (17)

2.3 Result: stochastic measure of the stress

Combing the results of the previous two subsections result in the desired stochastic
measure for the stress of the homogenized material point as

σ = σ(ξ) = Ē(ξ) : ε(ξ)

=


I+ 1

n

n∑
i=1

kmax∑
k=1

ξkEk,i −
1

n

n∑
i=1

(
kmax∑
k=1

ξkEk,i

)2

+
1

n2

(
n∑

i=1

kmax∑
k=1

ξkEk,i

)2



:
1

n

n∑
i=1

(
I−

kmax∑
k=1

ξkEk,i

)
: ε0 (18)

The stochastic information in terms of expectation and variance can now be calculated
for both the elastic constants and the strains. For the elastic constants they read

E[Ē] = E0,1 − E1/2
0,1 : V : E1/2

0,1 +
1

n
E1/2

0,1 : C : E1/2
0,1 (19)

and

Var(E−1/2
0,1 : Ē : E−1/2

0,1 ) =
1

n
C+

1

n
C(2) + o

(
1

n

)
, (20)
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respectively, where here we give the general formula without assuming E0,1 = I anymore.
For the stress, they are calculated as

E[σ] = E1/2
0,1 : (I− V) : E1/2

0,1 : ε0. (21)

and

Var(E−1/2
0,1 : σ : E−1/2

0,1 ) =
1

n
ε0 : Ĉ(2) : ε0 +

1

n
ε0 : ĈV : ε0 + o

(
1

n

)
. (22)

Note that here the variance is calculated as a fourth order tensor as in (3). The following
abbreviations have been used

V = E[X1 : X1], (23)

C =
1

n

n∑
i,j=1

E[Xi : Xj], (24)

Ĉ =
1

n

n∑
i,j=1

E[Xi · Xj], (25)

ĈV =
1

n

n∑
i,j=1

E[Xi : V · V : Xj] (26)

and

C(2) =
1

n

n∑
i,j=1

(E[X2
i : X2

j ]− V : V) (27)

Ĉ(2) =
1

n

n∑
i,j=1

E[X2
i · X2

j ]− V · V) (28)

with

Xi = E−1/2
0,1 : (Ei − E0,1) : E−1/2

0,1 . (29)

Details can be found in [7]. We emphasize two important consequences of our approach:
firstly, the variances and covariances as in (23) to (28) can be estimated from data. Once
they are known, one does not need to calculate the coefficients Ek,i in the expansion of
the random field. Secondly, this formulation of the results is independent of the number
kmax of terms in the expansion. The expansion (1) is important for our derivation of the
results, but kmax may be supposed to be very high, thereby allowing for a more general
distribution of the random field. Together with the first point, that there is no need to
compute the coefficients in the expansion, this implies the results have a much higher
precision.
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Figure 3: Mean of the stochastic simulation for 20,000 random variables (dots) vs. the analytical values
proposed by our model (lines) for Case 1 and varying α. The number of domains is n = 30. After [7],
Figure 6.

3 NUMERICAL RESULTS

To illustrate our results collected in Section 2.3, we discuss two numerical examples for
the case of a one-dimensional stochastic field, which are recalled from [7].

We model two different distributions of Ei, a Gaussian with square-exponential covari-
ance, and a finitely dependent linear combination of uniformly varying random variables.

Case 1: The ξk are independent standard Gaussian and the covariance is given by
C(χi, χj) = Σ2 exp(−α|i − j|2). This is a two-parameter family with variance Σ and α
corresponding to the strength of the correlations.

Case 2: The ξk are independent and uniform distributed on [−
√
3,
√
3]. Each Ei

is a homogeneous linear combination of three ξk, such that Ei and Ej are independent
whenever |i− j| ≥ 2 and Var(Ei) = Σ2.

In both cases we use an expectation value of E0 = 200′000 [MPa] and a strain of
ε0 = 1 × 10−4 [-] and let the standard deviation Σ vary between 2,000 and 50,000. For
Case 1, we additionally vary α = {0.001, 0.01, 0.1} and we let n = 30. The expectation

E[Ē] and E[σ] and the standard deviation Std(Ē) =
√
Var(Ē) and Std(σ) =

√
Var(σ)

are calculated for the effective Young’s modulus and the stress, respectively, evaluated
according to the formulas above. These analytic results are compared with the empirical
estimated from a Monte Carlo simulation with 20,000 iterations in Figures 3 and 4.

Several conclusions can be drawn from our results:

1. Our analytical formulas show excellent agreement with the numerical simulations;
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Figure 4: Mean of the stochastic simulation for 20,000 random variables (dots) vs. the analytical values
proposed by our model (lines) for Case 2. The number of domains is n = 30. After [7], Figure 8.

in particular for small values of the variance.

2. The Gaussian distribution in Case 1, which a priori does not satisfy the ellipticity
constraint, also performs well in the numerical comparison.

3. The stochastic stress cannot be calculated simply by E ε0; it decreases quite strongly
for all model parameters (n, Σ, α); our equation captures this aspect correctly.

4. The standard deviation of the stress is large for high standard deviations Σ of
the Young’s modulus (close to 10%); it also cannot be concluded solely from the
standard deviation Σ without our equations.

We emphasize that our equations can be evaluated basically without any computational
effort. In contrast, 20,000 stochastic simulations are necessary in order to receive the same
behavior just by averaging the realizations of the stochastic behavior. The effect is even
more pronounced for a finite element simulation. Furthermore, the presented model is
also much faster than a stochastic finite element framework due to the increased number
of nodal unknowns in the latter method. The excellent agreement between simulation
and evaluation of our equations, which captures the averaged stochastic behavior very
well, proves that our assumptions are very reasonable and even the broken Taylor series
produces only negligible errors.
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4 OUTLOOK

It is possible to extend the method to the modeling of inelastic materials. We give
here a very brief outlook on how this yields a formula for the expected stress measure
and refer to the forthcoming paper [8] for the derivation. The strains can be decomposed
into the elastic and inelastic parts as εi = εei + εpi , and applying the relaxation method
in Sections 2.1 and 2.2 to the elastic parts results in

ε− εp =

[
I−

kmax∑
k=1

ξkE−1
0 : Ek,i

]
: (ε0 − εp0) (30)

and σ = Ē : (ε − εp) with Ē as in (10). It remains to obtain a formula for the inelastic
strains, which can be done by employing the Hamilton principle in its form for absent
gradients of εp reading

L = Ψ̇E +∆E + cons → stat
ε̇p0 ,ε̇

p
k

, (31)

where ∆ = rε̇p : ε̇p is a dissipation function homogeneous of order two. This results in
the differential equation

ε̇p0 = r−1dev
[
E1/2

0,1 : (I− V) : E1/2
0,1 : (ε0 − εp0)

]
(32)

for εp0. Solving this equation allows then to compute the expected stress as in formula
(21). Figure 5 shows a comparison of this analytic formula with the estimation obtained
from a Monte-Carlo simulation.
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Figure 5: Mean of the stochastic simulation for 2,000 random variables (dots) vs. the analytical values
proposed by our model (lines) in the viscous material for Case 1. The number of domains is n = 30.
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5 CONCLUSIONS

The inclusion of stochastic information in modeling of materials is highly appreciated
since construction parts are increasingly being designed at the edge of the sustainability.
The stochastic fluctuations of material properties have a strong impact on the respective
material behavior during operation. In this contribution, we propose a novel approach
that is based on a stochastic field at the material point which is physically motivated. In
a first step, we applied a stochastic expansion to the elastic constants and performed a
homogenization over the material point. This results in a stress measure, which includes
a stochastic effective elastic constant that depends on the harmonic mean of the elastic
constants in each domain. In a second step, we employed the same stochastic expan-
sion as for the elastic constants for the strains at the microlevel. The relaxation of the
expected Helmholtz free energy yielded then the stochastic coefficients of the strain ex-
pansion. Double contraction of the stochastic elastic constants and the stochastic strains
gives the appropriate stress measure. Using these formulas for the stress measure, we
were able to calculate the expectation and variance. For this computation, only the
knowledge of covariances of the elastic constants needs to be given so that the stress as
well as its expectation and variance can be calculated in a closed form. For an imple-
mentation into a finite element routine, only “modified” elastic constants have to be used.
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Abstract. Laser assisted forming is a process which is increasingly being adopted by the
industry. Application of heat by a laser to austenitic stainless steel (ASS) sheet provides
local control over formability and strength of the material. The hot forming behavior of
ASS is characterized by significant dynamic recovery and dynamic recrystallization. These
two processes lead to a softening stress-strain response and have a significant impact on
the microstructure of the material. Most of the research performed on hot forming of ASS
focuses on dynamic recrystallization and then specifically on the behavior of the annealed
state, consisting of relatively large equiaxed austenite grains. However, in industry it is
common to use cold rolled ASS sheet which is a mixture of austenite and martensite.
Application of a laser heat treatment to the cold rolled grades of ASS induces a so-
called ‘reverse’ transformation of martensite to austenite which, depending on the exact
time-temperature combinations, leads to an austenite grain size in the range of nano-
to micrometer. It is known from experiments that the effect of initial grain size on
dynamic recrystallization is significant, especially on the initial stages of recrystallization.
Therefore any continuum model capable of describing hot forming of cold rolled ASS
should include the effect of the initial grain size.

In this work a physically based continuum model for dynamic recrystallization is pre-
sented which accounts for the effect of the initial and evolving grain size on the evolution
of dynamic recrystallization. It is shown that the initial grain size can be accounted
for by incorporating its effect on the availability of preferred nucleation sites, i.e. grain
edges. The new model is compared to experimental results and it is shown that the
model correctly predicts accelerated recrystallization with decrease in grain size and that
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there is a weak dependence of the dynamically recrystallized grain size on the initial grain
size. Furthermore predicted recrystallized grain sizes are in good agreement with the
experimentally measured values.

1 INTRODUCTION

Metastable austenitic stainless steels (ASS) are widely used in industry due to their
excellent corrosion resistance and formability. When designing products from ASS a
designer must adhere to the current trade-off between hardness and ductility, where high
hardness is usually required for product performance and ductility is required for make-
ability, the latter limiting the attainable functional hardness of the product. Recently,
there is an increased focus on laser assisted forming of ASS to enable local control of
strength and formability. During this high temperature forming of ASS, dynamic recovery
and dynamic recrystallization takes place leading to significant stress softening and a
steady state stress lower than the peak stress [1, 2].

In industry it is common to use cold-rolled grades of ASS to achieve the desired overall
functional hardness. The cold rolled grades are a mixture of austenite and martensite due
to the mechanically induced transformation during rolling. When they are exposed to a
heat treatment, such as during laser assisted forming, the martensite can revert back to
finely grained austenite [3–5]. Numerous experimental results show that the initial grain
size has a significant effect on the onset and progression of recrystallization [1,6,7] because
of the dependence of potential nucleation sites on the grain size [8]. Another important
observation is the weak to non-existent dependence of the steady state grain size on the
initial grain size where it is found that deformation conditions are leading.

To be able to design optimal and safe products and first-time-right processes, it is
imperative to have accurate quantitative models with which the process and product
performance can be predicted up-front. The functional strength of a laser assisted forming
zone after forming (and cooling down) is dependent on the grain size evolution during
the transient hot forming process. Therefore a proper continuum mechanical description
of the hot forming behavior of ASS should be able to account for the effect of initial and
evolving grain size.

In [9] the authors have presented a physically based continuum model to predict the
hot forming behavior of austenitic stainless steel at a range of high temperatures and
strain rates. In this paper this model is adapted to be able to predict the effect of initial
and evolution of austenitic grain size on the dynamic recrystallization and stress-softening
behavior. The adapted model is fitted to the experimental results of Wahabi et al. [7]
and it is shown that it is capable of accounting for the effect of initial grain size on
the progression of dynamic recrystallization and that there is a good match between the
predicted and reported grain sizes.
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2 MODELING OF HOT FORMING

In this section, for sake of clarity, the complete model is highlighted, however the
novelty of the current work lies in the treatment of the effect of grain size on the re-
crystallization behavior. To model the hot forming behavior of austenitic stainless steel
we employ the Bergström equation [10] and assume that the behavior can be modeled
by properly accounting for the effect of several mechanisms on one internal variable, i.e.
the average density of immobile dislocations (henceforth dislocation density). The mech-
anisms included in this work are dynamic recovery, dynamic recrystallization (and the
effect of grain size on this behavior) and grain boundary strengthening.

σy = σi + σw +
kd√
D

(1)

In which σi and σw is the frictional stress and work hardening stress respectively and
kd√
D

represents the Hall-Petch effect accounting for grain boundary strengthening. The
Taylor equation is now employed for the relation between work-hardening and dislocation
density.

σw = αµbM
√
ρ (2)

Dynamic recrystallization is modeled by incorporating it as a time-dependent factor in
the Bergström work hardening equation.

dρ = (h
√
ρ− fρ)dε− dR

dt
(ρ− ρ0)dt (3)

Here h
√
ρ describes the hardening by immobilization of dislocations and is inversely

proportional to the mean free path of dislocations, f describes the annihilation and re-
mobilization of immobile dislocations by dynamic recovery and dR

dt
is the time dependent

dynamic recrystallization term.
In previous research, it was shown that annealed austenitic stainless steel tends to

form subgrains after some deformation and that this significantly affects the mean free
path [11]. In order to be able to accommodate this changing mean free path the following
evolution equation for the hardening parameter is adopted [12]:

dh

dε
=

K
√
ρ
(hs − h) (4)

WhereK describes the rate at which the substructure is formed and hs is the saturation
value of the hardening parameter.

2.1 Dynamic recrystallization and the effect of grain size

Discontinuous dynamic recrystallization is a process governed by nucleation and growth.
During dynamic recrystallization new grains nucleate and consume highly dislocated
grains replacing it with new grains of relatively low dislocation density. As the hot defor-
mation process proceeds the new grains can harden to the point where they themselves

3

310



Harm Kooiker, Emin S. Perdahcıoğlu and Ton van den Boogaard

can be consumed by yet new grains. The continuous nucleation and growth process leads
to a distribution of recrystallizing grains continuously replacing the concurrently harden-
ing material. At the steady state stress there is a balance between new nucleation, growth
of previously nucleated grains and impingement of grains that thus cannot grow further
and therefore the distribution will remain constant, see Figure 1. Note that this does
not mean that recrystallization is finished. It means that the recrystallization rate at the
steady state is constant and therefore the recrystallized fraction can exceed 100%. In [9]
it was shown that it is possible to accurately describe the effect of recrystallization on the
stress–strain behavior by modeling the volume consumption of an assembly of N grains
of average diameter D̄r as a representative of the volume consumption of the distribution
of recrystallizing grains.

dR

dt
= πND̄r

2
v̄ +

1

6
π
dN

dt
D̄r

3
(5)

Where N is the amount of recrystallizing grains of average size D̄r and v̄ is the grain
boundary migration speed. To complete this model a relation is needed to describe the
evolution of the average grain size and the amount of recrystallizing grains of this average
size, i.e. dD̄r

dt
and dN

dt
respectively. The novelty of the current work lies in the definition

of these two evolution laws by incorporating the effect of grain size.
To include the effect of grain size on recrystallization it is proposed to couple the net

nucleation of grains and growth of the average grain size to the availability of preferred
nucleation sites like grain junctions, edges or surfaces. Though it is likely that more than
one type of nucleation site will be(come) active throughout a hot deformation process,
here it is assumed that recrystallization can be described by properly modeling the dom-
inant nucleation site, i.e. grain edge. Note that net nucleation means that it represents
both new nucleation and impingement, i.e. at the steady state there is a constant distri-
bution and thus no net nucleation.

Available edge length

The availability of grain edges for net nucleation is determined by comparing the cur-
rently occupied grain edge Loc to the available grain edge Lav. The available grain edge
depends on the current grain size of the material, i.e. Da which, depending on the extent
of recrystallization, is a mix of the initial grains and recrystallizing grains D̄r, see Eq.
11. The amount of grain edge available for nucleation is determined by assuming that a
representative volume is filled homogeneously by cubes of size Da. It is clear that a cube
is a simplification of the actual grain shape, however it is expected that the functional
dependence of the explicit relations derived below will be similar for other grain shapes.
The cube-approach has the distinct advantage of being easy to visualize. Every cube of
size Da has 12 edges and every edge is shared by 4 neighbors, therefore the amount of
edge per unit volume can be described by:

Lav = (12/4)DaNmax = 3Da

(
1

Da

)3

(6)
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Figure 1: Change of the distribution of recrystallizing grains (t1 < t2 < t3 < t4 < t5), at
the steady state the distribution is constant (compare t4 and t5), i.e. nucleation and

impingement cancel and the average of the grain size remains constant

Occupied edge length

To determine the occupation of grain edge by the assembly of recrystallizing grains it is
important to account for the relative size of the recrystallizing grains D̄r versus the current
average grain size Da. For average recrystallizing grain sizes above 1

2
Da the occupied grain

edge is simply the amount of Da grains encompassed by D̄r grains times the grain edge
of a Da-grain (3Da). For grain sizes smaller than 1

2
Da the occupied grain edge length

is determined by looking at the amount of D̄r-grains that can fit on the perimeter of a
Da-grain. A Da grain has 12 edges and 8 corners, every edge can house (Da

D̄r
− 2) grains.

This leads to the following conditional relation for the average occupied edge length:

Loc =




3NDa

8 + 12(Da

D̄r
− 2)

, if D̄r ≤ .5Da

3NDa

(
D̄r

Da

)3
, if D̄r > .5Da

(7)

This relation converges to the appropriate edge consumption for D̄r << Da being 1
4
D̄r

and to 3
4
D̄r for D̄r = 0.5Da.

Note that this type of nucleation and growth dependence makes it possible to describe
the necklacing behavior seen in many experiments [7, 13–15] and which has a significant
effect on the recrystallization evolution. The principle of necklacing is explained in 2D in
Figure 2(a-b) and shown in a micrograph in Figure 2(c). If the recrystallizing grain size is
small compared to the average size of the grains D̄r << Da a necklace of small grains will
be formed along the grain edge. The interior of the large grains can only be recrystallized
after they are reached by subsequent necklaces and grain edge becomes locally available.
From a recrystallization viewpoint necklacing serves to delay the peak of recrystallization
due to the fact that initially, depending on the ratio D̄r and Da, only a small portion of
the volume can be recrystallized.

5

312



Harm Kooiker, Emin S. Perdahcıoğlu and Ton van den Boogaard
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Dr 

Figure 2: Explanation of a necklacing recrystallization sequence in one Da-grain with a
corresponding micrograph [7] displaying the phenomenon in the 92 µm experiments

modeled in this paper

The derived formulations for the available and occupied edge length can now be im-
plemented into the evolution equations for the average recrystallizing grain size dD̄r

dt
and

number of recrystallizing grains dN
dt
.

Average size of recrystallizing grains

The average size of the assembly of recrystallizing grains is determined by three mecha-
nisms: nucleation, growth and impingement. Nucleation proportionally lowers the average
size of the recrystallizing grains towards the size of the nuclei (D̄r0). Growth enlarges the
average size of the assembly with the average grain boundary migration speed v̄. How-
ever growth cannot continue unbounded, i.e. growth stops when the occupied edge length
equals the available edge length.

dD̄r

dt
= 2v̄

(
1− Loc

Lav

)
− (D̄r − D̄r0)

1

N

dN

dt
(8)

The term
(
1 − Loc

Lav

)
represents the lack of growth space for the growing grains. It is

implicitly assumed that they remain equiaxed and do not bulge into the interior of the
grain. This is in line with the frequently reported equiaxed recrystallization structures
found in experiments [16]. The grain boundary migration speed is derived from the pres-
sure on the boundary P and the grain boundary mobility m [8].

v̄ = mP = m
1

2
µb2ρ (9)
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Table 1: Material, chosen and optimized parameters

α 0.5 D̄r0 1 · 10-3 mm f 7.3 m 9.9 · 10-5 mm4/Js
µ 4.6 · 104 N/mm2 ρ0 2.0 · 104 mm-2 K 1.6 · 105 mm-1

b 2.8 · 10-7 mm h0 1.5 · 106 mm-1 kd 1.2 N/mm3/2

M 3 hs 5.2 · 104 mm-1 cn 2.5 · 105 (Nm)-1

Number of recrystallizing grains

The nucleation of new grains into the assembly of grains of average size D̄r depends
on the available driving force P and availability of nucleation sites

(
1− Loc

Lav

)
.

dN

dt
= cn

(
1− Loc

Lav

)
P = cn

(
1− Loc

Lav

)
P (10)

Where cn is the proportionality between the driving force and nucleation rate. The
last equation that is needed is a relation between the change in the average size, the size
of the recrystallizing grains and the ongoing recrystallization, i.e. when the materials
recrystallizes the old (initial) grains of size D0 are replaced by new grains of size D̄r. It
is assumed that Da is completely represented by D̄r when the entire material has been
recrystallized i.e. R > 1.

Da = D0

(
1− F (R)

)
+DrF (R) (11)

Here F is a sigmoid function which, depending on R, ranges from zero to one, repre-
senting the smooth transition from D0 to D̄r from R = 0 to R ≥ 1.

3 RESULTS

The proposed model is fitted to the data presented by Wahabi et al. who performed
hot compression experiments on highly pure austenitic stainless steel of varying initial
grain size (10, 24 and 92 µm). The material can be considered a model material for
commercially available AISI-304 in regards to nickel and chrome content, but has a very
low amount of interstitial elements. The experiments that were modeled were performed
at 850◦C and a strain rate of 0.001 s−1. The model has in total 13 parameters of which 8
were fitted, 4 are material parameters and one was selected (respectively α, µ, b, M and
the nucleus size D̄r0). The fitting was done by least squares optimization and the set of
best fitting parameters is presented in Table 1. The results of the model are presented
in Figure 3. Note that the entire recrystallization behavior is represented by only two
parameters, the grain boundary mobility m and the nucleation proportionality cn.

4 DISCUSSION AND CONCLUSION

The experiments of Wahabi et al. depicted in Figure 3(a) show that the smaller grain
size materials display a pronounced softening whereas the large grain material does not
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show softening. In the same graph, the results of the model are in very good agreement
with the experimental results. Clearly the observed softening, and its grain size depen-
dence, can be described by using only two parameters for recrystallization supplemented
with the proposed explicit relations for edge availability and occupation. For the larger
grain material (92 µm) the stress–strain curve seems hardly affected by recrystallization,
although the micrograph in Figure 2(c) made after the experiment does show a significant
amount of small recrystallized grains arranged in necklace formation along the perimeter
of large grains. Figure 3(b) and 3(c) show that the model closely matches this observation
with the prediction of a significant amount of small recrystallizing grains, yet without hav-
ing much effect on the stress–strain response. In Figure 3(c) the evolution of the amount
of grains for the largest grain size (92 µm) displays a plateau, indicating that the occu-
pied grain edge equals the available grain edge, i.e. a necklace of small grains has formed.
Figure 3(b) depicts the evolution of both the average recrystallized grain size D̄r and the
average grain size Da. Here it can be seen that the average grain size of the smaller grain
material (10 and 24 µm initial size) is equal to the recrystallized grain size resulting in an
equiaxed grain morphology of grains of average size D̄r.

The model inherently predicts the lack of dependence of the steady state grain size on
the initial grain size [7,17,18] which is a widely reported feature of discontinuous dynamic
recrystallization. In Figure 3(b) it can be seen that the smaller grain sizes (10 and 24
µm) have more or less converged to the same grain size. The larger initial grain size
has a smaller recrystallized grain size, this is due to the fact that the recrystallization
is not yet at the steady state. Lastly there is a good match between the recrystallized
grain sizes reported by Wahabi et al. and the one predicted by the proposed model.
Wahabi measured the recrystallized grain size for the 10, 24 and 92 µm initial grain size
experiments to be approximately 5.2, 5 and 3.2 µm, the model is in good agreement with
predicted grain sizes of respectively 5.2, 4.9 and 1.9 µm.

In short a physically based model was presented that is able to describe the effect of
grain size on the recrystallization behavior. The model predicts not only the effect of
recrystallization on the stress–strain response, but also correctly predicts other impor-
tant microstructural features like recrystallized grain size and morphology aspects like
necklacing.
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Abstract. Nowadays plastics are increasingly used in highly stressed structures in all kinds of 
constructions. The time dependency, the so-called viscosity, is a crucial part of the material 
behavior of plastics. A typical form of viscosity is creep. Creep is the increase of deformation 
under constant load. In the FE-simulation creep behavior is usually described by creep law 
functions. The commercial software provide many creep law functions depending on time, 
stress, strain, temperature and multiple material parameters. To run a creep simulation, the user 
must define all the parameters which requires a certain effort. Curve-fitting procedures might 
be of help, the results, however, often are not precise enough. For these reasons, we introduce 
our new creep model doing the similar job as the creep law functions but being able to directly 
use the tabulated data of the creep tests without curve-fitting procedures. In this paper, we use 
the model to create a 3D stress-creep strain-time surface based on the tabulated data like isoch-
ronous curves, which is represented by bicubically blended Coons patches to provide a good 
convergence due to their differentiability. This creep model supports strain hardening, which 
shows more realistic behavior when the load changes significantly during the simulated process. 

 
1 INTRODUCTION 

Numerous plastics show a combined material behavior like elastic, plastic and viscous one. 
The viscosity of plastics strongly depends on the loading rate, the loading duration and the 
temperature [1, 2]. Ignoring the viscosity of plastics like creep can lead to a severe failure of 
construction based on simulation [3]. Creep describes the increase of the deformation with time 
under a mechanical stress [4]. 

The simulation of creep behavior is based on the creep test data. The creep is directly meas-
ured from the creep and relaxation test. Creep curve provides a dependence of creep strain on 
time, relaxation curve provides a dependence of stress on time while creep strain can indirectly 
be determined. The isochronous curves are concluded from those two types of curve [5]. The 
isochronous curve gives a stress-strain relation at the identical time point. 

Another well-established curve for creep is the creep modulus curve. The creep modulus is 
the quotient of the stress and total strain, thus showing a combination of creep and elastic be-
havior over time. Considering Young’s modulus as constant there is a direct relation to creep 
strain.  
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Besides of stress and time creep behavior of plastics also depends on temperature. Conven-
tional creep models usually describe the temperature dependency using the Arrhenius equation 
showing exponentially growing creep rates with respect to the inverse of the temperature [6]. 
Modelling temperature dependency in this way shows limited accuracy. On the other hand creep 
rate indeed varies nonlinearly with the temperature. Thus, the alternative, linearly interpolating 
all creep parameters might better match the material behavior for the given temperatures but 
lacks in between. 

2 MOTIVATION 
Numerous creep models proposed creep law functions defining creep behavior. For those 

functions several more or less abstract, not directly measurable material parameters must be 
specified. The difficulty is to determine the parameters as accurate for general application. Of-
ten one creep curve for a single stress can be fitted accurately. The other dependencies, those 
of temperature and stress, then show larger errors if - which is often the case - the curves for 
different stress levels are not similar in the mathematical sense, i.e. not scalable. Furthermore, 
it has to be emphasized that usual creep models give functions not for creep strain but for strain 
rate. Curve fitting requires either the solution of the differential equation given in this way or 
the determination of strain rates from measured strain which can be difficult due to either a 
small number of sampling points or oscillations in the measured curves if the number of sam-
pling points is larger. The study of [7] indicate that general curve fitting functions could create 
insufficiently accurate or even wrong parameters and mislead the simulation. As a consequence 
the user has a larger effort to determine creep parameters and will even though finally not be 
satisfied.  

Furthermore, due to numeric (time integration scheme) creep rate models can be subject to 
larger initial errors, e.g. for the power function of time with negative exponent, even if the 
analytical use of the parameters show good accordance with tests. The latter is the reason why 
the authors avoid rate formulations but use incremental ones as shown below. 

Despite the right selection of creep model and define its parameter, the material behavior of 
a creep model can also differ from the test data[8,9]. The reason for that is the fact that constant 
material parameters compromise the accuracy with multiple loads and temperatures. With the 
compromise the material behavior in simulation is only accurate in a limited range [10].  

In this work, we focus our attention on the construction of a creep model with direct use of 
tabulated test data from the creep test. The tabulated data here are e.g. the creep-time curve, 
isochronous curve and creep modulus curve. This creep model works without parameter iden-
tification and the curve fitting function. Instead of the parameters it uses a three-dimensional 
surface to find the proper creep state for calculation. For a good differentiability and a decent 
extensionality, we decided to use bicubical Coons patches (also named bicubically blended 
Coons patches) for the surface construction. 

3 CONVENTIONAL CREEP MODEL 
Numerous conventional creep models describe the creep behavior using strain rate formu-

lation in a creep equation like: 
𝜀𝜀̇𝑐𝑐𝑐𝑐 = 𝑓𝑓(𝜎𝜎, 𝑡𝑡, 𝜀𝜀, 𝑇𝑇) (1) 
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It shows that the creep strain rate depends on stress, time (or creep strain) and temperature. The 
dependencies of time and strain are normally not modelled within the same creep equation. As 
example, a creep equation of direct time dependency (also called time hardening) is defined as 

𝜀𝜀̇𝑐𝑐𝑐𝑐 = 𝐶𝐶1𝜎𝜎𝑐𝑐2𝑡𝑡𝑐𝑐3 ⋅ 𝑒𝑒−
𝑐𝑐4
𝑇𝑇  (2) 

whereas an example for indirect time dependency (strain-hardening), which show better accu-
racy if the stress significantly changes (or creep process is interrupted) during the simulation, 
reads 

𝜀𝜀̇𝑐𝑐𝑐𝑐 = 𝐶𝐶1𝜎𝜎𝑐𝑐2(𝜀𝜀𝑐𝑐𝑐𝑐)𝑐𝑐3 ⋅ 𝑒𝑒−
𝑐𝑐4
𝑇𝑇  (3) 

where the 𝐶𝐶1 …𝐶𝐶4 are the material parameter. These parameters are fitted to the creep test data 
for a number of stress, time (or creep strain) and temperature points. The creep strain rate for a 
single curve may be accurate. However, the parameter identification goes easily wrong consid-
ering multiple stress levels at different time point. The reason is that the stress, time and creep 
strain have a complex relation. Furthermore, defining the material parameter for indirect time 
dependency is harder than for the direct way, since the creep strain rate depends on the creep 
strain which makes the solution of the differential equation more difficult.  

4 SURFACE CONSTRUCTION 
In our new creep model, we need a three-dimensional surface to describe the creep strain 

depending on time and stress.1 The new creep model uses three types of creep test data for the 
users’ convenience. The creep test data can be the creep-time curve, isochronous curve and 
creep modulus curve. 

The creep curve uses stress as curve parameter and describes the increase of creep strain 
with time. The isochronous curve connects stress-strain points at the same time level and is not 
a directly measured curve. These curves describe the strain-stress-time relation. Since the creep 
strain is our primary variable, the surface should be 

𝜀𝜀𝑐𝑐𝑐𝑐 = 𝑓𝑓𝑐𝑐𝑐𝑐(𝜎𝜎, 𝑡𝑡) (4) 

To create the surface with the given curves as tabulated data, we need to construct the curves 
in both 𝜎𝜎- and 𝑡𝑡-directions first. The curve requires to smoothly cross all the data points in one 
direction due to accuracy and differentiability. Thus, the cubic spline is used to create the curve. 
The advantage to build the cubic spline is that the spline exactly meets selected data points, 
avoid an unnecessary oscillation and provide 𝐶𝐶2-continuity. The spline for creep strain and time 
uses the logarithmic timeline due to rapid change of the creep strain at the beginning.  

The surface is based on cubic splines as boundary curves. It should fit the splines and be 
smooth perpendicular to the edges. For this purpose, we use the bicubical Coons patches. The 
Coons patches use the boundary curves to generate surfaces [12, 13]. A bicubical Coons patch 
combines four edges from splines and the surface interpolation with the cubic Hermite Interpo-
lation. We define the Hermite functions with cubical Bézier form as: 

                                                 
1The temperature effect is discussed in section 6. 
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𝐵𝐵03(𝜎𝜎) = (1 − 𝜎𝜎)3
𝐵𝐵13(𝜎𝜎) = 3𝜎𝜎(1 − 𝜎𝜎)2
𝐵𝐵23(𝜎𝜎) = 3𝜎𝜎2(1 − 𝜎𝜎)
𝐵𝐵33(𝜎𝜎) = 𝜎𝜎3 

(5) 

So that Hermite function for 𝜎𝜎 ∈ [𝑎𝑎, 𝑏𝑏] is: 
𝐻𝐻03(𝜎𝜎) = 𝐵𝐵03(𝜎𝜎) + 𝐵𝐵13(𝜎𝜎)
𝐻𝐻13(𝜎𝜎) =

1
3 (𝑏𝑏 − 𝑎𝑎)𝐵𝐵1

3(𝜎𝜎)
𝐻𝐻23(𝜎𝜎) = −

1
3 (𝑏𝑏 − 𝑎𝑎)𝐵𝐵2

3(𝜎𝜎)
𝐻𝐻33(𝜎𝜎) = 𝐵𝐵23(𝜎𝜎) + 𝐵𝐵33(𝜎𝜎) 

(6) 

From the cubical spline, the positional data is available for Coons patch, the four splines are: 
𝑓𝑓(𝑎𝑎, 𝑡𝑡), 𝑓𝑓(𝑏𝑏, 𝑡𝑡), 𝑓𝑓(𝜎𝜎, 𝑐𝑐), 𝑓𝑓(𝜎𝜎, 𝑑𝑑) (7) 

which 𝜎𝜎 ∈ [𝑎𝑎, 𝑏𝑏], 𝑡𝑡 ∈ [𝑐𝑐, 𝑑𝑑]. For purpose of continuity, first derivative information for both 𝜎𝜎- 
and t-direction is desired but not given. The two patches, which share the same edge in 𝜎𝜎- or t-
direction, must have the same derivative in t- resp.  𝜎𝜎-direction of the edge. Therefore, the de-
rivative is defined through a linear interpolation from two ends of the edge. Hence, there are 
four derivatives for each boundary: 

𝜕𝜕𝑓𝑓(𝑎𝑎, 𝑡𝑡)
𝜕𝜕𝜎𝜎 , 𝜕𝜕𝑓𝑓

(𝑏𝑏, 𝑡𝑡)
𝜕𝜕𝜎𝜎 , 𝜕𝜕𝑓𝑓

(𝜎𝜎, 𝑐𝑐)
𝜕𝜕𝑡𝑡 , 𝜕𝜕𝑓𝑓

(𝜎𝜎, 𝑑𝑑)
𝜕𝜕𝑡𝑡  

(8) 

Through four boundary curves and their derivatives two ruled surfaces are defined: 
ℎ𝑐𝑐(𝜎𝜎, 𝑡𝑡) = 𝐻𝐻03(𝜎𝜎) ⋅ 𝑓𝑓(𝑎𝑎, 𝑡𝑡) + 𝐻𝐻13(𝜎𝜎) ⋅

𝜕𝜕𝑓𝑓(𝑎𝑎, 𝑡𝑡)
𝜕𝜕𝜎𝜎 + 𝐻𝐻23(𝜎𝜎) ⋅

𝜕𝜕𝑓𝑓(𝑏𝑏, 𝑡𝑡)
𝜕𝜕𝜎𝜎 + 𝐻𝐻33(𝜎𝜎) ⋅ 𝑓𝑓(𝑏𝑏, 𝑡𝑡) 

ℎ𝑑𝑑(𝜎𝜎, 𝑡𝑡) = 𝐻𝐻03(𝑡𝑡) ⋅ 𝑓𝑓(𝜎𝜎, 𝑐𝑐) + 𝐻𝐻13(𝑡𝑡) ⋅
𝜕𝜕𝑓𝑓(𝜎𝜎, 𝑐𝑐)
𝜕𝜕𝑡𝑡 + 𝐻𝐻23(𝑦𝑦) ⋅

𝜕𝜕𝑓𝑓(𝜎𝜎, 𝑑𝑑)
𝜕𝜕𝑡𝑡 + 𝐻𝐻33(𝑡𝑡) ⋅ 𝑓𝑓(𝜎𝜎, 𝑑𝑑) 

(9) 

The interpolated surface ℎ𝑐𝑐(𝜎𝜎, 𝑡𝑡) is ruled by the splines 𝑓𝑓(𝑎𝑎, 𝑡𝑡), 𝑓𝑓(𝑏𝑏, 𝑡𝑡) in t-direction for 𝜎𝜎 ∈
[𝑎𝑎, 𝑏𝑏] and ℎ𝑑𝑑(𝜎𝜎, 𝑡𝑡) is ruled by the splines 𝑓𝑓(𝜎𝜎, 𝑐𝑐), 𝑓𝑓(𝜎𝜎, 𝑑𝑑) in 𝜎𝜎-direction for 𝑡𝑡 ∈ [𝑐𝑐, 𝑑𝑑].Thus, we 
need ℎ𝑐𝑐(𝜎𝜎, 𝑡𝑡) to fix its course in t-direction and change its course in 𝜎𝜎-direction like ℎ𝑑𝑑(𝜎𝜎, 𝑡𝑡). 
In this case, a new surface is used to achieve this goal. We define a surface with the corner data 
for the interpolation: 

ℎ𝑐𝑐𝑑𝑑(𝜎𝜎, 𝑡𝑡) = (𝐻𝐻03(𝜎𝜎) 𝐻𝐻13(𝜎𝜎)𝐻𝐻23(𝜎𝜎) 𝐻𝐻33(𝜎𝜎)) ⋅

(

 
 
 
 
 
 
𝑓𝑓(𝑎𝑎, 𝑐𝑐) 𝜕𝜕𝑓𝑓(𝑎𝑎, 𝑐𝑐)

𝜕𝜕𝑡𝑡
𝜕𝜕𝑓𝑓(𝑎𝑎, 𝑐𝑐)
𝜕𝜕𝜎𝜎 0

𝜕𝜕𝑓𝑓(𝑎𝑎, 𝑑𝑑)
𝜕𝜕𝑡𝑡 𝑓𝑓(𝑎𝑎, 𝑑𝑑)

0 𝜕𝜕𝑓𝑓(𝑎𝑎, 𝑑𝑑)
𝜕𝜕𝜎𝜎

𝜕𝜕𝑓𝑓(𝑏𝑏, 𝑐𝑐)
𝜕𝜕𝜎𝜎 0

𝑓𝑓(𝑏𝑏, 𝑐𝑐) 𝜕𝜕𝑓𝑓(𝑏𝑏, 𝑐𝑐)
𝜕𝜕𝑡𝑡

0 𝜕𝜕𝑓𝑓(𝑏𝑏, 𝑑𝑑)
𝜕𝜕𝜎𝜎

𝜕𝜕𝑓𝑓(𝑏𝑏, 𝑑𝑑)
𝜕𝜕𝑡𝑡 𝑓𝑓(𝑏𝑏, 𝑑𝑑) )

 
 
 
 
 
 

⋅

(

 
 
𝐻𝐻03(𝑡𝑡)
𝐻𝐻13(𝑡𝑡)
𝐻𝐻23(𝑡𝑡)
𝐻𝐻33(𝑡𝑡))

 
 

 

 

(10) 

The bicubical Coons Patch is defined as: 
ℎ𝑔𝑔(𝜎𝜎, 𝑡𝑡) = ℎ𝑐𝑐(𝜎𝜎, 𝑡𝑡) + ℎ𝑑𝑑(𝜎𝜎, 𝑡𝑡) − ℎ𝑐𝑐𝑑𝑑(𝜎𝜎, 𝑡𝑡) (11) 
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The surface we construct for isochronous curves with the Coons patches is shown in Figure 
1.  

 
(a) T = 23°C, t = 1~105h, σeqv = 2~20MPa 

 
(b) T = 60°C, t = 1~105h, σeqv = 1~100MPa         (c)T = 100°C, t = 1 − 104h, σeqv = 1~10MPa 

Figure 1 creep strain with logarithmic time and loads for Ultradur B 2550 

The entire surface consists of multiple Coons patches. The cross points in the surface are the 
data points from the database. With this surface, the creep strain can be interpolated for one 
specific couple of time and stress. 

5 NEW CREEP MODEL WITH CREEP STRAIN FORMULATION  
In our new creep model, we use the incremental creep strain formulation instead of rate 

formulation. Since the creep strain 𝜀𝜀𝑐𝑐𝑐𝑐 → 0 at the time 𝑡𝑡 → 0, the creep process can start from 
time 𝑡𝑡 = 0 without the numerical problem even if the strain rate tends to infinity in a rate for-
mulation. We create a surface from the creep curve, isochronous curve as a creep strain function 
of time and stress. Therefore, the incremental creep strain formulation for direct time depend-
ency is 

Δ𝜀𝜀𝑐𝑐𝑐𝑐 = 𝑓𝑓𝑐𝑐𝑐𝑐(𝜎𝜎, 𝑡𝑡 + Δ𝑡𝑡) − 𝑓𝑓𝑐𝑐𝑐𝑐(𝜎𝜎, 𝑡𝑡) (12) 

Since the surface of creep strain is defined as a three-dimensional function 𝑓𝑓𝑐𝑐𝑐𝑐, the creep 
strain increment is interpolated using the stress 𝜎𝜎, the time 𝑡𝑡 and the time increment Δ𝑡𝑡. The 
term 𝑓𝑓𝑐𝑐𝑐𝑐(𝜎𝜎, 𝑡𝑡) is equal to the creep strain 𝜀𝜀0𝑐𝑐𝑐𝑐 from the last converged state. 

To model indirect time dependency, we must determine the point of the surface where the 
same creep strain 𝜀𝜀0𝑐𝑐𝑐𝑐 is valid, but now for the actual stress 𝜎𝜎𝑖𝑖+1. Since the data form triples of 
strain, stress and time, the time is the only differing quantity and thus is no longer the real time. 
Hence, the time of this point is called pseudo-time 𝜉𝜉 (at point a in Figure 2). The surface 𝑓𝑓𝑐𝑐𝑐𝑐 
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describes the creep strain depending on time and stress. The inverse function, time as a function 
of stress and strain is not given. To solve for the pseudo-time 𝜉𝜉, we use a Newton-Raphson 
scheme for the equation 

ℎ(𝜎𝜎𝑖𝑖+1, 𝜉𝜉) = 𝑓𝑓𝑐𝑐𝑐𝑐(𝜎𝜎𝑖𝑖+1, 𝜉𝜉) − 𝜀𝜀0𝑐𝑐𝑐𝑐 = 0 (13) 

Then we obtain the creep strain 𝜀𝜀𝑐𝑐𝑐𝑐after time increment Δ𝑡𝑡 at point b in Figure 2. The dif-
ference of point a and b is the creep increment Δ𝜀𝜀𝑐𝑐𝑐𝑐.2 

Δ𝜀𝜀𝑐𝑐𝑐𝑐(𝜎𝜎𝑖𝑖+1, 𝜉𝜉 + Δ𝑡𝑡) = 𝑓𝑓𝑐𝑐𝑐𝑐(𝜎𝜎𝑖𝑖+1, 𝜉𝜉 + Δ𝑡𝑡) − 𝜀𝜀0𝑐𝑐𝑐𝑐  (14) 

 
Figure 2 creep curve with search process 

Alternatively we can also create a surface from the creep modulus curve which uses the creep 
modulus depending on time and stress. In this case, the creep modulus is depending variable, 
so the surface is  

𝐸𝐸𝑐𝑐𝑐𝑐 = 𝑓𝑓𝑐𝑐𝑐𝑐(𝜎𝜎, 𝑡𝑡) (15) 

The creep modulus is defined as the quotient of stress and total strain. The pseudo-time now 
is the time point where the same creep modulus applies as in the converged state but for the 
new stress. It is determined by a Newton-Raphson scheme for 

ℎ(𝜎𝜎𝑖𝑖+1, 𝜉𝜉) = 𝑓𝑓𝑐𝑐𝑐𝑐(𝜎𝜎𝑖𝑖+1, 𝜉𝜉) − 𝐸𝐸0𝑐𝑐𝑐𝑐 = 0 (16) 

where 𝐸𝐸0𝑐𝑐𝑐𝑐 is the creep modulus from last converged state. The 𝐸𝐸0𝑐𝑐𝑐𝑐 is calculated using the creep 
strain as: 

𝐸𝐸0𝑐𝑐𝑐𝑐 =
𝜎𝜎𝑖𝑖

𝜀𝜀𝑐𝑐𝑐𝑐(𝑡𝑡𝑖𝑖) + 𝜀𝜀𝑒𝑒𝑒𝑒
 (17) 

As a result, the creep modulus for the time 𝜉𝜉 + Δ𝑡𝑡 is 
𝐸𝐸𝑐𝑐𝑐𝑐 = 𝑓𝑓𝑐𝑐𝑐𝑐(𝜎𝜎𝑖𝑖+1, 𝜉𝜉 + Δ𝑡𝑡) (18) 

                                                 
2 Further discussion for pseudo-time and stress out of the surface, see ([14]) 
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To use the same local iteration of creep strain formulation (Figure 3), we convert creep modulus 
to creep strain 

∆𝜀𝜀𝑐𝑐𝑐𝑐(𝜎𝜎𝑖𝑖+1, 𝑡𝑡 + Δ𝑡𝑡) = 𝜎𝜎𝑖𝑖+1
𝐸𝐸𝑐𝑐𝑐𝑐(𝜎𝜎𝑖𝑖+1, 𝜉𝜉 + Δ𝑡𝑡) −

𝜎𝜎𝑖𝑖+1
𝐸𝐸 − 𝜀𝜀0𝑐𝑐𝑐𝑐 (19) 

where the first term is the new total strain and the second one the new elastic strain. Its partial 
derivative with respect to 𝜎𝜎 is 

𝜕𝜕∆𝜀𝜀𝑐𝑐𝑐𝑐(𝜎𝜎𝑖𝑖+1, 𝑡𝑡 + Δ𝑡𝑡)
𝜕𝜕𝜎𝜎 = 𝜕𝜕

𝜕𝜕𝜎𝜎 (
𝜎𝜎𝑖𝑖+1

𝐸𝐸𝑐𝑐𝑐𝑐(𝜎𝜎𝑖𝑖+1, 𝜉𝜉 + Δ𝑡𝑡)) −
1
𝐸𝐸 = 1

𝐸𝐸𝑐𝑐𝑐𝑐
− 𝜎𝜎
𝐸𝐸𝑐𝑐𝑐𝑐2

𝜕𝜕𝐸𝐸𝑐𝑐𝑐𝑐
𝜕𝜕𝜎𝜎 − 1

𝐸𝐸 
(20) 

and with respect to 𝑡𝑡 : 
𝜕𝜕∆𝜀𝜀𝑐𝑐𝑐𝑐(𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖+1, 𝑡𝑡 + Δ𝑡𝑡)

𝜕𝜕𝑡𝑡 = − 𝜎𝜎
𝐸𝐸𝑐𝑐𝑐𝑐2

𝜕𝜕𝐸𝐸𝑐𝑐𝑐𝑐
𝜕𝜕𝑡𝑡  

(21) 

Thus, all three types of test data curves are united by the incremental creep strain formulation. 
With the creep strain increment, the three-dimensional creep state is defined 

Δ𝜺𝜺𝑐𝑐𝑐𝑐 = Δ𝜀𝜀𝑐𝑐𝑐𝑐 ⋅ 𝜕𝜕𝜕𝜕𝜕𝜕𝝈𝝈 
(22) 

where 𝜕𝜕 is plastic potential. This equation is adopted from the flow rule of plastic material, 
where the plastic multiplier is replaced by the creep strain increment in this case. Like in plas-
tics, we use the flow rule associated with the yield condition 𝐹𝐹 after von Mises. There is no 
threshold like the yield stress, thus creep is always present if there is non-zero equivalent stress. 

After the Δ𝜺𝜺𝑐𝑐𝑐𝑐 is determined, the current stress state is 

𝝈𝝈 = 𝑬𝑬 (𝜺𝜺𝑡𝑡𝑡𝑡𝑡𝑡 − 𝜺𝜺𝑐𝑐𝑐𝑐(ti) − Δ𝜺𝜺𝑐𝑐𝑐𝑐(𝜉𝜉 + Δ𝑡𝑡, 𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒(𝝈𝝈))) (23) 

where 𝑬𝑬 is the elasticity matrix, 𝜺𝜺𝑡𝑡𝑡𝑡𝑡𝑡 is total strain for this step. The stress state changes with 
the creep increment updates. The equivalent stress is defined after von Mises. In equation (23), 
stress tensor 𝝈𝝈 is defined implicitly. Therefore, a local iteration with Newton-Raphson method 
should take place 

𝑔𝑔 = Δ𝜀𝜀𝑐𝑐𝑐𝑐 − Δ𝜀𝜀𝑐𝑐𝑐𝑐(𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒(𝝈𝝈), 𝜉𝜉 + Δ𝑡𝑡) − 𝜀𝜀𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐 (𝑡𝑡𝑖𝑖) = 0 (24) 

The derivative of 𝑔𝑔 is 
𝜕𝜕𝑔𝑔

𝜕𝜕Δ𝜀𝜀𝑐𝑐𝑐𝑐 = 1 + 𝜕𝜕Δ𝜀𝜀𝑐𝑐𝑐𝑐
𝜕𝜕𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒

(𝜕𝜕𝜕𝜕𝜕𝜕𝝈𝝈)
𝑇𝑇
𝑬𝑬𝜕𝜕𝜕𝜕𝜕𝜕𝝈𝝈 − 𝜕𝜕Δ𝜀𝜀𝑐𝑐𝑐𝑐

𝜕𝜕𝜀𝜀𝑐𝑐𝑐𝑐  
(25) 

For each iteration, the creep increment and its derivative is determined using the surface of 
Coons patches. The process for the creep increment calculation is shown in Figure 3 
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Figure 3 flow chart for local iteration 

Once the creep increment is determined and the local iteration is converged, the consistent 
tangent is requested from the global iteration. The total differential of the stress is: 

𝑑𝑑𝝈𝝈 = 𝑬𝑬(𝑑𝑑𝜺𝜺𝑡𝑡𝑡𝑡𝑡𝑡 − 𝜕𝜕𝜕𝜕𝜕𝜕𝝈𝝈 dΔ𝜀𝜀
𝑐𝑐𝑐𝑐 − Δ𝜀𝜀𝑐𝑐𝑐𝑐 𝜕𝜕

2𝜕𝜕
𝜕𝜕𝝈𝝈2 𝑑𝑑𝝈𝝈) 

(26) 

The total differential of the creep increment is: 

dΔ𝜀𝜀𝑐𝑐𝑐𝑐 = 𝜕𝜕Δ𝜀𝜀
𝑐𝑐𝑐𝑐

𝜕𝜕𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒
𝜕𝜕𝜕𝜕
𝜕𝜕𝝈𝝈 𝑑𝑑𝝈𝝈 +

𝜕𝜕Δ𝜀𝜀𝑐𝑐𝑐𝑐
𝜕𝜕𝜀𝜀𝑐𝑐𝑐𝑐 dΔ𝜀𝜀

𝑐𝑐𝑐𝑐 
(27) 

Together with equation (26) and (27) a linear system of equations of order n+1 with n col-
umns at the right hand side is obtained: 

(

 
 𝟏𝟏 + Δ𝜀𝜀

𝑐𝑐𝑐𝑐𝑬𝑬 𝜕𝜕
2𝜕𝜕
𝜕𝜕𝝈𝝈2 𝑬𝑬 𝜕𝜕𝜕𝜕𝜕𝜕𝝈𝝈

𝜕𝜕Δ𝜀𝜀𝑐𝑐𝑐𝑐
𝜕𝜕𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒

(𝜕𝜕𝜕𝜕𝜕𝜕𝝈𝝈)
𝑇𝑇 𝜕𝜕Δ𝜀𝜀𝑐𝑐𝑐𝑐

𝜕𝜕𝜀𝜀𝑐𝑐𝑐𝑐 + 1)

 
 ( 𝑑𝑑𝝈𝝈dΔ𝜀𝜀𝑐𝑐𝑐𝑐) = (

𝑬𝑬
0)𝑑𝑑𝜺𝜺

𝑡𝑡𝑡𝑡𝑡𝑡 (28) 

where n is the number of strain components. The first n rows of the solution form the con-
sistent tangent 𝑑𝑑𝝈𝝈𝑑𝑑𝜺𝜺𝑡𝑡𝑡𝑡𝑡𝑡. 

6 TEMPERATURE EFFECT 
In conventional creep models the Arrhenius equation is often used to characterize the temper-
ature effect. 

𝜀𝜀𝑐𝑐𝑐𝑐̇ = 𝑓𝑓(𝜎𝜎, 𝑡𝑡, 𝜀𝜀) ⋅ 𝑒𝑒−
𝑐𝑐
𝑇𝑇 (29) 

The constant c is the quotient of activation energy and universal gas constant R. However, the 
constant c is not a measurable parameter during a creep test. The normal way to determine this 
parameter is using a curve fitting or solving the equation for selected data points. For the Ma-
terialPBT-GB30 (Ultradur B 4300 K63), we obtain the creep data like: 

                                                 
3 Creep data from [11], the isochronous curves is interpolated using Coons patches. The original data was meas-
ured form different load classes. In order to explain the temperature effect without other disruption, a constant 
load is assumed. 
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Table 1: Temperature-creep relation for PBT-GB30 

𝑇𝑇 [𝐾𝐾] 𝜀𝜀𝑐𝑐𝑐𝑐 c 
296,15 2,26E-04  
313,15 2,78E-03 1,37E+04 
333,15 5,44E-03 3,51E+03 
363,15 6,25E-03 5,61E+02 
393,15 8,87E-03 1,67E+03 
413,15 1,43E-02 3,89E+03 

for σ = 5 MPa, t = 10h. Hence the parameter c can be determined from two data points in the 
Table 1: 

𝑐𝑐𝑖𝑖 =
𝑙𝑙𝑙𝑙 �̇�𝜀𝑖𝑖

𝑐𝑐𝑐𝑐

�̇�𝜀𝑖𝑖+1
𝑐𝑐𝑐𝑐

1
𝑇𝑇𝑖𝑖+1

− 1
𝑇𝑇𝑖𝑖

 

(30) 

Using this parameter c for the temperature outside of these two data points causes an error 
(Figure 4). 

A linear interpolation for parameter c can improve the behavior (Figure 4) but does not solve 
the problem that the creep curves for different temperatures can show different shape.  

The new model for this creep strain-temperature relation uses the Coons patches (Figure 5). 
Once the stress and the time are set, we obtain the creep strain εcr from the surface of Coons 
patch as interpolated points. A cubical spline connects interpolated points and creates a creep 
strain-temperature function. Thus, the creep strain could be determined from a specific temper-
ature within the spline. This solution creates a smooth creep strain-temperature curve (Figure 
4). Since temperature is a given value during the simulation no derivative with respect to it is 
requested. Thus, lower order piecewise interpolation is possible. It might be the more accurate 
the more temperature points are available from test data. For a smaller number of temperatures 
spline interpolation is preferable.  

 
Figure 4 Creep strain-temperature relation using interpolation 
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If the temperature changes during the test, this interpolation takes place in every step. If the 
simulation takes place at a specific constant temperature but not matching a test temperature 
we first process the creep strain-temperature function for the corner points and create a new 
surface for creep strain-stress-time relation at this temperature before the simulation starts.  

 
Figure 5 new model illustration for interpolation of the temperature effect 

5 RESULTS 
Figure 6 shows the results of this new creep model. To compute these results, a solid element 

with 8 nodes is used. The curve “00iso” uses the isochronous curve and the curve“00cm” uses 
the creep modulus curve. Both curves start the creep at 𝑡𝑡 = 0 ℎ. They match the data point 
exactly. The maximum difference between the two curves amounts to 1.12%. 

 
Figure 6 creep curve using the new model in compare with data points 

The other two results (05iso and 05cm) start the creep calculation after 30min with indirect 
time dependency. Until then the creep strain keeps zero. After 30 minutes, they start with the 
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same curve as“00iso” and “00cm”. This result shows that the indirect time dependency work 
properly. For the direct time dependency the curve “05iso direct” is considering the creep pro-
cess as already done for 30 minutes, so it starts with the range of the curve “00iso” beginning 
at the same time point. Thus, this creep model works as it should be.  

We implement this creep model into the commercial software ANSYS. Figure 7 shows two 
examples for the use of the creep model. First model is a tensile specimen. One side of the 
specimen is fixed, on the other side a tensile load of 10 MPa is applied. As we expect, the creep 
strain concentrate on the reduced cross section. The second model is a plate with a hole in it. 
We apply the same boundary conditions to this model. In this model, we observe the creep 
concentration and the gradient of the creep strain.  

These results show that the new creep model works properly with a complex geometry and 
multiple elements. It provides also a convergence like other creep models. The huge advantage 
of this new creep model is that: 

 Only tabulated creep test data are used as input data  
 No material parameters, are required, i.e. no curve fitting must take place 
 The surface of Coons patches meets every data point. 

 

 
Figure 7 two examples: a tensile specimen and a plate with hole 
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1 INTRODUCTION 
Modern HSLA steels show a superior profile in mechanical properties as they have a high 

yield strength as well as excellent toughness properties. Nevertheless, HSLA steels are still 
only rarely used for steels constructions despite their excellent property balance of strength 
and toughness. This rare application is due to the fact that there are no reliable quantitative 
methods to predict damage initiation in HSLA steels components; hence, there is not yet a 
conclusive limit state analysis for components. One criterion of such a limit state analysis 
should be a consideration how steels components react under external loading influence like 
cyclic loading with large strain amplitudes as they occur during seismic events. Conventional, 
well established fracture mechanics approaches are unfit for the description of 
phenomenological occurrences under ULCF loading since they do not consider the ongoing 
kinematic hardening conditions and the J-integral is not applicable for cyclic loading 
conditions with large plastic strain amplitudes. 
Thus, the material properties to consider are toughness and stiffness. To get a better 
understanding of their influence and relationship onto each other an examination through a 
coupled damage mechanics approach might be helpful. Over the years scientists developed 
many different approaches to encounter this issue. A macroscopic approach was proposed by 
Gurson [8] and led to a family of similar models. Another strategy was chosen by the limit 
strain concept most famously encountered by Bai and Wierzbicki [3]. Later on then modified 
with Lode-angle consideration by Lian et al. [1], the so called modified Bai – Wierzbicki 
(MBW) model. Also, there have been many different propositions made to encounter the issue 
of cyclic loading. Most known would be the model introduced by Armstrong and Frederick 
[2] with its non-linear kinematic hardening law. Other more advanced models came from 
Chaboche [6] or also, the two yield surface approach by Yoshida and Uemori [5]. 
As previously discussed, damage mechanics approaches are able to give a limit state analysis 
because of a local strain approach. Nevertheless, as it becomes obvious from the previous 
state of the art representation, some modifications need to be done to a general damage 
mechanics approach Such an approach was done in this paper. The modified Bai-Wierzbicki 
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model as provided by Lian [1] is a coupled damage model that has proven to give good results 
for state limit analysis for modern steels under monotonic load. Since it is assumed that the 
onset of damage is not different under monotonic or cyclic loading, in the frame of this work, 
the MBW model was used as foundation for the model regarding damage initiation and 
evolution. Armstrong-Frederick provided a good plasticity model to depict material behaviour 
cyclic loading conditions. It was used to replace the plasticity core of the MBW model. The 
damage evolution also considers an effective strain concept. 
For the experimental part of this work, the focus lies on the ductile damage crack criterion 
based on the model by Lian and the parameter calibration to find the damage initiation locus. 
In a following step a possibility for a toughness criterion is proposed based on nominal 
damage initiation curves.  

2 COUPLED DAMAGE MECHANICS MODEL FOR ULCF 
There hereby presented plasticity model consists of a plasticity core based on the 

Armstrong-Frederick model [2] with a non-linear kinematic hardening law to depict the 
hardening and softening effects during cyclic loading and a ductile crack initiation criterion 
with a corresponding damage evolution law following the modified Bai-Wierzbicki model 
proposed by Lian [1].  

2.1 Plasticity core based on Armstrong-Frederick model  
The plasticity model chosen to depict mechanic effects that occur under cyclic loading 

conditions such as the Bauschinger effect is the Armstrong-Frederick model [2]. The aim is to 
reproduce local stress and strain features of the material in detail. In equation (1) the equation 
to describe the von Mises yield surface can be seen. In the genuine Armstrong- Frederick 
model the size of the yield surface was considered to be constant. In this version of the model 
this condition was relaxed by the term k2εq.  

 = 12  −  ∙  −  − 3 = 0 (1)

The yield surface can now change in size depending on the amount of equivalent plastic 
strain. Therefore, the hardening of the material can consequently be considered as mixed 
isotropic-kinematic.   =   −  (2)

The kinematic hardening part of the model is expressed in form of a backstress tensor a that 
contains a ‘recall’-term. The according backstress evolution law can be seen in equation (2). 
This rule is taken from the original Armstrong-Frederick model [2] and directs the movement 
of the yield surface through the principal stress space. The parameters C and γ are material 
parameters which can be obtained from cyclic test data.  

2.2 Ductile crack imitation criterion and corresponding damage evolution law 
During seismic events such as earthquakes the material impacting load can be 

characterized as ultra-low cyclic fatigue conditions, whereas the material can undergo only a 
few loading cycles with large plastic strains until it fails. It is therefore crucial to have an 
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accurate description of the damage initiation conditions and a damage evolution law that can 
reproduce the ongoing softening of the material in a precise manner. To represent these 
effects, damage is coupled to the plasticity model. The result is a hybrid plasticity and damage 
model based on the approach by Lian [1]. It is assumed the material shows pure plastic 
behavior before damage initiation. When damage initiates the material undergoes damage 
induced softening. To consider loading conditions under cyclic loading an amount of 
equivalent plastic strain is considered to initiate as well as advance ductile damage which is 
called an effective damage concept. Concurrently, the influence of the third invariant of the 
deviatoric stress tensor and the stress triaxiality is considered too at damage initiation and 
included into the description if the damage initiation locus. As damage emerges through the 
material it is assumed that the material eventually separates when it reaches a critical amount. 
Figure 1 schematically depicts the stress-strain behavior of the material with the above 
described hybrid plasticity-damage model. 

Figure 1: Schematic illustration of the stress-strain behavior with the hybrid plasticity and damage model [1]

It has been shown in many works that hydrostatic pressure and fracture strain correlate [9-11]. 
As hydrostatic pressure increases, fracture strain decreases. Especially, Bai and Wierzbicki 
investigated in their work the influence of the equivalent plastic strain on fracture. Whereat, 
they found a dependence of the equivalent plastic strain on the stress triaxiality and the lode 
angle which can be expressed in the third invariant of the deviatoric stress tensor. In Figure 2 
a representation of both stress triaxiality and lode angle can be seen in principal stress space. 
Different lode angles and stress triaxialities can be achieved by a variation of testing 
specimens as it is shown in Figure 3. The result is a three dimensional fracture locus 
depending on equivalent strain, stress triaxiality and lode angle. 

Additionally, resulting from the investigations of Lian [1] on the onset of damage, a three 
dimensional damage initiation locus which is also depending on equivalent strain, stress 
triaxiality and lode angle is employed. Its mathematical representation can be found in 
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Equation (3). Here, the parameters C1, C2, C3 and C4 are material parameters which can be 
identified through a variation of small scale tests with different geometries. 

Figure 2: Geometric representation of a stress state in the mean stress space [3] 

Figure 3: Representation of initial stress state [3] 

Stress triaxiality η and lode angle parameter θ can be obtained through Equations (4), 
repectively, (5). 
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 =  −  +  (3)

 =  (4)

 = 1 − 60 = 1 − 2  272   (5)

Finally, an internal variable D is introduced to couple the ongoing damage induced material 
softening to the constitutive equations. Therefore the following damage evolution law is 
employed:  

 =


 0; , ≤  +  ∙ ∆ ∙ 1 − ∙. ; , ≥  ∧  <  ∧  >  ∧  ≠ 0

 +  ∙ ∆ , ≥  ∧  <  ∧  >  ∧  = 0;  = 

(6)

It is assumed, to consider the cyclic loading conditions that an effective equivalent plastic 
strain εeff has to be reached in order to accumulate damage. This assumption is further 
formulated in Equations (7) and is based on the effective strain concept introduced by Ohata 
and Toyoda [4]. ∆ = 1 − ∙ ∙ ∆ (7)

Furthermore, the parameter Gf represents the dissipated energy for the crack opening at a unit 
area and the stress σy0 equates the stress at damage initiation. Fracture occurs when a critical 
amount of damage Dcr is reached.  

3 MATERIALS 
In the following paragraph the investigated steel grades are characterized. The selected 

steel grades S500MC, S700, S355 with different toughness levels (T1) and (T2) were chosen 
to determine the damage initiation locus. 

3.1 Chemical Composition 
All presented steel grades were also micro alloyed. The chemical compositions (Table 1) 

were obtained by spectroscopic analysis. 
Table 1: Chemical composition of the steel grades (in %)

S500MC C Si Mn P 
0.02 0.21 1.57 0.008 

335



B. Hoppe, Y. Di, D. Novokshanov, S. Münstermann 

6

3.2 Microstructure 
The microstructural analysis has been achieved by LOM. The microstructural composition 

can be found in Table 2. The corresponding pictures are shown in Figure 4. 
Table 2: Microstructure analysis of the steel grades (in %)

Steel grade Bainite Pearlite Ferrite 
S500MC 100% -- -- 

 Figure 4: Microstructural configuration of (a) S500MC 

3.3 Mechanical properties 
Figure 5 shows the strength properties of the investigated steel grades. They have been 

achieved through tensile tests at room temperature. The extrapolation was done according to 
the Ludwik expression. 

Figure 5: Flow curves of the selected steels S500MC 

To consider temperature and strain rate effects on material behavior, equations (8) and (9) 
were employed and regarded for the materials’ yield strength based on the approach by 
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Münstermann et al. [7]. The material parameters C1T, C2T and C3T to considers the temperature 
effect were obtained by tensile test at varying temperatures and are listed in Table 3.  

Table 3: Calibrated parameters for temperature effect 

The material parameter from Equation (9) C1ε  and C2ε  were obtained from high speed tensile 
tests and are listed in Table 4.  

 =  ∙   +  (9)

Table 4: Calibrated parameters for strain rate effect 

     
S500 0.0023 1.0173 

4 DETERMINATION OF DAMAGE INITIATION LOCUS 
In order to obtain a toughness based safety assessment for a steel grade the determination 

the damage initiation locus (DIL) is crucial. The DIL indicates the beginning of the damage 
induced softening. The material specific DIL was obtained by calibrating the material 
parameters from Equation (3). Moreover, Equation (10) gives the critical damage variable Dcrit before material failure and therefore the damage crack locus (DCL).  =  −   +  +  (10)

The parameters were calibrated on a variation of small scale samples with different 
geometries, consequently, specimens with various stress states. The critical equivalent strain 
is estimated through the direct current potential drop (DCPD) method and later on then 
verified by metallographic investigations. For simulation Abaqus/Standard is used.  

4.1 S500 
For the construction steel S500, tensile tests with DCPD were conducted on notched round 
bar samples with different notch radii, on plane strain samples with different radii and on 
shear samples. According to the experimental results with DCPD method, the DIL can be 
determined, as shown Figure 6 (a).The tensile tests are simulated by Abaqus. The parameters , , and  -  are iteratively calibrated until the simulated force-displacement 
curves fit the experimental results, as shown exemplarily in Figure 7 for (a) a round bar 

 =  ∙ exp ∙  +  (8)

 TC1  TC2  TC3  

S500 0.0198 -0.018 0.983 
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sample and (c) a shear sample. Accordingly the DCL of S500 is constructed and shown in 
Figure 6 (b). The calibrated parameter set for S500 is summarized in Table 5. To validate the 
calibrated parameters, those parameters are used in the simulation of Charpy test at room 
temperature. Figure 7 (b) shows the simulated force-displace curve of the Charpy test which 
corresponds to the experimental result. 

(a) (b) 
Figure 6: (a) DIL of S500 (b) DCL of S500 

(a) RB (b) Charpy test 

(c) Shear  
Figure 7: Force-displacement curves from tensile tests, Charpy tests and simulations (S500) 


̅



̅

Experimental result 

Simulation 
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Table 5: Calibrated parameter set for S500 

DIL Damage 
evolution     

0.6 3.644 0.5262 3.062 10000 
DCL     

0.06 0.895 0.05 1.415 0.025 

5 DETERMINATION OF NOMINAL DUCTILE CRACK INITIAION LOCUS 
The derivation of nominal ductile crack initiation loci stands on the nominal material 

properties, namely the nominal upper shelf toughness. To eliminate the chance of brittle 
fracture of steel components under operation, it is assumed that above 0 °C the steel 
toughness should be at upper shelf. According to EN 10025 [12], the required minimum 
impact energies corresponding the investigated steel grades are listed in Table 7. 

Table 7: Minimum impact energy (longitudinal) according to delivery standard

Selected steel 
grade 

Corresponding standard 20 °C  0 °C -10 °C -20 °C 

S500ML EN10025-4 63 J 55 J 51 J 47 J 
S700 EN10025-6 -- 50 J -- 40 J 

To acquire the corresponding nominal upper shelf toughness, Wallin´s [13] approach is 
adapted. After Wallin, the Charpy transition curve of can be mathematically obtained from an 
exponential function as shown in Equation (13). The parameter TCC  controls the steepness of 
the transition curve.  

 ≈ 34° + 35.1 − 14.3 (13)

Through the Charpy impact energy the nominal ductile crack initiation loci is determined.  
The calibrated parameter sets are applied to Charpy test simulations. The computed impact 
energy as well as the load-deflection curve are compared to the experimental results at room 
temperature. Consequently, the DILs were fitted in order to match the computed impact 
energy to the previously determined nominal upper shelf toughness.  

5.1 S500MC 
By the multiplication of the factor for DIL and DCL, the computed Charpy impact energies 
are tailored to different target values. Figure 10Fehler! Verweisquelle konnte nicht 
gefunden werden. shows the obtained force-displacement curves and the corresponding 
nominal DIL for the target Charpy impact energies. Table 8 summarized the nominal DIL 
parameters for S500. 
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(a) (b) 
Figure 10: (a) Simulated force-displacement curves of Charpy tests with (b) varied DIL (S500) 

Table 8: Nominal DIL for S500

Nominal Charpy 
impact energy 1C 2C 3C 4C

200 J 0.48 3.644 0.42096 3.062 
150 J 0.36 3.644 0.31572 3.062 
100 J 0.24 3.644 0.21048 3.062 
60 J 0.144 3.644 0.13155 3.062 

6 CONCLUSIONS 
In the frame of this work, a coupled damage mechanics model for ULCF loading 

conditions was presented. It is based on the damage mechanics model by Lian and the 
plasticity model presented by Armstrong and Ferderick. Hereby, the focus was set on the 
determination of a crack initiation criterion and the following damage evolution restricted by 
an effective strain concept. This method was the applied to the construction steel S500. The 
damage initiation locus and the critical damage locus were obtained. Furthermore, a new 
criterion based on nominal toughness values was introduced to enable a prediction of the load 
capacity of the material according to the variation of toughness properties.    
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Abstract. In this work we compare two frameworks for thermodynamically consistent
hyperelasto-plasticity with kinematic hardening. The first was formulated by Dettmer and
Reese (2004), inspired by Lion (2000), and has been used to model sheet metal forming.
The second, formulated by Wallin et al. (2003), has been used to model large shear
strains and cyclic ratcheting behavior of pearlitic steel (Johansson et al. 2006). In this
paper we show that these frameworks can result in equivalent models for certain choices
of free energies. Furthermore, it is shown that the choices of free energy found in the
literature only result in minor differences. These differences are discussed theoretically
and investigated numerically.

1 INTRODUCTION

Large strains in metals during room temperature occur in many technical applications,
often during manufacturing, such as sheet metal forming. Some components are also
subjected to large strains during service, for example in the surface layer of railway rails and
wheels (see e.g. [1, 2]). Experiments have shown that the Bauchinger effect, often modeled
with kinematic hardening, is pronounced in many metals. Kinematic hardening can be
modeled with different thermodynamically consistent hyperelasto-plastic frameworks found
in the literature, and two of them are considered here. The first framework is based
on rheological models with an Armstrong-Frederick (AF) type of kinematic hardening,
and was proposed by Lion [3] and further developed by Dettmer and Reese [4]. The
second framework, introduced by Wallin et al. [5], also features an AF type of kinematic
hardening, and has been used to model the Swift effect [6] and large deformations in
railway applications [7, 8]. In this paper we compare these frameworks, both theoretically
and numerically.

1
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2 DESCRIPTION OF FRAMEWORKS

In this section, the modeling frameworks are presented in terms of their assumed
kinematics and thermodynamics. The common parts are presented in Subsections 2.1
and 2.2, followed by a description of how the frameworks differ in Subsections 2.3 and
2.4. Three specific models are defined in Subsections 2.5 and 2.6, which are compared
in the numerical examples in Section 3. For the clarity of the presentation, only linear
kinematic hardening is considered in the current section. In Section 4 we investigate
nonlinear kinematic hardening, e.g. of Armstrong-Frederick type.

Ω

¯̄Ω Ω̄

ω
F

Fke

Fp FeFkp

Figure 1: Configurations and deformation gradients

2.1 Kinematics and notations

Figure 1 shows the different configurations used in both [4] and [5]. Dettmer and
Reese [4] introduce the inelastic plastic deformation gradient Fkp connecting the fictitious

kinematic configuration ¯̄Ω to the initial configuration Ω. This connection is not introduced
in Wallin et al. [5], but otherwise the same configurations and remaining deformation
gradients are present in both frameworks.

Tensors on the current configuration ω are denoted with lower case letters and no bars,
e.g. b. Tensors on the intermediate Ω̄ and kinematic ¯̄Ω configurations are denoted by one
bar, e.g. C̄e, and two bars, e.g. ¯̄Cke, respectively. The following decompositions of the
deformation gradients and definitions of the deformation tensors will be used:

F = FeFp C̄e = F t
eFe ce = F−t

e F−1
e = b−1

e

Fp = FkeFkp
¯̄Cke = F t

keFke c̄ke = F−t
ke F

−1
ke = b̄−1

ke

(1)

The velocity gradients on the intermediate and kinematic configurations are defined as

L̄p = ḞpF
−1
p (2)

L̄ke = ḞkeF
−1
ke (3)

¯̄Lkp = ḞkpF
−1
kp (4)

2
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and hence the velocity gradient l on the current configuration can be written as

l = Ḟ F−1 = ḞeF
−1
e + FeL̄pF

−1
e (5)

2.2 Thermodynamics

The free energy Ψ is introduced with the additive split according to

Ψ = Ψe

(
C̄e

)
+Ψkin (Fke) (6)

whereby the dissipation inequality (see e.g. Simo (1998) [9]) becomes

D = τ : l− Ψ̇ = τ : l− ∂Ψe

∂C̄e

˙̄Ce −
∂Ψkin

∂Fke

: Ḟke ≥ 0 (7)

where τ is the Kirchhoff stress. Using the requirement of zero dissipation during elastic
loading and Equation (5), the reduced dissipation inequality becomes

D = M̄ : L̄p −
(
∂Ψkin

∂Fke

F t
ke

)
: L̄ke (8)

where the Mandel stress M̄ is defined as

M̄ = 2C̄e

∂Ψe

∂C̄e

(9)

In a standard fashion, we adopt an associative evolution of the plastic deformation
gradient in this paper:

L̄p = λ̇
∂Φ

∂M̄
(10)

where the functional dependence of the yield function Φ ≤ 0 will be specified later. Up
until this point the two frameworks are identical. We first describe the framework by
Dettmer and Reese [4], before proceeding with the framework by Wallin et al. [5].

2.3 1st framework [4]

In the first framework proposed by Lion [3] and further developed by Dettmer and
Reese [4], the plastic deformation gradient Fp is multiplicatively decomposed into an
elastic part Fke and a plastic part Fkp. The physical motivation is that Fke represents
local elastic deformations on the microscale caused by dislocations and Fkp represents
irreversible displacements in the slip systems. The assumption is that development of
Fke results in linear kinematic hardening and the development of Fkp reduces Fke, hence
causing saturation (dynamic recovery) of the kinematic hardening. This is illustrated using
a rheological model by Lion [3]. The multiplicative split of Fp results in the following
additive split of the plastic velocity gradient L̄p

L̄p = L̄ke + Fke
¯̄LkpF

−1
ke (11)

3
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For the case of purely linear hardening (Fkp = I), the reduced dissipation, Equation (8),
can be written as

D =
(
M̄ − 1M̄k

)
: L̄p (12)

where the kinematic hardening stress of Mandel type (also denoted back-stress) is defined
as

1M̄k =
∂Ψkin

∂Fke

F t
ke (13)

This motivates that the driving force for plastic flow is M̄ − 1M̄k and thereby a yield
criterion expressed as Φ(M̄ − 1M̄k).

2.4 2nd framework [5]

In the second framework, proposed by Wallin et al. [5], the deformation gradient
F−1

ke is introduced to model the deformation of the crystal lattice, due to the residual
micro stresses responsible for the Bauchinger effect. From this deformation gradient the
kinematic hardening stress of Mandel type is defined as

2M̄k = −∂Ψkin

∂Fke

F t
ke (14)

which yields that the reduced dissipation inequality (8) is

D = M̄ : L̄p +
2M̄k : L̄ke (15)

Using the standard interpretation of 2M̄k as a back-stress that reduces the driving force
for plasticity, motivates the yield function Φ(M̄ − 2M̄k). This gives, by the postulate of
maximum dissipation, the kinematic relation

L̄p = −L̄ke (16)

and the same reduced dissipation inequality as in Equation (12) is obtained:

D =
(
M̄ − 2M̄k

)
: L̄p (17)

2.5 Specific formats for free energy

The elastic and kinematic free energies (with the third invariant I3• = det(•)) proposed
by Vladimirov et al [10] are

AΨe =
1

2
G
(
tr(C̄e)− 3− ln

(
I3Ce

))
+

Λ

4

(
I3Ce

− 1− ln
(
I3Ce

))
(18)

AΨkin =
1

2
Hkin

(
tr( ¯̄Cke)− 3− ln

(
I3Cke

))
(19)
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The part of the elastic free energy, corresponding to Lamé’s second parameter Λ, is thus
not included in the kinematic free energy.

A similar split is introduced in [5], but the free energy in that work is decomposed into
an isochoric and a volumetric part. The formulation for the volumetric part is not the
same in [5] and [7, 8], and here we use the formulation from [7, 8]. This difference only
affects the bulk elastic response and the influence on the numerical results studied in this
paper is therefore negligible.

BΨe =
1

2
G
(
tr
(
I
−1/3
3Ce

C̄e

)
− 3

)
+

1

2
K

(
I
1/2
3Ce

− 1
)2

(20)

BΨkin =
1

2
Hkin

(
tr
(
I
−1/3
3cke

c̄ke

)
− 3

)
(21)

From the discussion so far, there seem to be several differences between the frameworks:
(1) the definition of the Mandel back-stress (1M̄k or 2M̄k), (2) the variable of which the
kinematic free energy depends on ( ¯̄Cke or c̄ke) and (3) what part of the elastic free energy
formulation that is used to formulate the kinematic free energy. The third of these can be
investigated by taking the format of free energy from the second framework, but using the
definitions and variables from the first framework to obtain model C:

CΨe =
BΨe (22)

CΨkin =
1

2
Hkin

(
tr
(
I
−1/3
3Cke

¯̄Cke

)
− 3

)
(23)

2.6 Stresses for each model

We have now described both frameworks, the first by Dettmer and Reese [4] and the
second by Wallin et al. [5]. By letting Ψkin depend on ¯̄Cke or c̄ke we can use (13) and (14),
respectively, to obtain the Mandel back-stresses for the two frameworks:

1M̄k =

(
∂Ψkin

∂ ¯̄Cke

:
∂ ¯̄Cke

∂Fke

)
F t

ke = 2Fke

(
∂Ψkin

∂ ¯̄Cke

)
F t

ke (24)

2M̄k = −
(
∂Ψkin

∂c̄ke
:
∂c̄ke
∂Fke

)
F t

ke = 2c̄ke
∂Ψkin

∂c̄ke
(25)

The Mandel stresses for model A, AM̄ and AM̄k, are found using Equations (9) and
(24) with the free energies in Equations (18) and (19):

AM̄ = G(C̄e − I) +
Λ

2
(I3Ce

− 1)I, AM̄k = Hkin

(
b̄ke − I

)
(26)

The stresses for model B, BM̄ and BM̄k, are given by using Equations (9) and (25) with
the free energies in Equations (20) and (21):

BM̄ = GI
−1/3
3Ce

C̄dev
e +K(I3Ce

− I
1/2
3Ce

)I, BM̄k = HkinI
−1/3
cke

c̄devke (27)
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For model C, we use the first framework, i.e. the stresses CM̄ and CM̄k are given by using
Equations (9) and (24), but with the free energies in Equations (22) and (23). We further
note that I3Cke

= I3bke and tr( ¯̄Cke) = tr(b̄ke), which leads to:

CM̄ = BM̄ CM̄k = HkinI
−1/3
bke

b̄devke (28)

If Bc̄ke =
Cb̄ke then clearly model B and C are equivalent. Assuming that is the case for

some point in time, we also have BL̄p = CL̄p = L̄p. Since model B is using the second

framework, and model C is using the first, we also have −BL̄ke =
CL̄ke = L̄p, hence

B ˙̄cke = −
(
BL̄t

ke
Bc̄ke +

Bc̄ke
BL̄ke

)
= L̄t

p
Bc̄ke +

Bc̄keL̄p (29)

C ˙̄bke =
(
CL̄ke

Cb̄ke +
Cb̄ke

CL̄t
ke

)
= L̄p

Cb̄ke +
Cb̄keL̄

t
p (30)

As Bc̄ke =
Cb̄ke = I initially, the statement Bc̄ke =

Cb̄ke is true for all points in time under
the assumption that L̄p is symmetric. If the free energy is isotropic, the Mandel stresses M̄
and M̄k are symmetric, and hence L̄p becomes symmetric for the associative choice of L̄p

in Equation (10). This leads to the conclusion that model B and C are equivalent, which
is verified numerically later. Furthermore, this proof leads to the interesting conclusion
that the frameworks can give exactly the same model with proper choices of free energy.
The possibility to formulate an unsymmetric L̄p for isotropy is discussed in e.g. Wallin et
al. [5] and Wallin and Ristinmaa [6], but is not investigated in this paper.

3 NUMERICAL RESULTS

In this section we evaluate the response of the material models for uniaxial loading
and simple shear loading. The models are implemented using a standard Backward Euler
integration scheme, for which Vladimirov et al. [10] noted that the accuracy suffers at
large time steps. To avoid these accuracy problems, approximately 4 · 104 and 5 · 104 load
steps are used for the uniaxial and simple shear loading, respectively.

The von Mises effective stress is used to define the yield function Φ according to

Φ =

√
3

2

√
dev

(
M̄ t − M̄ t

k

)
: dev

(
M̄ − M̄k

)
− Y0 = f

(
M̄ − M̄k

)
− Y0 ≤ 0 (31)

whereby the evolution of the plastic deformation gradient in (10) becomes

L̄p = λ̇
3

2

dev
(
M̄ t − M̄ t

k

)

f
(
M̄ − M̄k

) (32)

From this it follows that the plastic deformation is isochoric: By time differentiation of
det

(
Fp

)
and using (2)

∂

∂t
det

(
Fp

)
= det

(
Fp

)
F−t

p :
(
L̄pFp

)
= det

(
Fp

)
tr
(
L̄p

)
= 0 (33)

hence, det
(
Fp

)
= 1.

The following material parameters: G = 81GPa, K = 174GPa, Λ = K − 2G/3,
Y0 = 100MPa and Hkin = 1000MPa, are used in the numerical examples in Figure 2.
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Figure 2: Numerical results

We first consider uniaxial stress in Figure 2a, by letting the normal deformation gradient
F11 increase from 1 to 10 while keeping the Cauchy stresses σ22 = σ33 = 0 (σ = τ/I3F). As
previously shown theoretically, model B and C give the same response. Model A gives a
somewhat stiffer response at large deformations, due to the different choice of free energy.

In the case of simple shear loading, Figure 2b shows that the response of all the models
coincide. While this is expected for model B and C, the fact that model A and C coincide
is explained with simple shear being an isochoric process (I3F = I3Fp

= 1 ⇒ I3Fe
= 1)

The results in Figure 2 show negligible differences between the different formulations
of free energy. From a theoretical point of view, one could argue that the deviatoric
dependence of the back-stress is more correct, based on the experimental evidence of
volume preservation for metal plasticity.

4 ARMSTRONG-FREDERICK SATURATION

Linear kinematic hardening was considered in Section 2, for which Dettmer and Reese
[4] set Fkp = I, yielding the reduced dissipation inequality in Equation (12). If the general
case with an evolving Fkp is considered, the reduced dissipation inequality, using Equation
(11), becomes

D =
(
M̄ − 1M̄k

)
: L̄p +

1M̄k :
(
Fke

¯̄LkpF
−1
ke

)
(34)

From this the kinematic stress of Mandel type on the kinematic configuration 1 ¯̄Mk is
defined as

1 ¯̄Mk = F t
ke

1M̄kF
−t
ke (35)
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Saturation is motivated by the rheological model, setting the evolution on ¯̄Lsym
kp . As the

Mandel stresses in [4] are symmetric, this can be written as

¯̄Lkp = λ̇
1 ¯̄M t

k

b∞
(36)

where b∞ is a material parameter controlling the kinematic saturation. Equation (11) and
(35) then yield

L̄ke = L̄p − λ̇
1M̄ t

k

b∞
(37)

This Equation can be compared with Wallin et al. [5], who use a modified potential Φ∗
kin

to obtain

L̄ke = λ̇
∂Φ∗

kin

∂
(
2M̄k

) = −L̄p + λ̇
2M̄ t

k

b∞
(38)

L̄ke will be symmetric if a modified yield potential Φ∗
kin exists and we have, as before,

symmetric Mandel stresses. This is the case for the considered model with Armstrong-
Frederick type of non-linear kinematic saturation. L̄ke is also symmetric in the work by
Zhu et al. [11], where the first framework was extended to include nonlinear kinematic
hardening of Ohno-Wang type. When L̄ke is symmetric, the same arguments as before
relating to Equations (29) and (30) hold true. Hence, for appropriate free energies the
two frameworks give the same model also for nonlinear kinematic hardening.

5 CONCLUDING REMARKS

We have shown that the two different frameworks, introduced by [4] and [5], can give
equivalent models for isotropic free energies. The major difference between the models
used for the different frameworks is the kinematic free energy. To obtain the same model,
the same structure of the kinematic free energy must be used, but with a different variable
( ¯̄Cke or c̄ke). The numerical results confirm these theoretical findings. They further show
that the difference between the formulations of free energy has a negligible effect on the
material response up to a stretch of 5 for uniaxial loading, and no effect during simple
shear.
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Abstract. Shape memory alloys (SMA) represent an important class of smart metallic
materials employed in various innovative applications thanks to their unique thermome-
chanical behavior. Since the 1980s, several SMA constitutive models have been proposed
and implemented into both commercial and academic finite element analysis software
tools. Such models have demonstrated their reliability and robustness in the design and
optimization of a wide variety of SMA-based components. However, most models are
implemented using implicit integration schemes, thus limiting their applicability in highly
nonlinear analyses. The objective of this work is to present a novel explicit integra-
tion scheme for the numerical implementation of the three-dimensional Souza-Auricchio
model, a phenomenological model able to reproduce the primary SMA responses (i.e.,
pseudoelasticity and shape memory effect). The model constitutive equations are formu-
lated by adopting the continuum thermodynamic theory with internal variables, following
a plasticity-like approach. An elastic predictor-inelastic corrector scheme is here used to
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solve the time-discrete non-linear constitutive equations in the explicit framework. The
proposed algorithm is investigated through several benchmark boundary-value problems
of increasing complexity, considering both pseudoelastic and shape memory response in
quasi-static conditions; a comparison with an implicit integration scheme is also per-
formed. Such numerical tests demonstrate the ability of the algorithm to reproduce key
material behaviors with effectiveness and robustness. Particularly, the analysis of SMA
cables demonstrates the effectiveness of the explicit algorithm to solve complex problems
involving widespread nonlinear contact, which prevent the convergence of the implicit
scheme. Details such as mass-scaling options are also discussed.

1 INTRODUCTION

In the last three decades the utilization of shape memory alloys (SMA) has evolved from
academic and niche applications to the mass production of a wide variety of industrial
components. The great commercial success of SMA is due to two unique mechanical
properties: pseudoelasticity and shape memory effect. These features have enabled a wide
range of commercial applications, e.g., biomedical devices, civil engineering components,
and mechanical systems [1]. Several efforts have been made during the past years to
propose reliable constitutive models for SMA to be incorporated in numerical analysis
tools, which can be generally categorized as microscopic, macroscopic, or micro-macro
(see, e.g., [2, 3] for a review). This paper focuses on macroscopic ones, widely employed
because of their simple numerical implementation and reduced cost of calculation.

Most of the phenomenological models available in the literature are implemented in
an implicit time integration framework, with only few recent contributions utilizing an
explicit alternative [4, 5, 6]. As well known, the employment of explicit methods becomes
truly enabling in cases where complexity makes implicit algorithms impractical, such as in
high-speed/non-linear dynamic analyses or in fully coupled thermo-mechanical dynamic
analyses, which characterize several SMA applications.

The present paper aims to improve the current state-of-the-art regarding explicit imple-
mentation of SMA models within the general-purpose commercial Finite Element Anal-
ysis (FEA) solver Abaqus by proposing an explicit integration scheme for the three-
dimensional phenomenological model presented in [7, 8], and defined in the following as
the Souza-Auricchio model. This model has been chosen because of its extremely simple
solution scheme and its ability in describing both of pseudoelastic and shape memory
behaviors. In fact, it represents an improvement over the Auricchio-Taylor-Lubliner [9]
model, which is currently available as built-in subroutine in Abaqus but it is not able to
reproduce the zero-stress shape memory effect.

The present study provides a detailed description of the explicit integration scheme for
the Souza-Auricchio model and an in-depth investigation of the corresponding algorithm.
The constitutive and algorithmic framework is tested via the simulation of two com-
plex three-dimensional boundary-value problems and compared to the implicit scheme as
proposed in [8]. The first one assesses thermally-induced actuation problems through the
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study of a SMA micro-gripper for micro-parts manipulation; while the pseudoelastic effect
is investigated through a SMA cable segment, where widespread frictional contact among
twisted SMA wires can be exploited for applications in civil and seismic engineering.

2 Souza-Auricchio model: time-continuous formulation

The present section briefly reviews the time-continuous formulation of the Souza-
Auricchio model. The reader is referred to [7, 8] for further details.

The control variables are the total strain ε and the absolute temperature T , while
the internal variable is transformation strain etr. The Helmoltz free energy function is
expressed as follows:

Ψ =
1

2
κ θ2 +G ‖e− etr‖2 + τM ‖etr‖+

1

2
h ‖etr‖2 + IεL(e

tr) . (1)

Here, θ and e are the volumetric and deviatoric part of ε, respectively; τM = β〈T−T ∗〉,
where β is a positive parameter and T ∗ is a reference temperature; κ and G are the bulk
and shear modulus, respectively; h defines the phase transformation hardening. The
indicator function

IεL(e
tr) =

{
0 if ‖etr‖ ≤ εL

+∞ otherwise
(2)

is introduced to satisfy the transformation strain constraint ‖etr‖ ≤ εL.
The constitutive equations are found to be:

s =
∂Ψ

∂e
= 2G(e− etr) ,

X = −
∂Ψ

∂etr
= s− τM

etr

‖etr‖
− hetr − γ

etr

‖etr‖
,

(3)

where s is the deviatoric part of σ and X is the thermodynamic force associated to etr.
The variable γ results from the subdifferential ∂IεL(e

tr) and it is defined as follows:

γ =

{
0 if ‖etr‖ < εL

≥ 0 if ‖etr‖ = εL
, (4)

with ∂IεL(e
tr) = γetr/‖etr‖.

To describe phase transformation and inelasticity evolution, a classical Mises-type limit
function is introduced in the following form:

F = ‖X‖ −RY , (5)

where RY is a positive material parameter.
The evolution equation for the internal variable takes the form:

ėtr = λ̇
∂F

∂X
= λ̇

X

‖X‖
, (6)
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where λ̇ is the non-negative consistency parameter. The model is then completed by the
classical Kuhn-Tucker conditions:

λ̇ ≥ 0, F ≤ 0, λ̇F = 0 . (7)

3 Souza-Auricchio model: time-discrete formulation

We now focus on the algorithmic treatment of the continuum model equations in an
explicit framework. In the following we use subscript n for the variables at previous time
tn and we drop subscript n+1 for the variables at current time tn+1. We make use of a
forward Euler scheme foor the evolution equation (6), as follow:

etr = etr
n +∆λ

Xn

‖Xn‖
, (8)

where ∆λ =
∫ tn+1

tn
λ̇ dt. The proposed algorithm is provided in Table 1. An elastic

predictor/inelastic corrector scheme is adopted to compute the variables at the current
time tn+1 based on the quantities at the previous time tn: if the trial state is admissible,
the step is elastic; otherwise, the step is inelastic and the transformation strain must
be updated through the time-discrete evolution equation (8). We compute the inelastic
increment (referred to as the first phase transformation or PT1 step in Table 1) to evaluate
the consistency parameter ∆λ. We derive the needed relation for ∆λ by enforcing the
consistency condition F (∆λ) = 0. The consistency parameter ∆λ = ∆λPT1 is explicitly
derived by applying a single iteration of the Newton-Raphson scheme to the consistency
condition, as follows:

∆λPT1 = ∆λ(0) + δ∆λ(0) = ∆λ(0) −

(
dF

d∆λ

∣∣∣∣
(0)
)−1

F (0) , (9)

where we consider: 


∆λ(0) = ∆λTR = 0

F (0) = FTR

dF

d∆λ

∣∣∣∣
(0)

=
dF

d∆λ

∣∣∣∣
TR

. (10)

The derivative dF/d∆λ is therefore computed as:

dF

d∆λ

∣∣∣∣
TR

=
XTR

‖XTR‖
:

{
−(2G+ h)I−

τM

‖etr
TR‖

[
I−

etr
TR ⊗ etr

TR

‖etr
TR‖

]}
:

XTR

‖XTR‖
, (11)

where I is the fourth order identity tensor. Then, we can derive the transformation strain,
as follows:

etr
PT1 = etr

n +∆λPT1

XTR

‖XTR‖
. (12)
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After the inelastic step is performed, a check is made on the transformation strain con-
straint. If the constraint is not satisfied, a further inelastic step (referred to as the second
phase transformation or PT2 step in Table 1) is performed, where the transformation
strain etr = etr

PT2 is calculated starting from the PT1 step solution, as follow:

etr
PT2 = εL

etr
PT1

‖etr
PT1‖

. (13)

Such an approximation allows for a simplified calculation and reduced number of func-
tional evaluations for each time increment, but small increments are required. From Eqs
(5) and (6) we obtain:

X = RY

etr − etr
n

‖etr − etr
n ‖

. (14)

Combining Eqs (13), (14) and (3)2, we obtain the following relation:

RY

etr
PT2 − etr

n

‖etr
PT2 − etr

n ‖
− 2G

(
e− etr

PT2

)
+ τM

etr
PT2

‖etr
PT2‖

+ hetr
PT2 + γPT2

etr
PT2

‖etr
PT2‖

= 0 , (15)

from which we derive the saturation coefficient γ = γPT2:

γPT2 =

(
−RY

etr
PT2 − etr

n

‖etr
PT2 − etr

n ‖
+ 2G

(
e− etr

PT2

)
− τM − hetr

PT2

)
:

etr
PT2

‖etr
PT2‖

. (16)

where ‖etr − etr
n ‖ is the regularized expression. The proposed algorithm is simple to

implement. Compared to [6], our procedure does not include a convergence criterion
to determine ∆λPT1, thus making it truly explicit, compatible with the global explicit
scheme, and allowing a low computational cost per increment. Similarly, the computation
of γPT2 is straightforward, contrary to the method of [6], which proposed a linearization
and then an iterative procedure for the PT2 step. Finally, unlike the implicit scheme, the
explicit algorithm does not require the often expensive computation of a tangent matrix,
consistent or otherwise.

4 Numerical simulations

We now test the performance of the proposed algorithm, which is implemented within
Abaqus/Explicit through a VUMAT user subroutine. A comparison with the implicit
scheme, implemented within Abaqus/Standard through a UMAT user subroutine, is pro-
vided [8]. In particular, we use the package AceGen of the symbolic software Mathematica
to generate the numerical subroutines for Abaqus. All bodies considered are discretized
into first-order hexahedral elements with full and reduced integration, respectively, for the
implicit and explicit method. Since the explicit method is here used to solve quasi-static
problems, we employ the method of mass scaling to reduce the simulation runtime. To
avoid inflation of the mass and oscillations during the quasi-static solution, we carefully
check that the kinetic energy was below 5-10% of the internal energy. In all numerical
studies we adopt the material parameters reported in Table 2.

5

355



G. Scalet, E. Boatti, M. Ferraro, V. Mercuri, D.J. Hartl and F. Auricchio

Table 1: Explicit algorithm proposed for the Souza-Auricchio model.

Given quantities: ε, T, etr
n ,∆λn, γn

Compute trial state:

∆λTR = 0; etr
TR = etr

n ; γTR = 0

sTR = 2G (e− etr
TR)

XTR = sTR − τM
etr
TR

‖etr
TR‖

− hetr
TR

FTR = ‖XTR‖ −RY

IF FTR ≤ tol THEN

Elastic step:

∆λ = ∆λTR; e
tr = etr

TR; γ = γTR; s = sTR; X = XTR

ELSE

Inelastic step:

Compute ∆λPT1 via Eq. (9)

etr
PT1 = etr

n +∆λPT1

XTR

‖XTR‖

IF ‖etr
PT1‖ ≤ εL THEN

∆λ = ∆λPT1; e
tr = etr

PT1; γ = γTR

s = 2G (e− etr)

X = s− τM
etr

‖etr‖
− hetr

ELSE

Saturation step:

etr = etr
PT2 = εL

etr
PT1

‖etr
PT1‖

Compute γ = γPT2 via Eq. (16)
s = 2G (e− etr)

X = s− (τM + γ)
etr

‖etr‖
− hetr

END IF

END IF

6

356



G. Scalet, E. Boatti, M. Ferraro, V. Mercuri, D.J. Hartl and F. Auricchio

Table 2: Adopted material parameters for the Souza-Auricchio model (taken from [10]).

Description Symbol Value Unit
Young’s modulus E 53,000 MPa
Poisson’s ratio ν 0.33 -

Stress-strain slope during transformation h 1,000 MPa
Maximum axial transformation strain εL 0.056 -

Reference temperature T ∗ 243 K
Term related to τM = β(T − T ∗)+ β 6.1 MPa/K

Elastic domain radius in the deviatoric stress space RY 100 MPa

4.1 Actuation of a micro-gripper

The adopted geometry for the SMA micro-gripper is shown in Figure 1 which reports
the adopted reference mesh, consisting of 14, 376 elements and 24, 417 nodes.

Figure 1: SMA micro-gripper: mesh and initial geometry.

The micro-gripper operates via a complex antagonistic actuation cycle, as shown in
Figure 2. The gripper is divided in two actuation units: the upper part, actually devoted
to the action of gripping, is referred to as the rotational stage; the lower part, which
stretches and contracts, is referred to as the linear stage. The four small quadrilateral
features in Figure 2 are referred to as tabs. During the full working cycle, the tabs of
the linear stage are fully constrained (steps A-C of Figure 2). At the beginning of the
actuation cycle, the gripper is at low temperature. In step A, a displacement v of 2.5
mm is applied to the region connecting the two stages, and the linear stage is stretched.
During step B, the tabs of the rotational stage are fully constrained and the linear stage
is heated; it thus tends to recover its original configuration and contracts (the direction is
indicated by the black arrow in step B). The contraction of the linear stage combined with
the full constraint on the four tabs produces the gripping action (clockwise rotation of
the rotational part in step B). Finally, during step C, the linear stage is cooled down, and
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Figure 2: SMA micro-gripper: (above) working principle; (below) trends of the temperature T over
time. T linear is the temperature history for the linear stage, while T rot is the temperature history for
the rotational stage.

the rotational stage is heated; it thus recovers its initial shape, reaching the open position
(anti-clockwise rotation in step C). As the rotational stage moves, it forces the linear
stage to stretch (the direction is indicated by the grey arrow in step C). Figure 3 shows
the deformed state of the micro-gripper and contour plots of the transformation strain
norm at steps B and C for both implicit and explicit analyses. Since a different element
integration type has been used in the implicit and explicit analyses, it can be noted that
some difference exists between the two deformed shapes at state B; moreover, some very
small concentrations of transformation strain are observable in the highly curved regions
of the micro-gripper in the case of the implicit analysis results.

In the explicit analysis, the stable time increment evaluated by Abaqus at the beginning
of the analysis is 9.64·10−9 s. Mass scaling is here applied in such a way that the minimum
stable time increment (and the used time increment) can be set to 10−8 s. During the
implicit analysis, the time increment is set to 10−2 s.

8
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Figure 3: SMA micro-gripper: deformed shape of the gripper for implicit and explicit analyses at steps
B and C of Figure 2. The contour plot of the transformation strain norm is displayed.

4.2 Pseudoelastic SMA cable

We analyze a structural cable model consisting of SMA wire assemblies as used in the
development of a vibration absorber. The model considers a three layer straight cable
segment having a total diameter of 30 mm. The relatively simple cable is composed by
a central straight wire (core) and two layers helically wrapped around the core. The
adopted discretization is reported in Figure 4 and consists of 323, 158 solid brick elements
and 416, 357 nodes.

Figure 4: SMA cable: adopted mesh.

Following [11], our goal is to describe a hysteretic load-displacement cycle in the trans-
verse direction Y preceded by a pretension phase along the longitudinal direction Z (Figure
5a-b). Contacts between the many wires exist and must be taken into account. To do
so, a penalty formulation with Coulomb model is employed using a friction coefficient
equal to 0.5. In this complex contact, the implicit iterative solver encounters a highly
non-linear response and it attempts increasingly small time increments to solve the equi-
librium equations, without achieving equilibrium and convergence. Therefore, a natural
alternative to solve such problems is via an explicit approach. The stable time increment,
evaluated by Abaqus at the beginning of the analysis, is 1.12 · 10−8 s. Mass scaling is
applied considering a fixed time increment of 10−7 s. The kinetic energy, despite some
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oscillations, remains negligible, validating the appropriateness of the mass scaling for a
hypothesis of quasi-static conditions. Figure 5c presents the hysteretic load displacement

(a)

T = 300 K

(b) (c)

Figure 5: SMA cable: (a) applied boundary conditions; (b) loading history in terms of displacements.
A total of 0.2364336 time units are used; (c) transverse force-displacement diagram.

relationship evaluated at the free end of the cable. A comparison with the curve obtained
for an elastic cable with the same elastic properties is also provided. The responses are
clearly different and evidence the hysteretic area obtained by using the SMA cable, which
correspond to a gain in term of dissipatiton. Figure 6 shows the contour plot of the Von
Mises stress evaluated at the mid section of the cable during pretension (a), maximum dis-
placement (b), and minimum displacement (c) loading stages. Figure 7 shows the contour
plot of the norm of the transformation strain at instant B of Figure 5. The figure clearly
highlights that phase transformation is taking place: the transformation is complete close
to the section where the load is applied and it is partial in most part of the core of the
cable.

5 CONCLUSIONS

The present paper has proposed a novel implementation of the three-dimensional phe-
nomenological Souza-Auricchio model using an explicit framework. A comparison of out-
put results with the implicit integration scheme has also been made whenever possible.
The explicit implementation has successfully simulated the quasi-static response of the
considered devices. Particularly, the analysis of SMA cable has demonstrated the effective-
ness of the explicit algorithm to solve complex problems involving widespread nonlinear
contact. The results show the potential of the proposed computational framework to pro-
vide a virtual engineering tool for design, simulation, and optimization of SMA devices.
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Figure 6: SMA cable: contour plot of the Von Mises stress at istants A, B, and C of Figure 5.

Figure 7: SMA cable: contour plot of the transformation strain norm at instant B of Figure 5.

Additionally, since SMA modeling techniques are continuously evolving, understanding
the nature, advantages, and disadvantages of both implicit and explicit methods is helpful
in choosing the right algorithm for the problem under investigation. Future developments
will use the proposed explicit algorithm for high-speed dynamic simulations which are
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widely exploited in SMA-based seismic or impact applications.
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Abstract. In numerical analysis the failure of engineering materials is controlled through
specifying yield envelopes (or surfaces) that bound the allowable stress in the material.
Simple examples include the prismatic von Mises (circle) and Tresca (hexagon) yield
surfaces. However, each surface is distinct and requires a specific equation describing
the shape of the surface to be formulated in each case. These equations impact on the
numerical implementation (specifically relating to stress integration) of the models and
therefore a separate algorithm must be constructed for each model. Recently a framework
was proposed that allows any isotropic yield surface to be represented by a NURBS surface
and the constitutive model formulated using the name numerical algorithm.

This paper presents, for the first time, an extension to this framework to allow both
hardening (expansion/contraction of the surfaces) and a non-associated plastic flow rule.
As with previous work on NURBS plasticity, the constitutive framework is combined with
an implicit backward-Euler-type stress integration algorithm. The numerical performance
of the algorithm is demonstrated using both material point investigations and boundary
value simulations.

1 INTRODUCTION

Robust and efficient constitutive models are at the heart of every boundary value stress
analysis problem, providing the essential link between stress and strain for the material
that they represent. Elasto-plasticity is one class of inelastic material behaviour that
allows these models to predict yield and capture post-yield behaviour. Central to these
models is the concept of a yield surface that provides the boundary between elastic (inside
the surface) and elasto-plastic behaviour (on the surface). However, such models are typ-
ically developed in rate form, providing a rate relationship between stress and stain that
conflicts with an incremental boundary value solver, such as the finite element method.
These boundary value solvers work with finite steps of stress and strain and therefore the
rate-form constitutive relationships must be integrated. Typically the form of the yield
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surface impacts on the stress integration algorithm with specific details change within
the numerics (and code) for each implemented yield surface. This issue was overcome by
the paper of Coombs et al. [1] for yield surfaces that are fixed in stress space, known as
perfect plasticity. It allowed any smooth isotropic yield surface to be modelled without
changing the numerical algorithm or underlying code by using non-uniform rational basis
spline (NURBS) surfaces to represent the yield envelope. This paper extends that work
to allow for isotropic expansion/contraction of the yield surface and for the evolution of
plastic strains to be decoupled from the normal to the yield surface (that is, allowing a
non-associated flow rule).

Here we follow the approach of Coombs et al. [1] and adopt an implicit stress integra-
tion algorithm coupled with a plasticity formulation that expresses the yield envelope as
a NURBS surface. The key extensions that we allow here are for: (i) the yield surface to
expand (hardening) or contract (softening) under plastic straining and (ii) decoupling the
flow direction from the spatial gradient of the surface. This is achieved by allowing the
position of the control points to be a function of inelastic straining and for the flow direc-
tion to be approximated by a separate NURBS basis. This extends the NURBS plasticity
framework to include materials where the yield stress is a function of the history of plas-
tic straining that the body has experienced and to those materials where an associated
flow rule is not appropriate (such as geotechnical materials where an associated flow rule
overestimates the volumetric dilation).

The layout of the paper is as follows, Section 2 provides the theoretical framework
for hardening non-associated flow NURBS-based plasticity. Section 3 briefly explains the
numerical implementation of the model and Section 4 provides some numerical examples.
Finally, conclusions are drawn in Section 5.

2 NURBS PLASTICITY

This section provides the essential equations required to define an isotropically harden-
ing NURBS surface and include it within a non-associated flow plasticity framework. For
more detailed information on the construction of NURBS-based surfaces see the work of
Piegl and Wayne [7] and the paper of Coombs et al. [1] for the particular case of perfect
plasticity yield envelopes.

A general NURBS surface can be expressed in Haigh-Westergaard (H-W) coordinates
as

Sk(η, ζ) =
ξ√
3




1
1
1


+

√
2

3
ρ




sin(θ + 2π/3)
sin(θ)
sin(θ − 2π/3)


 , (1)

where the hydrostatic position ξ, radial coordinate ρ and Lode angle θ are dependent on
the values at the control points and the local position on the NURBS surface, η and ζ

ξ(η, ζ) =
n∑

i=0

m∑
j=0

Ri,j(η, ζ)Ξi,j, ρ(η, ζ) =
n∑

i=0

m∑
j=0

Ri,j(η, ζ)Pi,j (2)
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and

θ(η, ζ) =
n∑

i=0

m∑
j=0

Ri,j(η, ζ)Θi,j. (3)

Ξi,j, Pi,j and Θi,j are the control point values of the Haigh-Westergaard coordinates. The
NURBS basis functions are given by

Ri,j(ξ, η) =
Ni,p(ξ)Nj,q(η)wi,j

n∑
k=0

m∑
l=0

Nk,p(ξ)Nl,q(η)wk,l

. (4)

Ni,p and Nj,q are the pth and qth-degree B-spline basis functions (see [2, 7], amongst
others), η and ζ are the local positions within the two Knot vectors that describe the
surface and wi,j are the weights associated with the control points. In the work of [1] the
control points were defined in Cartesian coordinates, however in this paper we change to
using H-W coordinates to allow for the extension to non-associated flow.

2.1 NURBS-based yield envelopes

Starting from the equation for a NURBS surface (1), a NURBS-based yield envelope
[1] can be expressed as

f =
(
σi − Si(η, ζ, ε

p
i )
)
(S,σ )i = 0, (5)

where (S,σ )i is the surface outward normal (that is, the partial derivative of S with respect
to stress), εpi is the principal plastic strain state and σi the principal stress state. The
yield surface separates stress space into two regions: an elastic region where f < 0 and
an inadmissible region where f > 0. The boundary between these two regions (f = 0)
is used to define material failure and points on this surface will undergo elasto-plastic
deformation. The outward normal to the yield envelope can be obtained through the
cross product of the two local derivatives

(S,σ )i = (S,ζ ×S,η )i = εijk(S,ζ )j(S,η )k, (6)

where εijk is the Levi-Civita tensor
1. S,η and S,ζ are the derivatives of the NURBS surface

with respect to the local coordinates η or ζ.

2.2 Non-associated flow

In the case of non-associated flow the evolution of plastic strains is decoupled from the
spatial gradient of the yield envelope. The plastic strains evolve according to

ε̇pi = γ̇(g,σ )i, (7)

1εijk = 0 if i = j, j = k or k = i, εijk = 1 for even permutations of i, j and k and εijk = −1 for odd
permutations of i, j and k.
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where γ̇ is the scalar plastic multiplier (or consistency parameter) and (g,σ )i is the gradient
of the plastic potential surface. This plastic multiplier must satisfy the Kuhn-Tucker-
Karush consistency conditions

f(σi, ε
p
i ) ≤ 0, γ̇ ≥ 0 and f(σi, ε

p
i )γ̇ = 0. (8)

These conditions enforce that the material must either be on the yield surface undergoing
elasto-plastic deformation (f = 0 and γ̇ ≥ 0) or inside the yield surface with purely elastic
behaviour (f ≤ 0 and γ̇ = 0).

In this NURBS plasticity approach the gradient of the plastic potential surface is given
by

(g,σ )i = λg





1
1
1



+

√
2





sin(θg + 2π/3)
sin(θg)
sin(θg − 2π/3)



 , (9)

where λg is the volumetric to devitaoric ratio of the plastic flow direction and θg is the
Lode angle of the plastic flow direction. λg and θg are dependent on the corresponding
control point values, Λg

i,j and Θg
i,j, and the local position on the NURBS surface through

λg(η, ζ) =
n∑

i=0

m∑
j=0

Rg
i,j(η, ζ)Λ

g
i,j and θg(η, ζ) =

n∑
i=0

m∑
j=0

Rg
i,j(η, ζ)Θ

g
i,j. (10)

The NURBS basis functions Rg
i,j(η, ζ) are calculated in the same way as (4).

2.3 Isotropic hardening

Introducing hardening into the NURBS yield surfaces results in a yield surface that is
dependent on the level of inelastic straining at a material point. This is included within
the NURBS plasticity framework by allowing the control points to evolve with plastic
straining, that is

Ξ = h(εpi )Ξ
0 and P = h(εpi )P

0 (11)

where the superscript (·)0 denotes the original control point coordinates and h(εpi ) controls
the evolution of the control points. For linear isotropic hardening we can assume

h(εpi ) = 1 + α ||
∫ t

0

ε̇pi dt ||, (12)

where α is a material constant controlling the hardening (α > 0) or softening (α < 0)
rate and perfect plasticity is obtained with α = 0. We can approximate the isotropic
hardening function to provide an incremental function of the form

h(∆εpi ) = hn + α||∆εpi ||, (13)

where hn = h
(
(εpn)i

)
is the value of the hardening function from the previously converged

state and it is assumed that initially, h0 = 1.
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2.4 Stress integration

In this work we use an implicit elastic predictor, plastic corrector scheme [11], where
the elastic trial stress is given by

σt
i = σn

i +∆σi, where ∆σi = De
ij∆εj and σn

i = De
ij(ε

e
n)j. (14)

(εen)j and σn
i are the elastic strain and stress state from the previous load (or time) step

in the global solution algorithm, ∆εi is the strain increment associated with the global
boundary value displacement and De

ij contains the principal components of the linear
elastic stiffness matrix.

If the trial elastic stress state exceeds the yield envelope (f > 0) then it must be
corrected back onto the yield surface using a plastic stress increment, that is

σr
i = σt

i −∆σp
i , where ∆σp

i = De
ij∆εpj , (15)

σr
i is the returned stress state on the yield surface and ∆εpj is the plastic strain increment

obtained from the incremental form of (7). Once this correction has been applied the
updated elastic strain can be obtained from

(εen+1)i = (εen)i +∆εi −∆εpi , (16)

and the updated hardening parameter, h, from (13).

3 NUMERICAL IMPLEMENTATION

Consistent with the perfect plasticity implementation of Coombs et al. [1], here we use
a coarse initial subdivision algorithm to provide the initial starting point for a backward
Euler (bE) implicit stress integration process. This is to provide an initial estimate for the
local positions within the Knot vectors, η and ζ in (5) that act as the primary unknowns
in the closest point projection (CPP) problem (in addition to the updated hardening
parameter). However, despite this process being referred to as a CPP, the return stress
is not generally the closest point geometrically in standard stress space.

In this paper we make use of energy-mapped space [3] to convert this CPP minimisation
into a problem of finding the point on the yield envelope that the normal to the plastic
potential surface passes through when intersecting with a trial point outside of the surface.
Once the closest point solution in energy-mapped stress space has been found, the solution
can be transformed back to conventional stress space. For a NURBS yield surface we
only need to map the control point coordinates, (Ξ, P,Θ), and flow directions, (g,σ )i, into
energy-mapped space, the rest of the NURBS information remains unchanged.

As with the algorithm for associated flow perfect plasticity, the stress return path for
bE procedure described in this paper starts and remains in the yield envelope and thereby
satisfies the consistency conditions not only at the final state but also during the stress
updating algorithm.
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4 NUMERICAL ANALYSIS

This section presents both material point and boundary value simulations for the
isotropically hardening/softening von Mises plasticity model represented and integrated
in the NURBS plasticity framework. The yield surface can be expressed as

f = ρ− hρy = 0, (17)

where the deviatoric stress is ρ =
√
2J2 with J2 =

1
2
sijsji and sij = σij − 1

3
σkkδij, ρy is the

yield stress of the material and defines the radius of the von Mises cylinder.

4.1 Material point investigations

The stress integration errors for a von Mises yield surface with E = 200Pa, ν = 0.2,
ρy = 1Pa and α = 10 (hardening) using the NURBS integration procedure are shown in
Figure 1. The stress state is initially located on the shear meridian in the σzz > σyy > σxx

sextant of stress space. This point is then subjected to a stress increment that will take
the trial stress state outside of the yield envelope into one of the three sextants shown in
Figure 1. The space of trial states was explored for ρt/ρy ∈ [1, 6] and the errors associated
with the trial state shown on the right of Figure 1. The normalised error measure used is

error =
||{σNURBS} − {σe}||

||σe||
, (18)

where {σNURBS} is the stress return location associated with the NURBS model and {σe}
is the exact stress return [5].

Although errors of over 20% are present in the model, exactly the same level of errors are
observed in the von Mises yield surface integrated with a conventional bE stress integration
procedure. As expected with any predictor-correction stress integration algorithm, the
error increases as the tangential proportion of the stress increment increases. The errors
are almost identical to those reported by Coombs et al. [1] for the perfect plasticity yield
surface.

Figure 2 (i) shows the converged hardening parameter value for the same range of trial
stress states as analysed in Figure 1. As expected, the value of the hardening parameter is
only dependent on the magnitude of the plastic strain increment, or equivalently, the radial
distance that the trial state is from the yield surface. Figure 2 (ii) gives the normalised
error in the hardening parameter, the distribution of the error is similar to the stress
errors shown in Figure 1 as the error in the stress increment will be proportional to the
error in the return stress.

4.2 Plane strain double notched plate

Here we present the analysis of the plane strain stretching of a double-notched plate.
The problem was initially presented by Nagtegaal et al. [6] for small strain plasticity
to demonstrate the spurious response of standard finite-elements and was subsequently
re-analysed in a number of papers, including [1, 4, 8, 9]. The plate had a Young’s modulus
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Figure 1: Stress return error analysis for an isotropically hardening von Mises NURBS yield envelope.

of 206.9GPa, Poisson’s ratio of 0.29 and was modelled using an isotropically hardening
von Mises yield surface with associated flow with an initial yield stress of ρy = 0.45GPa.

Nagtegaal et al. [6] provided the small strain analytical limit load for the case of
perfect plasticity (α = 0), controlled by the stress at the notch σlim ≈ 2.97ρy. The
specimen had a total height and width of 30mm and 10mm respectively, with a 2mm
unit linking ligament at mid height. For this geometry the small strain perfect plasticity
limit load is f lim ≈ 2.673kN. Due to symmetry, only one quarter of the specimen was
initially discretised using 75 plane strain eight-noded elements with reduced four-point
integration, as shown in Figure 3. A displacement of 0.2mm was applied in 20 equal
displacement-controlled increments.

Figure 3 shows three different model responses for two finite element discretisations.
The three cases are where α = 1 (hardening or expansion of the yield surface, black
dashed line), α = 0 (perfect plasticity, fine black line) and α = −1 (softening or contrac-
tion of the yield surface, thick grey line). As the mesh is refined the perfect plasticity
response approaches the analytical limit load. As expected the hardening and soften-
ing responses predict force versus displacement responses above and below the perfect
plasticity response, respectively.

The global normalised residual out of balance force

f̄ oobf =
||{f ext} − {f int}||

||{f ext}||
, (19)
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Figure 2: (i) stress return hardening parameter values and (ii) errors for an isotropically hardening von
Mises NURBS yield envelope.

is given in Table 1 for each of the global Newton iterations for four loadsteps of the 75
element simulation with a softening yield surface with α = −1. The tolerance on the
residual was set to 1 × 10−8. All of the loadsteps converged in five iterations, or less,
with the final iterations within each loadstep approaching a quadratic convergence rate,
demonstrating the correct implementation of the algorithmic consistent tangent [10] for
the constitutive model, including the case of material softening. For this case by the end
of the simulation the minimum size of the yield surface had reduced to 78% of the original.

Table 1: Plane strain notched plate convergence for the NURBS implementation of the von Mises yield
surface with linear isotropic softening (α = −1) with 75 elements (1× 1mm element size).

loadstep
NR iteration 2 3 10 20

1 8.953×10−2 2.502×10−1 2.392×10−2 1.553×10−3

2 6.891×10−3 6.605×10−2 9.518×10−4 8.705×10−5

3 4.050×10−5 2.205×10−3 1.278×10−6 8.828×10−9

4 1.435×10−9 6.933×10−6 1.270×10−12 -
5 - 6.474×10−11 - -
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Figure 3: Double notched plate with NURBS-based von Mises plasticity with hardening, perfect plas-
ticity and softening responses.

5 CONCLUSIONS

This paper extends the NURBS plasticity framework of Coombs et al. [1] to allow: (i)
the yield surface to expand (hardening) or contract (softening) under plastic straining and
(ii) decoupling the flow direction from the spatial gradient of the surface. This is achieved
by allowing the position of the control points to be a function of inelastic straining and
for the flow direction to be approximated by a separate NURBS basis. The formulation
has been validated at both a material point level and in bounadry value simulations.
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Abstract. In this work an anisotropic material model at finite strains with nonlinear
mixed (isotropic and kinematic) hardening is used for the identification of the hardening
parameters of sheet steel. The algorithmic system is thereby reduced to a single equation
return mapping. For the identification, a cruciform specimen is loaded biaxially in an
alternating shear test to provoke the kinematic hardening behavior and prevent the sheet
from buckling. The material parameters are found through an optimization strategy
by comparing the deformation field from the experiment to that from a finite element
(FE) simulation. The resulting cost function is minimized by means of a gradient-based
method.

1 INTRODUCTION

Minimizing production costs and overall weight of products is a major goal for manu-
facturers in the 21st century. In the context of sheet metals an ongoing development is
the incorporation of functional elements through bulk forming operations by means of the
technology of sheet-bulk metal forming [1]. Here, both sheet and bulk forming is applied
to thin sheets to generate complex shape elements and reduce waste.

The accurate rendering of forming processes by the finite element method (FEM) re-
quires suitable material models and proper identification of therein specified parameters.
This can be a challenging task as the ever-increasing complexity of the constitutive models
demand for appropriate identification methods by simultaneously decreasing experimental
effort.

In this contribution a material law capable of describing elasto-plastic material behavior
utilizing a Hill-type yield function in combination with a mixed hardening law is used
to identify parameters for the dual-phase steel DP600.
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2 MATERIAL MODEL

2.1 Notation

In this work, scalar quantities are represented by lower case letters a, b, . . . . Boldfaced
characters A,B, . . . denote second-order tensors; in particular I denotes the second-order
identity tensor A · I = A. Fourth- and sixth-order tensors are defined by calligraphic
symbols A,B, . . . . The dyadic product between two second-order tensors yield a tensor
of fourth-order C = A⊗B and can be expressed in index notation as Cijkl = AijBkl. The
fourth-order tensor C is a linear map from A to B which is given as B = C : A in this
work (accordingly for sixth-order tensors). The fourth-order symmetric identity tensor is
defined through the Kronecker delta as Isym = 1

2
(δikδjl + δjkδil) and has the property that

it projects a symmetric tensor on itself Asym = Isym : Asym for any symmetric second-
order tensor Asym = 1

2
(A+AT). The Euclidean norm of a second-order tensor is defined

as ||A|| =
√
A : A where the double dot product reads a = A : B = AijBij.

2.2 Model formulation

The formulation of large strain plasticity is based on the algorithm presented by Miehe

and Lambrecht [2]. It consists of the calculation of stresses and elasticity moduli with
regard to a Seth-Hill strain tensor. For the application to elasto-plasticity, the algorithm
can be interpreted as a pre- and postprecessing of the stresses and elasto-plastic material
tangent originating from a “small strain” algorithm based on the Hencky (logarithmic)
strain tensor

E0 =
1

2
lnC , (1)

where C = F TF denotes the right Cauchy-Green tensor, as shown by Miehe, Apel,
et al. [3]. Referring to T as the work-conjugate stress measure to the logarithmic strain
E0 and Cep as the consistent material tangent, the transformation to the Lagrangian stress
and module is performed by

S = T : P and Cep
L = PT : Cep : P + T : L (2)

via the fourth and sixth-order projection tensors P and L that are defined as

P = 2
∂E0

∂C
and L = 4

∂2E0

∂C∂C
. (3)

The first and second derivative of the logarithmic strain tensor can be obtained by usage of
a spectral decomposition of the right Cauchy-Green tensor and subsequent differentiation
of the eigenvalues and -vectors w.r.t. C, as shown in [2].

The model regards nonlinear isotropic and kinematic hardening as well as Hill-type
anisotropic plasticity. The yield function therefore reads

Φ = ||ξ||
H
−

√
2

3
σY (4)

2
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where the tensor norm ||ξ||
H
is given by

||ξ||H =
����ξT : H : ξ

���� (5)

with the relative stress tensor ξ being defined by the stress tensor T and the backstress
tensor B

ξ = T −B . (6)

The anisotropic plasticity is modeled by the fourth-order Hill tensor H which shows
minor (as well as major) symmetry properties and can therefore be represented in a
contracted notation. Besides the popular Voigt notation there are others that show
certain advantages over the former. The main disadvantages of Voigt’s notation are
the different representation of (symmetric) second-order tensors for stress- and strain-like
quantities (coefficient of 2 for shear strain) and that certain tensor operations will not
be transferred to the reduced notation. E.g. the scalar product between two symmetric
second-order tensors or the tensor product between a fourth- and a second-order tensor do
not yield the same result in Voigt notation, A : B �= VA · VB and A : B �= VA· VB, but
using the representation according to Mandel, A : B = MA · MB and A : B = MA · MB.
With the choice of Mandel notation the Hill tensor can be displayed as

MH =
1

3




a2 + a3 −a3 −a2 0 0 0
−a3 a1 + a3 −a1 0 0 0
−a2 −a1 a2 + a1 0 0 0
0 0 0 2 · 3/2 a6 0 0
0 0 0 0 2 · 3/2 a5 0
0 0 0 0 0 2 · 3/2 a4




(7)

with the anisotropy parameters ai which are based on the Hill parameters hi

a1 =
1

h2
2

+
1

h2
3

−
1

h2
1

a2 =
1

h2
3

+
1

h2
1

−
1

h2
2

a3 =
1

h2
1

+
1

h2
2

−
1

h2
3

a4 =
1

h2
6

a5 =
1

h2
5

a6 =
1

h2
4

.

(8)

Remark The tensor P has the property P : I = 0 of a deviatoric projection tensor [3]
and specifically for hi = 1 reduces to the deviatoric identity tensor Idev = Isym − 1

3
I ⊗ I

which yields the classical J2-plasticity for the tensor norm,
�

3/2 ||ξ||
H|hi=1

=
�

3 J2(ξ) =�
3/2 ||dev(ξ)|| .
Considering isotropic hardening, the yield stress in equation (4) is represented by the

exponential law according to Hockett and Sherby [4],

σY(ε̄
pl) = σ∞ + [σ0 − σ∞] exp

�
a ε̄pl

b
�
, (9)

where σ0 and σ∞ are stress-like quantities and a and b describe the curvature of the yield
stress. As the algorithm is not limited to this formulation, other well known hardening
laws like the ones from Ludwik, Voce or Swift could be used as well.
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The shift of the yield surface in stress space is considered by Armstrong and Fred-

erick [5] nonlinear kinematic hardening through the evolution of the backstress by

Ḃ = γ̇ [k1N − k2B] , (10)

with the material parameter k1 representing the kinematic hardening modulus and k2 the
rate of saturation. For usage in a finite element code the evolution law is discretized in
time by an implicit Euler scheme, resulting in

Bn+1 =
1

∆γn+1 + k2
[k1Nn+1 +∆γn+1Bn] . (11)

Declaring the flow rule to be of an associative type, the flow vector reads N = ∂Φ/∂T and
the evolution of the plastic strain tensor is defined through

Ė
pl
= γ̇N , resp. E

pl
n+1 = Epl

n +∆γn+1Nn+1 (12)

2.3 Single equation return-mapping

Using a radial return-mapping algorithm (see e.g. [6]) and starting off with the trial
stress as

�T n+1 = Cel : �Eel

n+1 = Cel :
�
En+1 −Epl

n

�
, (13)

where �[·] indicates a trial value, the updated stress then reads

T n+1 = �T n+1 −∆γn+1 Cel : Nn+1 . (14)

Combining equation (14) with equation (11) into the relative stress gives

ξn+1 = T n+1 −Bn+1

= �ξn+1 −
∆γn+1����ξn+1

����
H

Bn+1 : H : ξn+1 ,
(15)

where the definitions for the stress tensor �ξn+1 and the fourth-order tensor Bn+1,

�ξn+1 = �T n+1 −
1

1 + k2 ∆γn+1

Bn and Bn+1 = Cel +
k1

1 + k2 ∆γn+1

I sym (16)

are introduced. Since in the converged step Φ = 0 and thus ||ξ||H =
�

2/3 σY holds,
equation (15) can be rewritten as

ξn+1 =


I sym +

∆γn+1�
2
3
σY

Bn+1 : H



−1

: �ξn+1 = [An+1]
−1 : �ξn+1 , (17)

hence being solely a function of the unknown plastic multiplier ∆γ. By substitution
into the definition of the yield function (equation (4)) a scalar equation with only one
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unknown is derived. To solve the (nonlinear) equation for ∆γ a Newton-Raphson

scheme is applied, giving

∆γk+1 = ∆γk −

�
∂Φ

∂∆γ

����
∆γk

�−1

Φk , (18)

with k the iteration counter. The derivative of the yield function w.r.t. the plastic mul-
tiplier can be displayed after straightforward usage of the chain rule as

∂Φ

∂∆γ
= Nn+1 : [An+1]

−1 :

�
k2κ

2
n+1Bn −

��
1�

2/3 σY

−
ηn+1

σY

∂σY

∂∆γ

�
Bn+1

− ηn+1k1k2κ
2
n+1 I

sym

�
: P : ξn+1

�
−

�
2

3

∂σY

∂∆γ
,

(19)

with the auxiliary variables

κ =
1

1 + k2 ∆γ
and η =

∆γ�
2/3 σY

. (20)

2.4 Consistent elasto-plastic tangent modulus

In the algorithmic implementation, the related tangent modulus plays the major role
for achieving (quadratic) convergence in the Newton-Raphson iteration for the global
equilibrium. It enters the calculation of the overall stiffness and needs to be consistent with
the algorithm for stress calculation, hence the name of a consistent elasto-plastic tangent
modulus. To develop the algorithmic tangent the system of equations (equations (4), (11),
(12), (14) and (15)) is linearized, giving

dξ = dT − dB

dT = Cel :
�
dE − dEpl

�

dB = κ
�
[k1N − k2B] d∆γ + k1 ∆γ ∂N

∂ξ
: dξ

�

dEpl = ∆γ ∂N
∂ξ

: dξ +N d∆γ

dΦ = 1
||ξ||

H

H : ξ : dξ −
�

2
3
∂σY

∂∆γ
d∆γ = 0 .




(21)

Solving the linearized system for dT / dE leads to the desired tangent operator

Cep =
dT

dE
= C1 :

��
Cel

�−1
: C1 + C2

�−1

(22)

with the fourth-order auxiliary tensors

C1 = −

�
2

3
k1κ∆γ

∂σY

∂∆γ

∂N

∂ξ
+ k2κB ⊗N − k1κN ⊗N −

�
2

3

∂σY

∂∆γ
I sym (23)

C2 = −

�
2

3

∂σY

∂∆γ
∆γ

∂N

∂ξ
−N ⊗N . (24)
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It should be noted that the consistent tangent modulus is calculated at the end of the
stress update, hence all quantities are evaluated at the updated state and the index [·]n+1

has been suppressed to improve readability.
The continuum tangent modulus is defined by the rate relation

Ṫ = Cep
c : Ė = Cel :

[
Ė − Ė

pl
]
, (25)

where [·]c denotes the continuum operator. Under usage of the consistency condition
Φ̇ = 0 an expression for the rate of the backstress can be derived as

Ḃ =
[k1N − k2B] : N

2
3

∂σY

∂ ε̄pl
+ [k1N − k2B] : N

Ṫ , (26)

which - inserted back into equation (25) along with the consistency condition and the rate
of the plastic strain tensor (equation (12)) - yields the continuum tangent operator as

Cep
c =

Ṫ

Ė
=

[[
Cel

]−1
+

1
2
3
∂σY

∂ ε̄pl
+ [k1N − k2B] : N

N ⊗N

]−1

. (27)

Calculating the limit case ∆γ → 0 for the consistent tangent operator leads, after some

rearrangement and by using ∂σY

∂ ε̄pl
=

√
2
3

∂σY

∂∆γ
, to the continuum tangent operator as ex-

pected, lim
∆γ→0

Cep = Cep
c . It is emphasized that although the chosen plasticity model is

associative, the kinematic hardening law is of a non-associative type. This leads to a
non-symmetric elasto-plastic tangent modulus that needs to be taken into consideration
when solving the global equilibrium, as the overall stiffness matrix loses its symmetry as
well and therefore needs a solver that can handle non-symmetric systems. The loss of
symmetry thereby only refers to the major symmetry of Cep, leading to a non-symmetric
representation in Mandel notation MCep �= [MCep]T. The algorithmic equations are listed
in table 1 for convenience.

Remark As already mentioned above, all equations can be represented in some com-
pressed notation. Every fourth-order tensor shows at least minor symmetry and by making
use of e.g. Mandel representation, the calculation time on local Gauss point level can
be reduced substantially.

3 PARAMETER IDENTIFICATION

The experimental investigation is carried out on a biaxial testing machine with four
electro-mechanical actuators of which the two of each axis are operated in master/slave
control to keep the specimen centered and inhibit rigid body motion. To prevent buckling,
the loading along the two axes is applied in an alternating fashion rather than by pure
tension/compression. Therefore, the applied force is equal in amount but opposite in
direction, resulting in an alternating shear loading.

6
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Table 1: Single-equation return-mapping algorithm

� Geometric preprocessing: C = F TF , E0
n+1 =

1
2
ln(C)

� Plasticity algorithm:

• Trial stress: T̃ n+1 = Cel :
[
En+1 −Epl

n

]

• Evaluate yield function: Φ = �ξ̃n+1�H −
√

2
3
σY(ε̄

pl
n ) , ξ̃n+1 = T̃ n+1 −Bn

if Φ ≤ 0.0d0 then
// Elastic step

Set: T n+1 = T̃ n+1 , Bn+1 = Bn , Cep
n+1 = Cel

else
// Plastic step

Set: k = 0 , ∆γ0
n+1 = 0.0d0 , ξ0n+1 = ξ̃n+1 , εtol = 1.0d−8

while |Φk| > εtol do

∂Φ
∂∆γ

∣∣∣
k

= ∂Φ
∂∆γ

∣∣∣
∆γk

∆γk+1
n+1 = ∆γk

n+1 −

[
∂Φ
∂∆γ

∣∣∣
k
]−1

Φk

ξ̂
k+1

= T̃ n+1 − κk+1Bn , ξk+1
n+1 = [A]−1 : ξ̂

k+1

ε̄pl
k+1
n+1 = ε̄pln +

√
2
3
∆γk+1

n+1 , σk+1
Y = σY(ε̄

plk+1
n+1)

Φk+1 =
∣∣∣∣ξk+1

n+1

∣∣∣∣
H
−

√
2
3
σk+1
Y

k = k + 1

end while
Bn+1 = κn+1 [k1Nn+1 +∆γn+1Bn] , T n+1 = ξn+1 +Bn+1

Cep
n+1 from equations (22) to (24)

end if

� Geometric postprocessing: S = T : P , Cep
L = PT : Cep : P + T : L

3.1 Experimental and numerical setup

The considered material is a DP600 sheet steel with 2mm thickness. In the experimen-
tal investigation a cruciform specimen with the dimensions depicted in figure 1 is used.
To obtain the deformation field a speckle pattern which is captured with a stereo camera
setup is applied to the surface of the specimen. The captured images are subsequently
analyzed with the digital image correlation (DIC) software Aramis to generate the dis-
placements. For the numerical computation a FE-mesh consisting of 3080 eight-noded 3D
continuum elements (two in thickness direction) with linear shape functions is used. As-
suming a uniform load distribution generated by the clamping, the respective edge nodes
are coupled through nodal ties and the measured forces are taken as boundary conditions.
To assess the residual of experimental and numerical displacements only a subset of the
FE nodes are considered. These optimization nodes are shown in figure 2 along with the

7
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Figure 1: Dimensions of the cruciform spec-
imen in mm

Figure 2: Finite element mesh of specimen
(dots mark optimization nodes)

discretization.
To encourage the heterogeneity of the deformation state a bore of 6mm in diameter

is introduced at the center of the specimen, resulting in various strain states. In figure 3
major vs. minor strain is plotted for the optimization nodes along with the strain states for
uniaxial compression (ε1 = −0.5ε2), pure shear (ε1 = −ε2), uniaxial tension (ε1 = −2ε2),
plane strain (ε2 = 0) and equi-biaxial tension (ε1 = ε2). Though the specimen exhibits
mainly pure shear as expected it can be seen that also other strain states are induced.

The afore-mentioned alternating shear loading of the specimen is depicted in figure 4.
Starting off with the initial unloaded configuration the speckle patterns for the three
peak loading values (|Fx/y| = 8kN, |Fx/y| = 9kN and |Fx/y| = 10 kN) are shown. The
deformation state can be judged by the elliptic deformation of the originally circular bore
in the middle. For the loading a linear force rate of |Ḟx/y| = 100N/s is chosen.

3.2 Inverse Identification

The identification process is based on a comparison of the displacements obtained from
experiment and FE simulation. The minimization function can be formulated as

min
α

f(α) = min
α

1

2
||xSim(α)− PxExp||

2
2 , (28)

with xSim denoting the nodal displacements from the FE-calculation and xExp the dis-
placements coming from the experimental full-field measurement. As the discretization
of the numerical analysis and that of the image correlation do in general not coincide,
the operator P is used to map the experimentally obtained deformation values on the
nodal positions of the FE-mesh. The discretization introduced by DIC is thereby about
ten times finer than that of the FE-mesh, hence the possible error derived from interpo-
lation should be marginal. The vector α contains the parameters to be optimized, in the

8
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Figure 3: Distribution of major vs. minor strain in the specimen during loading

present case it consists of the four parameters describing the mixed hardening behavior,
α = [σ0, σ∞, k1, k2]

T. As a remark, the identification of the mixed hardening parameters
demand a strategy where both phenomena are considered simultaneously. The parameters
for isotropic hardening may not be taken from e.g. a uniaxial tensile test.

To minimize the cost function f(α), an appropriate optimization algorithm has to be
chosen. In general, one distinguishes between gradient-based and gradient-free methods,
the latter having the advantage of not needing derivatives of the minimization functions.
Nevertheless, in the context of material parameter identification, experience shows that
gradient-based approaches should be chosen over gradient-free methods. Not only having
an increased rate of convergence by nature, the amount of function evaluations can be
significantly lower, despite using a finite difference scheme to approximate the gradient, see
as well e.g. [7]. The application of a finite difference procedure to evaluate the sensitivity
of the cost function w.r.t. the design parameters α seems a necessary evil. An attempt to
an analytical derivation for elasto-plastic material behaviour was made by Cooreman et
al. [8]. The derivation however is simplified substantially and only applicable to isotropic
plasticity with a strictly homogeneous strain field (simple tensile test). Moreover, the
sensitivity of every node has to be calculated in an iterative manner, leading to the
question about performance gain over finite differences, which keeps unanswered.

A well-suited and in the area of parameter optimization widely used (see e.g. [9])
algorithm is the Levenberg-Marquardt method. It shows quadratic convergence (see
e.g. [10]) and is used with a forward finite differences scheme in this work. The minimum
of the cost function is assumed to be found once either the relative step size of the
design parameters or of the objective function itself reaches a threshold of 1.0d−6. The
parameters for the anisotropy of the yield surface hi for the considered material have been
identified in [11] and are listed in table 2. For that identification the same cruciform
specimen geometry was loaded with equi-biaxial tension. In the elastic region the material
is assumed to behave isotropically with an elastic modulus of E = 210 000MPa and a
Poisson’s ratio of ν = 0.3. The optimization of the mixed hardening parameters is

9
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Figure 4: Specimen at four different stages of loading: 1 initial unloaded configuration,

2 |Fx/y| = 8kN, 3 |Fx/y| = 9kN, 4 |Fx/y| = 10 kN

Table 2: Hill parameters for DP600 [11]

h1 h2 h3 h4 h5 h6

0.9759 1.0039 0.9714 1.0571 1.0000 1.0000

based on three different initial values sets that are given in table 3 along with the mean
and standard deviation (SD) of the three optimization runs. Observing a relative SD of

Table 3: Initial and identified parameters of the mixed hardening formulation for DP600

σ0 in MPa σ∞ in MPa k1 k2

Set 1 350 1500 1000 10
Set 2 350 1500 5000 100
Set 3 400 3000 1000 100

Mean of optimization 263.2 821.7 17 434.9 174.1
SD 3.3d−2 2.9d−2 9.0d0 5.5d−2

5.0d−4 and less confirms the significance of the mean values and hence the global nature
of the minimum. To fulfill the above- mentioned convergence criteria the Levenberg-

Marquardt optimization of the three sets needs between 14 (Set 2) and 25 (Set 3)
iterations. Thereby, the number of iterations refer to the optimization algorithm itself
and does not represent the total number of FE simulations which is greater due to the

10
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evaluation of the finite differences. In figure 5 the isotropic hardening function for the
initial values and the mean of the identified parameters is plotted vs. the equivalent
plastic strain (ε̄pl =

∫ t

0
γ̇ dt). The evolution of the backstress in loading direction w.r.t.

ε̄pl is depicted in figure 6. As can be seen the kinematic hardening modulus k1 leads to an
initially steep incline while the parameter k2 causes the increase in backstress to saturate
with advancing plastic strain for the identified parameters.
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Figure 5: Evolution of isotropic hardening
w.r.t. the equivalent plastic strain
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Figure 6: Evolution of backstress in loading
direction w.r.t. the equivalent plastic strain

4 CONCLUSION AND OUTLOOK

In this contribution a single equation return mapping algorithm for large strain an-
isotropic plasticity with isotropic and kinematic hardening is presented. The identification
of the mixed hardening parameters for the dual-phase steel DP600 with a Levenberg-

Marquardt approach is performed on a cruciform specimen, which is loaded in an
alternating shear test on a biaxial testing machine. To assure the obtained minimum of
the cost function to be of a global nature, the optimization is run with three distinct initial
values sets, whereby all lead to similar material parameters with only small deviations.
The material model is written in Fortran and can be used (with rather minor adjustments)
in commercial FE-packages like Marc or Abaqus through the provided user subroutines
hypela2 and UMAT, respectively.

To further enhance the identification of material parameters with the proposed method,
uncertainties in the experimental investigation will be considered in a next step. This
includes in particular the determination of the deformation field through digital image
correlation where the uncertainty in dependence of the deformation state can be included
in the minimization function by weighting factors.
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Abstract. Different models of finite strain plasticity with a nonlinear kinematic harden-
ing are analyzed in a systematic way. All the models are based on a certain formulation
of a rate-independent Maxwell fluid, which is used to render the evolution of backstresses.
The properties of each material model are determined by the underlying formulation
of the Maxwell fluid. The analyzed approaches include the multiplicative hyperelasto-
plasticity, additive hypoelasto-plasticity and the use of generalized strain measures. The
models are compared with respect to different classification criteria, such as the objectiv-
ity, thermodynamic consistency, pure volumetric-isochoric split, shear stress oscillation,
exact integrability, and w-invariance.

1 INTRODUCTION

As is well known, a correct numerical analysis of residual stresses and springback is
possible only if the material model accounts for the nonlinear kinematic hardening. Nowa-
days, there is a big variety of phenomenological approaches to the nonlinear kinematic
hardening and different formulations may be available for the same approach. Even more,
some new approaches are occasionally developed, which are effectively equivalent to the
already existing ones. Thus, there is a need for a unifying classification study. Here,
some of the basic approaches are compared in a qualitative way, using a set of classifi-
cation criteria. These criteria include the objectivity (frame invariance), thermodynamic
consistency, pure split of the stress response into volumetric and isochoric parts, stress
oscillation under simple shear, integrability of the elastic formulation, and w-invariance.
We discuss the hyperelasto-plasticity based on the multiplicative split of the deforma-
tion gradient, hypoelasto-plasticity based on the additive split of the strain rate tensor
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with different corotational and non-corotational stress rates, and a model employing the
structure of the small-strain plasticity in combination with a generalized strain measure.

Second- and fourth-rank tensors in R3 are denoted by bold symbols. The trace, trans-
position, inverse of transposed, determinant, and Frobenius norm are denoted respectively
by tr(·), (·)T, (·)-T, det(·). The deviatoric part, symmetric part, and scalar product of
two second-rank tensors are defined through

YD := Y −
1

3
tr(Y) 1, sym(Y) :=

1

2
(Y +YT), A : B := tr(AT B). (1)

Here, 1 stands for the identity tensor. The Frobenius norm and the unimodular part are
defined as follows

�Y� :=
√
Y : Y =

√
tr(YT Y), Y := (det(Y))−1/3 Y. (2)

2 SMALL STRAIN CASE

Let us consider a small-strain model of an elasto-plastic material with a nonlinear
kinematic hardening. The overall infinitesimal strain tensor ε is decomposed additively
into the inelastic (plastic) strain εi and the elastic strain εe. The inelastic strain, in turn,
is decomposed into the dissipative part εii and the conservative part εie

ε = εi + εe, εi = εii + εie. (3)

The Helmholz free energy per unit mass is a sum of the elastic part ψel and the part ψkin,
related to the kinematic hardening:

ψ = ψ(εe, εie) = ψel(εe) + ψkin(εie), (4)

ρψel(εe) =
k

2
(trεe)

2 + µεDe : εDe , ρψkin(εie) =
c

2
εDie : ε

D
ie, (5)

where ρ is the mass density, k and µ are the elastic constants, and c is the bulk modulus of
the substructure. The stress tensor σ and the backstress tensor x are evaluated through

σ = ρ
∂ψel(εe)

∂εe
, x = ρ

∂ψkin(εie)

∂εie
, (6)

σ = k tr(εe)1+ 2µ εDe , x = c εDie. (7)

Let K ≥ 0 be the initial uniaxial yield stress of the material. Neglecting the isotropic
hardening, the yield function f is then defined by

f := �(σ − x)D� −

√
2

3
K. (8)

The flow rule governing the evolution of εi is given by

ε̇i = λi
(σ − x)D

�(σ − x)D�
, λi ≥ 0, f ≤ 0, λif = 0. (9)
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The nonlinear kinematic hardening of Armstrong-Frederick type is described by the rule

ε̇ii = λi κ x, (10)

where κ ≥ 0 is a material parameter. Taking (3)2 and (7)2 into account, this equation is
equivalent to

ẋ = c ε̇i − c λi κ x. (11)

This structure corresponds to a small-strain version of a rate-independent Maxwell fluid.
It is commonly employed to model the evolution of backstresses x in a hardening/dynamic
recovery format. Depending on the formulation, the initial conditions can be set in terms
of σ and x, or, alternatively, in terms of εi and εii.

This material model is thermodynamically consistent and objective. In the following,
its finite strain extensions are analyzed. The crucial part of any extension is how the
rate-independent Maxwell equation (11) is modified to the geometrically nonlinear case.

3 PRINCIPLES OF CONSTITUTIVE MECHANICS

Along with the general constitutive restrictions, like objectivity and thermodynamic
consistency, some more specific principles will be considered in the presented study.

3.1 W-invariance

In the case of metal plasticity, it is reasonable to consider the following property (cf.
[16]). Let F be the deformation gradient which maps the local reference configuration K̃
to the current configuration K. For a simple material with initial conditions, the current
Kirchhoff stress tensor S is a function of the local history of F and a set of initial conditions
Z0:

S(t) = S
t0≤t′≤t

(
F(t′),Z0

)
. (12)

Next, let F0 be a second-rank tensor, such that det(F0) = 1. Let K̃new := F0K̃ be a new
reference configuration. The corresponding new deformation gradient (also known as the
relative deformation gradient) is given by

Fnew(t) := F(t) F−1
0 . (13)

The model (12) is weakly invariant under the transformation (13) if there is

Znew
0 = Znew

0 (Z0,F0), (14)

such that the material model predicts the same Kirchhoff stresses:

S
t0≤t′≤t

(
F(t′),Z0

)
= S

t0≤t′≤t

(
Fnew(t′),Znew

0

)
. (15)

If the model (12) is invariant under arbitrary isochoric changes of the reference configu-
ration, we say that it is weakly invariant or, shortly, w-invariant (cf. [16]). Similar to
the classical (strong) invariance, the w-invariance represents a certain symmetry of the
constitutive equations. Just as any other symmetry, w-invariance provides insights into
the structure of the underlying constitutive equations.

3

387



Alexey V. Shutov

3.2 Pure volumetric-isochoric split

Again, consider the model (12). Let F(t) := det(F(t))−1/3 F(t) be the isochoric
(unimodular) part of the deformation gradient F(t). We say that (12) exhibits a pure
volumetric-isochoric split (v-i split) with elastic volume changes, if

i:
tr
(

S
t0≤t′≤t

(
F(t′),Z0

))
≡ 0, whenever tr S|t=t0 = 0;

ii: there is Zdev
0 = Zdev

0 (Z0) such that

(
S

t0≤t′≤t

(
F(t′),Z0

))D

≡ S
t0≤t′≤t

(
F(t′),Zdev

0

)
;

iii: tr
(
S(t)

)
is a function of the instant value det

(
F(t)

)
.

The most crucial part here is the condition i. Indeed, consider, for example, a model
where the initial conditions are formulated with respect to the Kirchhoff stresses: Z0 =
{S|t=t0}. If the property i is satisfied for a certain model, then the properties ii and iii
can be enforced by putting

S
t0≤t′≤t

(
F(t′),S|t=t0

)
:= S

t0≤t′≤t

(
F(t′), (S|t=t0)

D
)
+ p

(
det(F(t))

)
1, (16)

where p = 1
3
tr S is a suitable function of the current detF.

Note that a certain volumetric-isochoric split is satisfied by the small strain model
presented in the previous section. Therefore, it is natural to expect the v-i split in the
finite strain context as well.

4 GENERALIZATIONS TO FINITE STRAINS

4.1 Hyperelasto-plasticity with a nested multiplicative split

We discuss here a special case of a multiplicative viscoplasticity, which was proposed in
[17]. First, consider a multiplicative split of the deformation gradient F into the inelastic
(plastic) part Fi and the elastic part Fe. Next, basing on the seminal idea of Lion [8],
the inelastic part Fi is decomposed into the dissipative part Fii and the conservative
(energetic) part Fie:

F = FeFi, Fi = FieFii. (17)

Note that the kinematic relations (3) are restored from (17) in the small strain case.
The right Cauchy-Green tensor (RCGT) C, the inelastic RCGT Ci, and the inelastic

RCGT of substructure Cii are defined through

C := FTF, Ci := FT
i Fi, Cii := FT

iiFii. (18)

Analogously to (4), the free energy per unit mass is represented in the form

ψ = ψel(CCi
−1) + ψkin(CiCii

−1), (19)
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where ψel(·) and ψkin(·) are isotropic functions. To be definite, neo-Hookean assumptions
are used for the deviatoric part of the free energy

ρRψel = ρRψvol(det(CC−1
i )) +

µ

2

(
trCC−1

i − 3
)
, ρRψkin =

c

4

(
trCiC

−1
ii − 3

)
, (20)

where ρR > 0 is the mass density in the reference configuration, µ and c have the same
meaning as in the small strain case. We do not specify the volumetric part ψvol, since it is
irrelevant for the current study. The second Piola-Kirchhoff stress T̃ and the backstress
X̃, both operating on K̃, are computed through

T̃ = 2ρR

∂ψel(CCi
−1)

∂C

∣∣
Ci=const

, X̃ = 2ρR

∂ψkin(CiCii
−1)

∂Ci

∣∣
Cii=const

. (21)

Using (20) we arrive at

T̃ = p(det(C)) C−1 + µ C−1(CC−1
i )D, p ∈ R, X̃ =

c

2
C−1

i (CiC
−1
ii )D. (22)

The norm of the driving force F and the yield function f are defined through

F :=

√
tr
[(
CT̃−CiX̃

)D]2
, f := F−

√
2

3
K. (23)

The inelastic flow is described by the following system of constitutive equations

Ċi = 2
λi

F

(
CT̃−CiX̃

)D
Ci, Ċii = 2λiκ(CiX̃

)D
Cii, (24)

λi ≥ 0, f ≤ 0, λif = 0. (25)

Finally, the initial conditions are formulated in terms of Ci and Cii.
This material model is thermodynamically consistent (cf. [17]) and objective. As shown

in [20], the material model is w-invariant. Since the evolution of internal variables Ci and
Cii depends on C̄, this model exhibits the pure v-i split. Within the elastic range, the
stress response is hyperelastic. The model is free from any spurious oscillations of shear
stresses under monotonic simple shear. As shown in [22], the w-invariance allows one to
build an efficient numerical procedure (one-equation integrator) for this model. Various
extensions of this model are presented, among others, in [19, 21, 23, 18]. An alternative
derivation of the model was presented in [5]. The practical application of the w-invariance
of this model is discussed in [20, 14].

4.2 Logarithmic strain with the small strain structure

Another popular approach to the finite strain elasto-plasticity adopts the structure of
the geometrically linear theory (3) – (11) (cf. [12, 9, 15]). Let H be the Lagrangian
logarithmic strain (Hencky strain)

H(t) :=
1

2
ln(C(t)). (26)
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The infinitesimal strain tensor which appears in the geometrically linear theory, is replaced
now by the logarithmic strain: ε(t) := H(t). Let σ(t) be the stress tensor, computed by
the small strain theory as a response to ε(t). In the finite strain case, σ is understood as
a Lagrangian stress measure which is power conjugate to the logarithmic strain H:

σ : Ḣ = T̃ :
(1
2
Ċ
)

for all Ċ ∈ Sym. (27)

Using this identity, we obtain the following formula for the second Piola-Kirchhoff T̃

T̃ =
∂ ln(C)

∂C
: σ. (28)

The resulting finite strain model is objective. Since the small-strain model (3) – (11) is
thermodynamically consistent, so is its finite-strain counterpart. The model is free from
the shear stress oscillations (cf. Section 5). The stress response in the elastic domain
is hyperelastic. The model exhibits a pure v-i split. Efficient and robust numerical
procedures are available for this approach. Unfortunately, this model is not w-invariant
(this can be shown using a procedure, presented in [16]). Since the constitutive equations
depend on the choice of the reference configuration, one needs to specify exactly, which
configuration is used as a reference.

4.3 Hypoelasto-plasticity with an additive split

Another major modelling framework is based on a nested additive split of the strain
rate tensor, used in combination with hypoelastic relations (cf. [10, 11]). Let L := ḞF−1

be the velocity gradient. Its symmetric part, called the strain rate D := sym(L), is
decomposed into the inelastic (plastic) part Di and the elastic part De. The inelastic part
itself is decomposed into the dissipative part Dii and the conservative part De

D = De +Di, Di = Dii +Die. (29)

These relations can be seen as a generalization of (3). Let S and X be the Kirchhoff stress
and the backstress, respectively, both operating on the current configuration K. Denote
by

o

Y an objective time derivative of a second-rank tnesor Y. As a generalization of (7),
we consider the following hypoelastic relations

o

S = k tr(De)1+ 2µDD
e ,

o

X = cDie, (30)

where k, µ, and c were already introduced in (7). These equations corresponds to the
grade-zero hypoelasticity. Next, the yield function is postulated in the form (cf. (8))

f := �(S−X)D� −
√

2/3K, (31)

where K > 0 is the initial uniaxial yield stress. The inelastic flow is governed by (cf. (9)
and (10))

Di = λi
(S−X)D

�(S−X)D�
, Dii = λi κ X, (32)
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f ≤ 0, λi ≥ 0, fλi = 0. (33)

The initial conditions are imposed on the Kirchhoff stresses S and the backstress X.
Different models can be build by using different objective stress rates which appears in

(30). Some authors apply the so-called yield stationarity criterion, which was proposed by
Prager in [13]. For the models, where the yield function f is a general isotropic function

of S and X, the yield stationarity requires that f = const whenever
o

S =
o

X = 0. As
shown in [26], the yield stationarity implies that the objective rates

o

S and
o

X must be
corotational rates of the same type. In other words, the yield stationarity implies

o

S = Ṡ+ SΩ−ΩS,
o

X = Ẋ+XΩ−ΩX, Ω ∈ Skew. (34)

Here, Skew stands for the set of skew-symmetric tensors, the skew-symmetric operator Ω
is referred to as a spin tensor, superimposed dot stands for the material time derivative.
There are infinitely many ways of defining the spin tensor Ω [25, 7, 3]. Clearly, the
properties of the resulting material model depend on the specific choice of the spin Ω. In
particular, we have the following theorem (cf. [16]):

Theorem. Constitutive relations (29)—(34) are w-invariant if and only if the spin

tensor Ω does not depend on the choice of the reference configuration.

Let us consider some of the commonly used spins.
Zaremba-Jaumann rate. Fot the Zaremba-Jaumann rate (also known as the Zaremba-

Jaumann-Noll rate), we put

ΩZJ := W = skew(L),
o

YZJ := Ẏ +YΩZJ −ΩZJY. (35)

Note that the continuum spinW = skew(L) does not depend on the choice of the reference
configuration. Therefore, the corresponding system of equations is w-invariant. One major
drawback of this approach is that the stress response exhibits non-physical oscillations
under the simple shear: The shear stress oscillates like sin(γ), where γ is the shear strain.
These oscillations may lead to absurd results in case of kinematic hardening, although the
elastic strains may remain small (cf. Section 5). Another drawback is that the material
response fails to become hyperelastic in case of a frozen inelastic flow (when λi = 0).

Green-Naghdi rate. In order to define the Green-Naghdi rate (also known as the
Green-Naghdi-Dienes rate, Green-McInnis rate or polar rate) we consider the polar de-
composition of the deformation gradient: F = RU = VR. Then we put

ΩGN := ṘRT ∈ Skew,
o

YGN := Ẏ +YΩGN −ΩGNY. (36)

Unfortunately, the spin ΩGN depends on the choice of the reference configuration [6, 16].
Thus, the corresponding system of equations is not w-invariant. On the other hand, such
a model is free from spurious shear oscillations (see Section 5). Just as in the previous
case, the corresponding material model fails to provide a hyperelastic response even for a
frozen inelastic flow.

Logarithmic rate. Let V be the left stretch tensor (V :=
√
FFT). The logarithmic

stress rate is given by
o

Slog := Ṡ+ SΩlog −ΩlogS, (37)
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where the logarithmic spin Ωlog = Ωlog(V,L) is uniquely defined by the relation (cf.
[24, 27])

D =
o

(lnV)log. (38)

The following statement was proved in [2]: Dealing with grade-zero hypoelasticity with
corotational rates and constant elastic stiffness, the logarithmic stress rate is the only

choice which allows one to build integrable stress-strain relations in the elastic range. For
that reason, the logarithmic rate enjoys a privileged position among all the corotational
rates. As was shown in [16], the spin Ωlog depends on the choice of the reference config-
uration. Therefore, the corresponding material model is not w-invariant. In the purely
elastic case, the stress response reduces to a special type of hyperelasticity, where the
strain energy function is given by a quadratic function of the Hencky strain. This elastic
potential is known to produce absurd results for large elastic strains.

In a summary, it is impossible to build a material model of type (29)–(33), which would
combine the yield stationarity, w-invariance and exact integrability of the elastic part. On
the other hand, a positive feature of the corotational spin (34) is that the corresponding
models always exhibit the pure v-i split. Now, in an attempt to build a model, which
would be objective, w-invariant, and exactly integrable in the elastic domain, we proceed
to non-corotational rates.

Covariant Oldroyd rate. The covariant Oldroyd rate (also known as the lower
Oldroyd rate or the Cotter-Rivlin rate) of a Eulerian tensor Y is defined by

Ocovar(Y) := Ẏ + LT Y +Y L. (39)

A material model of type (29)–(33), based on this stress rate, is objective and w-invariant.
One remarkable property of this rate is that for the Almansi strain A we have

Ocovar(A) = D, where A :=
1

2
(1− F−TF−1). (40)

Thus, the stress response is exactly integrable whenever λi = 0. Unfortunately, the
corresponding model does not exhibit the pure v-i split: Even if the prescribed strain rate
D is trace-free and the initial stresses are deviatoric, the natural condition trS = trX = 0
is violated. Nevertheless, although Prager’s yield stationarity condition is violated by this
model, the model allows one to obtain plausible results (see Section 5).

The corresponding rate-independent Maxwell fluid is a scleronomous version of the
covaraint Maxwell model (cf. [4]).

Deviatorized covariant Oldroyd rate. In an attempt to enforce the pure v-i split
we consider a deviatorized covariant Oldroyd rate as follows

Odev
covar(Y) := Ocovar(Y)−

2

3
(Y : D)1 = Ẏ + LT Y +Y L−

2

3
(Y : D)1. (41)

The corresponding material model is objective and w-invaraint; the pure v-i split holds
true. According to the available analytical solutions (cf. [1]), the stress rate (41) produces
an oscillatory response to the monotonic simple shear even in the purely elastic case. The
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shear stress oscillates like sin(
√

2
3
γ), where γ is the shear strain. Thus, the oscillation

frequency is slightly lower than in the case of the Zaremba-Jaumann stress rate. In general,
this model should not be used if the elastic strains in the corresponding rate-independent
Maxwell body exceed a certain limit (see Section 5).

Contravariant Oldroyd rate. The contravariant Oldroyd rate (upper Oldroyd rate)
is defined as,

Ocontravar(Y) := Ẏ − LY −YLT. (42)

The corresponding material model is objective and w-invariant. The contravariant rate
of the Finger tensor a is related to the strain rate in the following way:

Ocontravar(a) = −D, where a :=
1

2
(1− FFT). (43)

Thus, this stress rate allows one to obtain exactly integrable response in the elastic range.
Unfortunately, just as for the covariant rate, the corresponding material model does not
exhibit the pure v-i split. Although the model violates Prager’s yield stationarity, it
allows one to obtain a reasonable stress response, even dealing with linear and nonlinear
kinematic hardening (see Section 5). The underlying Maxwell fluid is a scleronomous
version of the contravaraint Maxwell model (cf. [4]).

Deviatorized contravariant Oldroyd rate. In order to enforce the pure v-i split,
we consider now a deviatorized variant of the contravariant Oldroyd rate

Odev
contravar(Y) := Ocontravar(Y) +

2

3
(Y : D)1 = Ẏ − LY −YLT +

2

3
(Y : D)1. (44)

The resulting system of constitutive equations is objective and w-invaraint; the pure v-i
split is satisfied. An analytical solution is available for the simple shear (cf. [1]); the

solution says that the stresses oscillate like sin(
√

2
3
γ), where γ is the shear strain. Just

as its covariant counterpart, this model should not be implemented if the elastic strains
in the rate-independent Maxwell body exceed a certain limit (see Section 5).

5 NUMERICAL RESULTS

Let us simulate a stress response under the non-monotonic simple shear

F(t) = 1+ γ(t)ex ⊗ ey, γ(t) = min(5t, 10− 5t), t ∈ [0, 2]. (45)

The following material parameters are used (all quantities are non-dimensional): K = 1,
µ = 10, c = 0.5, κ = 0.5. Since the simple shear is isochoric, the bulk modulus k is ir-
relevant. Since the elastic strains accumulated in the rate-independent Maxwell fluid are
large, second-order effects like the stress oscillation and Poynting/Swift effect are clearly
visible (see Figure 1). Plausible results are predicted by the multiplicative model (Section
4.1) and the hypoelasto-plasticity with logarithmic rate (Section 4.3). Unrealistic shear
stresses are observed for oscillating models (Zaremba-Jaumann, deviatorized contravari-
ant and covariant Oldroyd); the small-strain-structure-model with the logarithmic strain
(Section 4.2) exhibits very strong isotropic softening, caused by the model kinematics.
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Figure 1: Simulations results for non-monotonic simple shear using different material models

6 CONCLUSIONS

Nine different models of finite strain plasticity with the nonlinear kinematic hardening
are analyzed in a qualitative way, using a number of criteria. The model based on the
multiplicative split (Section 4.1) is the only model which combines objectivity, thermo-
dynamic consistency, w-invariance, and the pure v-i split.
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Abstract. SANISAND-Z is a recently developed plasticity model for sands with zero
purely elastic range in stress space within the framework of Bounding Surface (BS) plas-
ticity. As a consequence of zero elastic range the plastic strain increment direction, and
consequently the elastic-plastic moduli fourth order tensor depends on the direction of
the stress increment, rendering the model incrementally non-linear and intrinsically im-
plicit. An iterative algorithm based on the Backward Euler method is presented to solve
the non-linear system of ordinary differential equations. A non-traditional consistency
condition based on the plastic multiplier is introduced as a core element of the system.
A thorough analysis of the stability and accuracy of the algorithm is presented based
on error estimation. The proposed integration scheme allows the use of SANISAND-Z
framework in Finite Element Analysis.

1 INTRODUCTION

The idea of zero elastic range in plasticity theory was first presented by Dafalias [1]
and the physical motivation was the effort to simulate the response of artificial graphite,
a material which exhibits zero purely elastic range in loading and unloading [2].

In the zero elastic range bounding surface (BS) plasticity the yield surface shrinks to
zero, the surface degenerates to the current stress point and the BS determines the loading
direction and plastic modulus. The ”image” point on the BS, at which the plastic strain
rate direction is defined, is the intersection of a line along the stress increment direction
with the BS. Thus, the plastic strain increment direction and consequently the fourth
order elastic-plastic moduli fourth order tensor depends on the stress increment direction,
rendering the model incrementally non-linear.

1

397



A. L. Petalas ∗, Y. F. Dafalias†

The numerical consequence of this type of formulation is that the model is intrinsically
implicit. To solve incrementally the elasto-plastic constitutive equations, and compute
the stress increment based on a given strain increment, the stress increment direction has
to be specified. An iterative numerical integration scheme is proposed in this work.

2 SANISAND-Z: The model

The Sanisand-Z model developed by Dafalias and Taiebat [3] is based on the zero
elastic range BS plasticity framework and the two surface formulation for sands which
was presented by Manzari and Dafalias [4], Dafalias and Manzari [5] and Taiebat and
Dafalias [6]. A brief discussion for the model’s formulation is presented in this section,
and for more details and illustrations the reader is referred to [3].

The hypoelastic moduli, K and G, are defined as functions of the isotropic stress p and
the current void ratio e by:

G = G0pat
(2.97− e)2

1 + e

(
p

pat

)1/2

(1)

K =
2(1 + ν)

3(1− 2ν)
G (2)

where pat is the atmospheric pressure, ν is the poisson’s ratio and G0 a material constant.
The bounding surface (BS) and the dilatancy surface (DS) are lode angle independent

and given by:

F b = (rb : rb)1/2 −
√

2

3
M b = 0; M b = exp(−nbψ) (3)

F d = (rd : rd)1/2 −
√

2

3
Md = 0; Md = exp(−ndψ) (4)

where r = s/p is the deviatoric stress ratio tensor, nd and nb are material constants, and
ψ is the soil state parameter [7].

The ”image” point on the BS is the intersection of a line along the stress increment
direction and the circular BS:

rb = r + bν; b = −r : ν +
[
(r : ν)2 + (2/3)(M b)2 − r : r

]1/2
(5)

where ν is a unit norm deviatoric tensor along the stress increment direction on the
deviatoric plane, and b is the distance of the current stress point to the BS along the
direction of the stress increment.

The loading direction is defined at the ”image” point by:

n =
∂F b

∂rb
=

rb

|rb|
(6)

Based on the loading direction the ”image” point on the DS surface is given by:
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rd =

√
2

3
Mdn (7)

For the plastic strain rate direction R= R′+(1/3)DI we need to determine the Dila-
tancy (D) and the deviatoric plastic strain rate direction (R′). The dilatancy is given in
Dafalias and Manzari [5] by:

D = Ad(r
d − r) : n (8)

Assuming a non-associative flow rule in the deviatoric plane the deviatoric plastic strain
rate direction is given by:

R′ = Bn− C(n2 − 1

3
I); B = 1 +

2

3

1− c

c
g(θ)cos3θ; C = 3

√
3

2

1− c

c
g(θ) (9)

where θ is the lode angle and g(θ) is a non-linear function of the lode angle [5].
The plastic modulus is defined by:

Kp =
2

3
ph

(rb − r) : n

(r − rin) : n
(10)

where h = G0h0(1− e)(p/pat)
−0.5, with h0 a material constant.

Finally, the plastic multiplier (or loading index) is given by:

L =
1

Kp

n : pṙ =
2Gn : ė−K(n : r)ε̇ν

Kp + 2G(n : R′)−KD(n : r)
(11)

With all the plasticity formulation ingredients one can solve based on a given strain
increment for the stress increment:

σ̇ = 2Gė+Kε̇vI − 〈L〉 (2GR′ +KDI) (12)

3 IMPLICIT INTEGRATION

A fully implicit integration scheme is being used to integrate the rate equations outlined
in the previous section. The backward Euler method together with a Damped Newton’s
Method is used to solve the non-linear system of ordinary differential equations. In the
zero elastic range model there is no yield surface, and the enforcement of the classical
consistency condition cannot be used in the iterative process.

De Borst and Heeres [8] used the definition of the plastic multiplier (L) as the replace-
ment of the classical consistency condition for a generalized plasticity model without an
explicit yield surface. Following this concept the plastic multiplier which is defined in Eq.
(11) is used as the consistency parameter for the system of non-linear equations.

The stress increment tensor (dσ) defined in Eq. 12 (notice that dσ=σ̇dt) is decom-
posed into it’s isotropic (dp) and deviatoric part (ds). The independent variables of the
system are defined in the following vector of unknowns:
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U = [ds, dp, L] (13)

The residual vector for the three unknowns is defined as follows:

R = [R1, R2, R3] (14)

In each iteration the algorithm solves the following linearized system:
(
∂R

∂U

)(k)

δU (k) = −R(k) (15)

Finally, the updated variables are calculated by:

U (k+1) = U (k) + λδU (k) (16)

where λ is the damping parameter which takes values smaller than 1 when the error does
not decrease monotonically. The first trial guess assumes elastic stress and L=0.

4 NUMERICAL EXAMPLE-VERIFICATION

A numerical example is used in order to verify the numerical integration scheme. The
material constants for the model are summarized in Table 1. The total strain increment
which is applied and the initial stress state are given bellow:

Table 1: Sanisand-Z model parameters [3] for the numerical example

Model Constant Symbol Value
Elasticity G0 125

ν 0.05
Critical State Mc 1.25

Mc 1.25
c 0.712
e0 0.934
λ 0.019
ξ 0.7

Plastic Modulus h0 15
ch 0.
nb 1.25

Dilatancy A0 0.704
nd 2.1

ε̇ =



0.01 0 0
0 −0.006 0
0 0 −0.006


 ; σ0 =



100 0 0
0 100 0
0 0 100


 (17)
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Figure 1: Stress and strain reliationship. Solution using different number of steps.

The total strain increment is applied incrementally in steps. The stress path begins
from the stress state which is given by Equation (17.b) and the strain controlled test
is done with the strain increment given by Equation (17.a). In Figure 1 the deviatoric
stress (q) is plotted against the deviatoric strain (εq). The solution which is obtained after
the application of 10000 steps is called the ”accurate” solution since we lack the exact
solution for this non-linear elatsto-plastic problem, and 10000 steps are enough to ensure
that the solution is the converged one. We observe that the algorithm converges fast to
the ”accurate” solution. Moreover, even with a small number of steps (8) the integration
is stable and sufficiently accurate. In Figure 2 the simulated stress path is presented. The
accuracy of the algorithm is quickly improved as we move from the 8 step application
towards higher number of steps.

In order to quantify the accuracy of the proposed algorithm, we compute the relative
error of the computed stress for 10 simulations with different strain increment step sizes.
h is the discretization parameter and the number of steps are calculated by steps=2h

(h=3,4,5...12). Each discretization parameter h defines a norm of the strain increment
tensor per step which is computed as follows:

||ε̇n || = ||ε̇||
2h

(18)

The relative error in a given strain level is computed as follows [9]:

δr =

√
σ − σ*

√
σ* : σ*

(19)

where σ* is the stress computed after the application of 10000 steps (the ”accurate”
solution). The relative error is computed for each strain level at the end of an aplied
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Figure 2: Stress path in the p′-q space. Solution using different number of steps.

strain increment (end of a step). We form an error vector E which has all the values of
the errors computed at the end of each step. The size of this vector equals the number of
steps applied for each of the simulations.

Three norms of the vector E are computed (L1, L2, L∞) in order to have an error
estimation for the whole numerical simulation. The three norms are defined as follows:

|E|L1 =
k∑

r=1

|Ek| (20)

|E|L2 =

√√√√ k∑
r=1

|Ek|2 (21)

|E|L∞ = max
i

|Ei| (22)

The error estimation for the numerical test is presented in Figure 3. We observe that
the error goes to zero as the strain increment per step approaches very small values for all
three norms. The order of accuracy is presented in Figure 4 which depicts the rate that the
error minimizes. We observe that the error minimizes linearly, when the strain increment
is very small, since the order of accuracy (n) is 0.6 for the larger strain increment per step
and above 1 for the smaller strain increments. This verifies that the numerical integration
works accurately since the design order of accuracy of the Backward Euler method is
1 when small integration steps are being used. The Newton method shows super-linear
convergence when the solution is highly non-linear and quadratic when the solution shows
less non-linearity.
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Figure 3: Relative stress error for different applied strain increments per step.

5 CONCLUSSIONS

The proposed integration scheme allow the use of the incrementally non-linear model
SANISAND-Z in Finite Element Analysis. The zero elastic range bounding surface plas-
ticity is intrinsically implicit and a iterative algorithm is needed. The system of non-
linear equations solved by a Backward Euler integration scheme with Damped Newton’s
Method. The integration method shows 1st order accuracy for small strain increments per
step. The Newton’s algorithm shows super-linear convergence in the strain levels where
the solution is highly non-linear, and quadratic convergence in steps when the solution is
less non-linear.
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Abstract. The main goal of the present work is to provide a finite strain elastic-
viscoplastic framework to numerically account for strain, strain rate hardening, and vis-
cous effects in cold deformation of metallic materials. The aim is to provide a simple and
robust numerical framework capable of modeling the main macroscopic behavior associ-
ated with high strain rate plastic deformation of metals. In order to account for strain rate
hardening effects at finite strains, the hardening rule involves a rate dependent saturation
hardening, and it accounts for linear hardening prevailing at latter deformation stages.
The numerical formulation, finite element implementation, and constitutive modeling ca-
pabilities are assessed by means of decremental strain rate testing and constant strain
rate loading followed by stress relaxation. The numerical results have demonstrated the
overall framework can be an efficient numerical tool for simulation of plastic deformation
processes where strain rate history effects have to be accounted for.
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1 Introduction

High strain rates and large strains are present in several engineering applications of
polycrystalline metallic materials, such as manufacturing (e.g. high speed forming and
machining of metals), machine tools design, analysis of structural crashworthiness in the
automotive and aerospace industries, terminal ballistics research for safety and military
activities, among several others. Modeling of these applications requires large scale sim-
ulations and adequate constitutive predictions.

To properly predict high strain rate straining of metals, a constitutive framework should
account for deformation and loading history effects. For example, the hardening response
of FCC metals is strongly rate-dependent at high velocity conditions [1, 2, 3, 4, 5]. In
summary, a high strain rate model has to comply with adequate constitutive features ac-
counting for the main plastic effects on the flow stress and material hardening responses.
However, while incorporating suitable constitutive capabilities, a constitutive model to be
employed in large scale engineering computations has to be simple enough to be experi-
mentally and numerically “attractive”. From a constitutive point of view, physically-based
models employing macroscopic [6, 7, 8, 9] or microscopic frameworks [10, 11, 12] allow
for a detailed description of both material behavior and its current state, thus provid-
ing an appropriate framework for capturing loading-history effects. However, in contrast
physically-based models require complex optimization algorithms and large computational
efforts to find associated model constants, see for instance comments provided in refer-
ences [8, 13]. In addition, due to formulation complexity, physically-based approaches are
less numerically efficient than phenomenological procedures, thus requiring more compu-
tational time and efforts in numerical simulation of large scale problems. Concerning the
formulation simplicity, the lower number of material parameters and of experiments to
identify them, many researchers [14, 15, 16, 17] have proposed semi-physical constitu-
tive models, once a detailed physical description increase the model complexity and the
number of constants to be adjusted.

In large scale simulations, accurate, efficient, and robust numerical tools are manda-
tory in order to guarantee appropriate predictions and to save computational time. In a
global standpoint, the finite element (FE) method has proved to be a suitable tool in solv-
ing nonlinear initial boundary value problems [18, 19]. The whole numerical framework
must integrate the set of nonlinear constitutive equations into a FE context, requiring
the fulfillment of two main tasks at the material level: (i) the update of stress and state
variables from a given strain increment, and (ii) the calculation of consistent tangent
modulus to be used in the global implicit FE scheme, thus preserving quadratic conver-
gence rate of Newton-type solution algorithms [18, 19]. Aiming at accomplishing these
tasks and improving the computational efficiency, several viscoplastic implicit integration
algorithms for large strain problems have been proposed [20, 21, 22, 23]. Mostly of the
large strain formulations are based on the well-known multiplicative decomposition of the
deformation gradient [24, 25], and generally associated algorithmic formulations preserves
material objectivity.

Aiming at contributing to the constant search for models combining both constitu-
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tive adequacy and computational efficiency, the present work has the goal of providing
a simple and efficient numerical framework capable of modeling the main macroscopic
behavior associated with high strain rate plastic deformation of metals at room tempera-
ture. The work concerns numerical formulation and simulations where advantage is taken
of a constitutive model previously presented [26], which proved to be suitable for this
task. Adopting a simplified semi-physical approach allows to maintain the corresponding
computational efficiency associated with phenomenological models [27, 28, 29, 30] while
incorporating adequate constitutive capabilities, such as strain rate history effects, in
simulations where high velocity plastic features have to be taken into account.

The present constitutive formulation adopts a von Mises plasticity employing a strain-
rate-history-dependent isotropic hardening, whose evolution equations follow the vis-
coplastic framework of Perzyna [31, 27], in which the inelastic evolution is given in terms
of an overstress function. Specifically, the isotropic hardening is taken into account by
a single scalar internal variable, which can be interpreted as an effective microstructural
feature [15, 26]. The stress hardening variable is composed by two main contributions,
namely A1 and A2. The first is associated with dislocations storage, and its evolution is
based on physical aspects as dislocation generation and annihilation mechanisms. The
second contribution, A2, is linked to geometric hardening mechanisms associated with de-
formation Stage IV, in which the hardening is mainly induced by granular misorientations.
It is worth mentioning that a formulation following an overstress description needs an ex-
plicit definition of the strain rate, and it presents some constitutive differences compared
to other viscoplastic contexts as the consistency model [32, 33]. For example, concerning
the overstress description, plastic deformation increase during unloading while overstress
function has a nonzero value [22, 13]. However, within the present approach this constitu-
tive distinction is not so relevant once it is intended to monotonic loading, thus justifying
the employment of an overstress formulation, as well as a pure isotropic hardening. From
an overall point of view, the elastic-viscoplastic model presented in [26] is embedded into
a finite strain framework, which adopts a total Lagrangian description and employ the
classical multiplicative decomposition of the deformation gradient into its viscoplastic and
elastic parts. An isotropic material is considered, whose constitutive formulation is given
in terms of the logarithmic deformation measure and the rotated Kirchhoff stress. The
elastic response is assumed to be linear and given by the Hencky hyperelastic model. The
numerical approach follows ideas presented in references [34, 21], where a standard elastic
predictor-plastic corrector algorithm is employed. However, to incorporate rate depen-
dent hardening features, additional incremental equations arise within the return mapping
step. Seeking for computational efficiency, an analytical consistent tangent operator is
obtained from linearization of the return mapping equations.

The work is organized as follows. Section 2 presents an overview of the constitutive
model adopted [26]. In this section, the global boundary value problem in its strong
and weak form is stated. From linearization of weak formulation the continuum material
tangent modulus is identified. Section 4 outlines the local incremental constitutive for-
mulation, recalling the well-known elastic predictor-plastic corrector algorithm. Also, the
consistent tangent modulus is given in a closed-form. In the sequel, with the aim of show-

3

407



Tiago dos Santos, Pedro A. R. Rosa, Samir Maghous and Rodrigo Rossi

ing the model constitutive capabilities, and highlighting the main macroscopic material
behavior associated with loading history effects, a numerical decremental strain rate test
and a constant strain rate loading followed by stress relaxation testing are performed in
Sec. 5, employing the model parameters obtained in [26] for an annealed OFHC copper.
Numerical results are compared with experimental data available in the literature [3, 35].
Furthermore, as a non-homogeneous deformation example, a billet upsetting is simulated.
Convergence analyzes, considering both frictionless and frictional billet upsetting cases,
are also performed. Our conclusions and comments are given in Sec. 6. Tangent terms re-
quired into return mapping algorithm are given in A and the analytical consistent tangent
modulus is derived in B.

2 Overview of constitutive model

We adopt the classical multiplicative1 decomposition of the deformation gradient [24,
36]

F = F eF vp, (1)

where F = ∂ϕ(X,t)
∂X

, ϕ being the displacement function which maps an initial pointX ∈ Ω0

onto a current one x ∈ Ω at time t, such that x = ϕ (X, t). Terms F e and F vp are the
elastic and viscoplastic part of F . By adopting decomposition (1), the specific Helmholtz
free-energy can be split [37],

ψ = ψe (Ee) + ψvp (α) , (2)

into its elastic ψe and inelastic ψvp parts. Tensor Ee = ln (U e) is the Hencky elastic

strain with U e2 = (F e)T F e and F e = FF vp−1

. A single internal variable α is assumed
to describe irreversible material behavior (see for instance references [38, 39, 40, 37]). In
this work we assume standard quadratic forms

ψe =
1

2
Ee : De : Ee and ψvp =

1

2
Hα2, (3)

where De is a symmetric positive-definite forth-order elastic tensor and H ≥ 0 is the
hardening modulus. Furthermore, isotropic elasticity is considered in subsequent analysis:

De = 2µI+
(
κ− 2

3
µ

)
I ⊗ I, (4)

where I, I, µ and κ are the fourth-order and the second-order identity tensors, the shear
and bulk modulus, respectively. Components of I are Iijkl =

1
2
(δikδjl + δilδjk) with δij

denoting the Kronecker ’s symbol.
Thermodynamic forces must obey the constitutive relations

τ̄ = ρ0
∂ψe

∂Ee = De : Ee and A = ρ0
∂ψvp

∂α
= Hα, (5)

1Along this work single contractions between second-order tensors are omitted, i.e., S · T = ST , in
components (ST )ij = SikTkj .
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where τ̄ is the rotated Kirchhoff stress [34]. The latter is related to the Kirchhoff stress
tensor τ by means of the right rotation tensor R = FU−1 with U 2 = F TF , such that
τ̄ = RTτR. It is recalled that τ and the Cauchy stress tensor σ are related through
τ = Jσ with J = det (F ). Parameter A stands for the isotropic hardening associated
with α. For sake of simplicity, in what follows we adopt a von Mises yield criterion
together with an isotropic hardening A

f (τ̄ , A) =
∥∥τ̄D

∥∥−
√

2

3
(σy + A) , (6)

where
∥∥τ̄D

∥∥ =
√

τ̄Dij τ̄
D
ij , τ̄

D = τ̄ − 1
3
tr (τ̄ ) I is the deviatoric part of τ̄ and σy is the initial

yield stress.

2.1 Evolution equations

The viscoplastic strain rate D̄
vp

= sym
(
Ḟ

vp
F vp−1

)
is given by the evolution equation2

D̄
vp

= λ̇
∂f

∂τ̄
(7)

where the viscoplastic multiplier λ̇ expresses as [31, 27]

λ̇ =
1

ϑ
Θ(〈f〉 , A) . (8)

In the above equality, operator 〈x〉 ≡ 1
2
(x+ |x|) denotes the Macaulay brackets, ϑ ≥ 0

is the material viscosity parameter and Θ ≥ 0 is the overstress function which should be
convex with relation to both f and A. Hardening variable A is given by

A = A1 + cA∞ε, (9)

where c ≥ 0 is a material parameter, A∞ is the saturation work hardening, A1 is associated
with hardening induced by dislocation storage and its arrangement in dislocation cells, and
term cA∞ε is related to geometric hardening due to cellular and granular misorientations.
Evolution of first term is given by

Ȧ1 = H1

(
1− A1

A∞

)
ε̇, (10)

where H1 is the hardening rate and

ε̇ =

√
2

3

∥∥D̄vp∥∥ ≥ 0 (11)

2Under the hypothesis of inelastic isotropy, without loss in generality, a irrotational viscoplastic flow

may be assumed [21, 41]: W̄
vp

= skew
(
Ḟ

vp
F vp−1

)
= 0.
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is the accumulated viscoplastic strain rate. Assuming constant value for ε̇ , evolution
equation (10) is directly integrated leading to a Voce hardening law [42],

A1 − A∞

A1i − A∞
= exp [−δ (ε− εi)] . (12)

Parameters A1i and εi stand for the initial values of A1 and ε, respectively, and δ = H1

A∞
. In

the present formulation we assume the ratio δ = H1

A∞
as constant, and a rate dependence

will be assigned to A∞. Combination of Eqs. (9) and (12) yields

A = Ai + A∞c (ε− εi) + [A∞ (1 + cεi)− Ai] {1− exp [−δ (ε− εi)]} , (13)

where Ai is the initial value of A. Considering that Ai = εi = 0, Eq. (13) reduces to

A = A∞ [1 + cε− exp (−δε)] , (14)

which is a modified Voce hardening law. Hardening equation (13), obtained based upon
the assumption of constant rate ε̇, is usefull to be employed within numerical algorithms
in which inelastic strain rate is assumed within each increment. Now, Eq. (14) is intended
to monotonic loading applications starting from a non-deformed state.

The following a priori rate-dependent form is postulated for A∞, see reference [26]:

A∞ = [1− β (ε̇)]Alwr
∞ + β (ε̇)Aup

∞ , (15)

where Alwr
∞ is the quasi -static value of A∞ measured at a lower reference rate ε̇lwr � 1

and Aup
∞ is the value associated with upper reference strain rate ε̇up � 1. Function β is

given by

β (ε̇) =

(
ε̇− ε̇lwr

ε̇up − ε̇lwr

)ξ

, (16)

which obviously satisfies β (ε̇lwr) = 0 and β (ε̇up) = 1, scalar ξ > 0 is a material constant.
In the present work, a viscoplastic constitutive function Θ (〈f〉 , A) based on that pro-

posed in [28] is adopted,

ϑλ̇ = Θ(〈f〉 , A) =
(
〈f〉+R

R

)m

− 1. (17)

For f ≥ 0, the inverse of Θ with respect to λ̇ and f reads

f = Θ−1
(
λ̇, A

)
= R

[(
1 + ϑλ̇

) 1
m − 1

]
, (18)

where 1
m

is the rate sensitivity parameter and R (A) is a characteristic size of the yield
locus, which is expressed as

R (A) =

√
2

3
(σy + A) (19)

in the case of von Mises yield criterion (6).
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3 Incremental formulation and finite element implementation

Let Ω0 be the initial configuration of a body with boundary ∂Ω0 and particles labeled
X ∈ Ω0. An ordinary loading is defined by a prescribed body force b̄ in Ω0, a prescribed
surface traction t̄ acting on Γt

0 and a displacement ū prescribed on Γu
0 , with ∂Ω0 = Γt

0∪Γu
0

and Γt
0∩Γu

0 = ∅. Deformed body is defined by the current configuration Ω with boundary
∂Ω and particles x ∈ Ω, being the displacement field given by u = x−X. The mechanical
problem in its strong form, disregarding inertia effects, can be stated as follows: Find u
such that 




divP + b̄ = 0 on Ω0

Pm = t̄ on Γt
0

u = ū on Γu
0

, (20)

where P = τF−T is the first Piola-Kirchhoff stress tensor and m is the unit outward nor-
mal vector at X ∈ ∂Ω0. Based on strong form given by Eqs. (20), the weak formulation,
employing the virtual work principle, consists of finding u satisfying

R (u, û) =

∫

Ω0

P (u) : ∇XûdV −
∫

Ω0

ρ0b̄ · ûdV −
∫

Γt
0

t̄ · ûdA = 0, (21)

∀û ∈ W 1
p (Ω0), where ∇X (·) denotes the material derivative of field (·) and û is the

virtual displacement vector field.

3.1 Linearized incremental Boundary Value Problem

The incremental strategy adopted herein consists of subdividing the whole time interval

of interest I into N > 0 subintervals (tn, tn+1]: I =
N
∪

n=1
(tn, tn+1]. Adopting an implicit

solution scheme, for a time subinterval (tn, tn+1] Eq. (21) have to be satisfied at tn+1, and
the increment associated with a given quantity (·) is given by ∆ (·) := (·)n+1 − (·)n, being
(·)n+1 and (·)n the values at instants tn+1 and tn, respectively. Following this incremental
strategy, the internal variables αn (X), the displacement un (X), as well as the stress
P n (X) fields are assumed to be known at the initial time instant tn and to comply
with Eq. (21). The incremental equilibrium problem corresponding to a time subinterval
(tn, tn+1] consists therefore of finding the current displacement field un+1 (X) ∈ Kn+1,
satisfying

R (un+1, û) =

∫

Ω0

P n+1 : ∇XûdV −
∫

Ω0

ρ0b̄n+1 ·ûdV −
∫

Γt
0

t̄n+1 ·ûdA = 0, ∀û ∈ W 1
p (Ω0) ,

(22)
where Kn+1 is the set of kinematically admissible displacements at tn+1. Within the
present numerical framework, the local integration algorithm provides an incremental
stress function P̄ given in terms of F n+1 and αn [19]: P n+1 = P̄ (F n+1,αn) .

Solving Eq. (22) by means of an iterative procedure, such as the Newton-Raphson
method, at iteration k+1 one has to determine a displacement increment ∆uk+1

n+1 satisfying
condition

R
(
uk+1

n+1, û
)
= R

(
uk

n+1 +∆uk+1
n+1, û

)
= 0, ∀û ∈ W 1

p (Ω0) , (23)
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where uk+1
n+1 = uk

n+1+∆uk+1
n+1 is the approximated iterative solution. Expanding R

(
uk+1

n+1, û
)

according to a Taylor series around uk
n+1, keeping only the first-order term, yields

DR
(
uk

n+1, û
) [

∆uk+1
n+1

]
= −R

(
uk

n+1, û
)
, ∀û ∈ W 1

p (Ω0) . (24)

Term DR
(
uk

n+1, û
) [

∆uk+1
n+1

]
stands for the directional derivative of R at uk

n+1 in the di-

rection of increment ∆uk+1
n+1. The formal definition of this derivative is: DR (u, û) [∆u] =

d
dε

R (u+ ε∆u, û)
∣∣
ε=0

[43, 19, 18]. Accordingly, the linearized virtual work equation at
an instant tn+1 and iteration k + 1 becomes [19]:

∫

Ω0

Mk
n+1 : ∇X

(
∆uk+1

n+1

)
: ∇XûdV = −R

(
uk

n+1, û
)
, ∀û ∈ W 1

p (Ω0) . (25)

where term

Mk
n+1 :=

dP

dF

∣∣∣∣
uk
n+1

(26)

is the consistent tangent modulus calculated in terms of displacement uk
n+1. An explicit

expression for Mn+1 is going to be derived latter. Equation (25) has to be solved in
terms of increment ∆uk

n+1, which then provides the next iterative displacement uk+1
n+1 ←

uk
n+1 + ∆uk+1

n+1. Knowing the new incremental displacement, a new residual R
(
uk+1

n+1, û
)

is therefore computed and compared with a tolerance etol. The iterative procedure is
repeated until condition R

(
uk+1

n+1, û
)
< etol is satisfied.

3.2 Finite element discretization

Using the finite element method to solve Eq. (25), continuum domain Ω0 is then

approximately represented by a finite number ne > 0 of non-overlapping elements Ω
(e)
0

connected by their boundary nodes: Ω0 ≈ hΩ0 =
ne∪
e=1

Ω
(e)
0 . Furthermore, both displacement

u and virtual displacement û fields are approximated by their finite element counterparts:

∆huk
n+1 (X) = Ng (X)∆uk

n+1 and hû (X) = Ng (X) û, (27)

where Ng is the global interpolation matrix, uk
n+1 and û are the nodal displacement

and virtual displacement global vectors, respectively. Gradients are approximate by:
∇Xu (X) ≈ Gg (X)u, where is the appropriate gradient of interpolation matrix Ng.
The stress tensor P is also replaced by a corresponding stress vector field P. Accordingly,
finite element counterpart of Eq. (25) is

(KT )
k
n+1 ∆uk

n+1 = −R
(
uk
n+1

)
, (28)

in which R
(
uk
n+1

)
= (fint)

k
n+1 − (fext)n+1 is the residual at iteration k. Then, the nodal

displacement increment at an iteration k + 1 and instant t+ 1 is computed by

∆uk+1
n+1 = −

[
(KT )

k
n+1

]−1 [
(fint)

k
n+1 − (fext)n+1

]
. (29)
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Internal fint and external fext global force vectors at tn+1 for an iteration k + 1 are given
respectively as:

(fint)
k
n+1 =

∫
hΩ0

(Gg)T Pk
n+1dV, (30)

(fext)n+1 =

∫
hΩ0

(Ng)T b̄n+1dV +

∫
hΓt

0

(Ng)T t̄n+1dA. (31)

Furthermore, the global stiffness tangent matrixKT at tn+1 and iteration k+1 is computed
according to

(KT )
k
n+1 =

∫
hΩ0

(Gg)T Mk
n+1G

gdV, (32)

where Mk
n+1 is the matrix counterpart of the tangent modulus Mk

n+1 defined in Eq. (26).

4 Local integration and consistent tangent modulus computation

To update the stress field P = P (F (u)) at each iterative step and to compute the
consistent tangent modulusM, local constitutive equations have to be integrated. For this
purpose we first start by recalling the basic elements of elastic predictor-plastic corrector
algorithm.

4.1 Elastic prediction and plastic correction

In the elastic prediction step, the elastic formal condition

Ḟ
vp

= 0 and α̇ = 0 (33)

and its incremental counterpart

F vptrial

n+1 = F vp
n and αtrial

n+1 = αn (34)

hold. From these conditions, the trial elastic state is defined in terms of elastic deformation
gradient and elastic logarithmic strain measure,

F etrial

n+1 = F n+1

(
F vptrial

n+1

)−1

→ Eetrial

n+1 =
1

2
ln
(
Cetrial

n+1

)
, (35)

with Cetrial

n+1 =
(
F etrial

n+1

)T

F etrial

n+1 . Tensor Eetrial

n+1 being given, the trial-rotated Kirchhoff

stress tensor is computed using Eq. (4): τ̄ trial
n+1 = τ̄ trial

n+1

(
Eetrial

n+1

)
.

The plastic correction is required when f
(
τ̄ trial
n+1 , A

trial
n+1

)
> 0. The procedure adopted to

perform the plastic correction refers to the return mapping algorithms, which is exten-
sively explored in the literature. In this work, an exponential mapping is employed (see
references [34, 21]). The discretization of the plastic flow Ḟ

vp
= D̄

vp
F vp, together with

its approximation based on a backward exponential mapping, leads to

F vp
n+1 = exp

(
∆λN τ̄n+1

)
F vp

n . (36)

9
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where N τ̄n+1 =
∂fn+1

∂τ̄n+1
=

τ̄D
n+1

‖τ̄D
n+1‖

. Moreover, after some manipulations Eq. (36) reduces to

[34, 21]

Ee
n+1 = Eetrial

n+1 −∆λN τ̄n+1 . (37)

When the constitutive formulation is restricted to elastic and inelastic isotropy, equiva-
lence of Eqs. (36) and (37) is exact. Otherwise, that passage is an approximation based on
moderately small elastic deformation with a second-order error on elastic strains. These
conditions are needed in order to obtain the relation Re

n+1 = Retrial

n+1 , where Re = F eU e−1

is the elastic right rotation tensor with U e2 = F eTF e [34, 21].
The evolution of the accumulated viscoplastic strain ε, introduced in Eq. (11), is

approximated based on a backward Euler method

εn+1 = εn +

√
2

3
∆λ, (38)

in which the incremental viscoplastic multiplier ∆λ must satisfy

f (τ̄ n+1, An+1) = Θ̄−1 (∆λ,An+1) , (39)

where Θ̄−1 is the inverse function of Θ̄ in terms of fn+1 and ∆λ. Function Θ̄ is the
algorithmic version of Θ given in Eq. (17).

To compute the evolution of hardening variable A from Eq. (10) together with Eq.
(9), we assume that the rate ε̇ ≈ εn+1−εn

∆t
is constant within time step (tn, tn+1]. Then, Eq.

(13) can be used considering tn as the initial state and tn+1 as the current state, leading
to

An+1 = An + A∞n+1c (εn+1 − εn) +
[
A∞n+1 (1 + cεn)− An

]
{1− exp [−δ (εn+1 − εn)]} ,

(40)
where by virtue of Eq. (15)

A∞n+1 = (1− βn+1)A
lwr
∞ + βn+1A

up
∞ , (41)

with (see Eq. (16))

βn+1 =

[
1

∆t

(
εn+1 − εn −∆tε̇lwr

ε̇up − ε̇lwr

)]ξ
. (42)

The return mapping algorithm consists therefore in determining the solution to non-
linear system of equations (37)-(42) with respect to the set of unknowns

{
Ee

n+1, εn+1,
∆λ,An+1,A∞n+1 ,βn+1}. However, equality N τ̄n+1 = N τ̄ trial

n+1
can be established in the con-

text of von Mises criterion stated in Eq. (6). Equations (37)-(38) thus reduce to the
single scalar equation:

∥∥∥τ̄Dtrial

n+1

∥∥∥−∆λ2µ−
√

2

3
(σy + An+1) = Θ̄−1 (∆λ,An+1) , (43)
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with unknowns ∆λ and An+1. Furthermore, inserting Eq. (38) into Eq. (40) yields

An+1 = An + A∞n+1c

√
2

3
∆λ+

[
A∞n+1 (1 + cεn)− An

]
[
1− exp

(
−δ

√
2

3
∆λ

)]
, (44)

while substituting Eqs. (38) and (42) into Eq. (41) gives

A∞n+1 = Alwr
∞ +


 1

∆t



√

2
3
∆λ−∆tε̇lwr

ε̇up − ε̇lwr






ξ

(
Aup

∞ − Alwr
∞

)
. (45)

Then, the reduced return mapping algorithm consists in solving Eqs. (43)-(45) with
respect to ∆λ, An+1 and A∞n+1 . Derivatives of Eqs. (43)-(45) with respect to unknowns{
∆λ,An+1, A∞n+1

}
, required into nonlinear problem solution, are given in A.

4.2 Consistent tangent modulus

Consistent tangent modulus introduced in Eq. (26) can be given in components ac-
cording to

Mijkln+1 =

(
∂τip
∂Fkl

F−1
jp − τipF

−1
jk F−1

lp

)

n+1

. (46)

Computation of Mn+1 requires the derivative calculation of τ with respect to F at tn+1.
However, expressing τ as a function of the rotated Kirchhoff stress tensor τ̄ provides an
alternative way to compute this derivative,

D̃n+1 =
∂τ̄ n+1

∂F n+1

= Dn+1 : Pn+1 : Qn+1, (47)

since τ̄ n+1 is a function of input variables Eetrial

n+1 and αn. In the above equation, Dn+1 =

∂τ̄n+1

∂Eetrial
n+1

, Pn+1 =
∂Eetrial

n+1

∂Cetrial
n+1

and Qn+1 =
∂Cetrial

n+1

∂Fn+1
. Observing that Cetrial

n+1 =
(
F etrial

n+1

)T

F etrial

n+1 ,

the components of the fourth-order tensor Qn+1 read

Qijkln+1 = F vp−1

lin
F etrial

kjn+1
+ F etrial

kin+1
F vp−1

ljn
. (48)

The fourth-order tensor Pn+1 is computed as

Pn+1 =
∂

∂Cetrial

n+1

ln
(
U etrial

n+1

)
=

1

2

∂

∂Cetrial

n+1

ln
(
Cetrial

n+1

)
. (49)

The terms Pn+1 and Qn+1 are geometrical quantities related to finite strains while the
tangent operator Dn+1 is the unique term of D̃n+1 that depends on material response.
In the elastic range, Dn+1 turns to be coincident with the elastic stiffness De, while it
becomes the elastic-viscoplastic tangent operator

Dvp
n+1 =

∂τ̄ n+1

∂Eetrial

n+1

(50)
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in the inelastic range. Evaluation of Dvp
n+1 is obtained from linearization of Eqs. (37),

(39), (45) and (44), what yields (see B)

Dvp
n+1 =

∂τ̄ n+1

∂Eetrial

n+1

=

(
De−1

+∆λ
∂N τ̄n+1

∂τ̄ n+1

+
1

χ
N τ̄n+1 ⊗N τ̄n+1

)−1

, (51)

where

NAn+1 =
∂fn+1

∂An+1

, (52)

χ =

[
∂Θ̄−1

∂∆λ
+

(
∂Θ̄−1

∂An+1

−NAn+1

)
Λ

]
, (53)

Λ =

[
(1 + cεn) (1− ϕ) + c

√
2

3
∆λ

]
ω + . . .

. . .+

√
2

3

{
δ
[
A∞n+1 (1 + cεn)− An

]
ϕ+ A∞n+1c

}
, (54)

ω =

√
2

3

ξ

∆t

(
Aup

∞ − Alwr
∞

ε̇up − ε̇lwr

)
 1

∆t



√

2
3
∆λ−∆tε̇lwr

ε̇up − ε̇lwr






ξ−1

, (55)

ϕ = exp

(
−δ

√
2

3
∆λ

)
. (56)

5 Numerical results and discussion

Aiming to assess the capabilities of the present constitutive model in accounting for
strain hardening, strain rate hardening and viscous effects, the numerical procedure de-
scribed in Section 4 is first applied to analyze the local material response subjected to
uniaxial tension/compression loading. The latter is described by prescribing the value of
axial strain E11 and associated strain rate D̄11. The material is elastic-viscoplastic and
the corresponding material parameters to be used are given in Tab. 1. These parame-
ters were obtained in a previous work [26] considering experimental data for an annealed
OFHC copper available in the literature [3, 7, 35]. Classical relationships relate the Young
modulus E and Poisson ratio ν appearing in Tab. 1 with elastic coefficients µ and κ of
Eq. (4) through µ = E

2(1+ν)
and κ = E

3(1−2ν)
. We emphasize that the elastic part of strain

is expected to be infinitesimal since the ratio σy+A

E
is very small when compared to unity.

Furthermore, it should be kept in mind that the Perić viscoplastic function is considered
throughout the paper, see Eqs. (17)-(19).
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Table 1: Material properties and model parameters associated with annealed OFHC copper [26].

E ν σy δ c Alwr
∞ Aup

∞ ε̇lwr ε̇up ξ ϑ m
[GPa] [−] [MPa] [−] [−] [MPa] [MPa] [s−1] [s−1] [−] [s] [−]
112 0.33 35 6.46 0.42 233 420 10−4 104 3.16 1.2× 103 105

5.1 Decremental strain rate test

Strain rate hardening (or strain rate history) effects can be demonstrated from decre-
mental strain rate testing. In this case, the material is subjected to a monotonic loading
with a given initial strain rate D̄111 which is then abruptly decreased to a value D̄112 . The
phenomenon is evidenced when the decremental response is compared to those obtained
during a monotonic loading under a constant strain rate D̄11 = D̄112 during overall de-
formation process. For this purpose the present analysis will include two load conditions
(employed in experiments of [3]):

• Q.S.: quasi -static test. Material is subjected to a total strain equal to 92% imposed
very slowly with D̄11 = 4× 10−4 s−1;

• D.T.: decremental strain rate test. Material is subjected to at a high strain rate of
D̄111 = 6 × 103 s−1 until a partial strain of 32% is reached, then the strain rate is
abruptly changed to a lower value D̄112 = 4× 10−4 s−1 while strain reaches 79%.
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(a) (b)

Figure 1: Decremental strain rate test results: (a) Model-predicted stress-strain curves compared with
experimental data of [3]; (b) Stress hardening vs. accumulated viscoplastic strain curves.

Numerical analyzes were performed considering a local convergence tolerance equal to
10−6, 92 time steps3 for Q.S. simulation and 78 for D.T. case. The numerical results
are depicted in Figs. 1(a) and (b) showing the effects of strain rate history on the ma-
terial response. Figure 1(a) shows the stress-strain curves for Q.S. and D.T. results are

3Numbers of time steps are equal to number of experimental points.
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compared with experiments of [3], where a good agreement between predicted and exper-
imental data is observed. When the strain rate changes abruptly from D̄111 = 6× 103 s−1

to D̄112 = 4 × 10−4 s−1, an abrupt change in flow stress is observed. It is due to instan-
taneous strain rate sensitivity related to viscous mechanisms, while no jump is observed
in hardening response as illustrated by Fig. 1(b). This behavior feature could be ex-
pected, since parameter A is related to current microstructural configuration, which does
not undergo an instantaneous change by abruptly shifting strain rate (see reference [1]).
Moreover, Q.S. curves should only be recovered asymptotically by both stress and hard-
ening responses of D.T. simulation. This is attributed to the fact that the flow stress does
not depend only on instantaneous values of strain rate, but also on strain rate history. In
other words, a higher previous strain rate induces a larger hardening when compared to a
lower strain rate imposed during the whole deformation process, what can be physically
related to the rate-dependence of dislocation storage [1, 2, 44, 45]. This rate-sensitivity
is captured by the present model through the rate dependence attributed to saturation
hardening A∞ (see Eq. (15)).

5.2 Rate-dependence and stress relaxation

The current material strength induced by previous deformation history can also be
characterized from stress relaxation testing, where the obtained equilibrium state reflects
the current microstructural configuration. Thereby, the strain rate history effects on ma-
terial state can be evaluated by varying the loading strain rate preceding stress relaxation,
and thus observing the associated equilibrium stress states that are reached asymptoti-
cally. A constitutive model capable of accounting for strain rate history effects should
theoretically be able to predict the distinct equilibrium stress states reached after different
previous loading strain rates. For this purpose, numerical simulations of stress relaxation
tests are undertaken using the proposed elastic-viscoplastic formulation.

Table 2: Loading strain rates of stress relaxation testing.

Q.S. case R1 case R2 case R3
D̄11 [s−1] 4× 10−4 103 6× 103 9× 103

The numerical analyzes are carried out prescribing a total strain equal to 100% at
different strain rates (see Tab. 2) and then keeping it constant along time. The material
properties are those given in Tab. 1. All analyzes were performed considering 200 time
steps and a local convergence tolerance equal to 10−6. The stress-strain curves obtained
for loading and stress relaxation simulations are shown in Fig. 2(a). In this figure,
cases Q.S., R2 and R3 are compared with experiments showing a good agreement. As
expected, the flow stress is an increasing function of strain rate. This effect could readily
be predicted by a conventional viscoplastic model that accounts only for instantaneous
rate-sensitivity. However, the proposed constitutive model is also capable to predict the
hardening rate-sensitivity, since the hardening A should be a direct consequence of the
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Figure 2: (a) Strain rate effects on stress-strain curves: comparison of model prediction and experiments
of [3] (Q.S. and R2 ) and of [35] (R3 ); (b) Strain rate history effect on hardening curves; (c) Strain rate
history effect on stress relaxation.

current microstructure, which in turn is affected by the whole plastic strain and strain
rate history and not only by their current values.

In the proposed model, the hardening variable A increases with rate ε̇, as emphasized
in Fig. 2(b). But, the strain rate influence on hardening becomes significant only for
strain rates greater than 103 s−1. That is, up to a strain rate of 103 s−1 (cases Q.S. and
R1 ) hardening responses are practically overwritten and for strain rates exceeding 103 s−1

(cases R2 and R3 ) the effect of previous strain rate history upon A becomes significant.
The rate dependence of hardening variable A can also be clearly evidenced in Fig. 2(c),
where the relaxation response tends toward an asymptotic equilibrium stress state, which
is given by the non-viscous stress (σy + A) associated with each previous loading strain
rate. In this figure, we observe that R1 curve reaches the Q.S. response asymptotically,
what demonstrates that the difference between cases Q.S. and R1 observed in Fig. 2(a) is
mainly due to viscous effects. On the other hand, the equilibrium stress state (σy + A) is
significantly increased by strain rate for values exceeding 103 s−1. Note that the reference
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time t = 0 in Fig. 2(c) corresponds to the instant at which the stress relaxation starts.

5.3 Billet upsetting simulation

In order to evaluate the whole numerical framework (local constitutive integration
and finite element solution), a billet upsetting simulation is carried out in the sequel.
Numerical results are compared with analytical solution, which was derived in work [26]
for uniaxial compression test,

|τ̄11| = (σy + A)

(
1 +

√
3

2
ϑε̇

) 1
m

, (57)

where |τ̄11| is the absolute value of axial rotated Kirchhoff stress. The analyzes aim to
demonstrate the strain rate effects on plastic fields of a non-homogeneous deformation
process. Furthermore, to assess numerical efficiency and robustness convergence studies
are performed. Convergence criterion is the number of iterations (niter) to reach the
admissible error given by ‖rn+1‖adm∞ = 10−6. The residue vector is the classical one used
into finite element framework, r = f ext − f int, in which f ext and f int are the external
and internal finite element force vectors, respectively.

1.0

3.
0

(a)

(b)Symmetry
lines

A

B
u 2

u

Figure 3: (a) Axisymmetric billet upsetting model (dimensions are in mm); (b) Finite element mesh
and boundary conditions for a quarter of workpiece.

Figure 3 schematically presents the axisymmetric model considered for analysis, where
upper and lower gray regions represent rigid platens. Finite element discretization consists
of 600 quadratic triangular elements (1251 nodes). Material parameters are also those of
Tab. 1. The contact formulation is based on Signorini condition and friction is modeled
by regularized Coulomb model with a friction coefficient of fc = 0.1 and regularization
parameter εT = 10−4. The Augmented Lagrangian algorithm [46, 47] is employed to
impose the contact, and penalty parameter associated with the impenetrability condition
is set as εv = 10−7. The main focus of the present simulation is to analyze the structural
response in frictional compression test. However, the simulation with fc = 0 shall also
be performed and corresponding predictions compared to analytical results derived for
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frictionless case. Starting from ū (t = 0) = 0, the prescribed displacement takes the form
[26]:

ū (t) = l0 [1− exp (Kt)] , (58)

which would correspond in a frictionless problem to a homogeneous axial strain rate
of −D̄11 = K > 0. In Eq. (58) l0 = 3mm is the specimen initial length. A total
prescribed displacement ūtotal = 1.0mm is applied and maintained in 100 equal time
steps (50 for loading stage and 50 for stress relaxation phase). Considering different
values of K according to Tab. 2, the loading process is defined as follows:

ū (t) =

{
l0 [1− exp (Kt)]

ūtotal

0 ≤ t ≤ T

T ≤ t < ∞
, (59)

with ūtotal = l0 [1− exp (KT )] being the total prescribed displacement reached at an
instant t = T . For t ≥ T , the applied displacement is maintained constant along time
in order to investigate the structural response during stress relaxation test. Considering
the friction case, the prescribed displacement ūtotal = 1.0mm induces a non-homogeneous
strain field in the specimen whose maximum magnitude is in all cases lower than 55%. The
limitation to this strain level has been deliberately adopted to avoid numerical difficulties,
thus focusing on the constitutive effects of numerical modeling. For example, the present
numerical strategy does not prevent volumetric locking, and in this case it expected that
for strains higher than 0.55 this numerical issue can become significant.
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Figure 4: Influence of loading rate parameter K on axial strain of point A and point B (friction cases).

As mentioned early, friction conditions along loaded faces induce a heterogeneous strain
field in the specimen. This aspect will be characterized considering two distinct points
A and B of the discretized workpiece, see Fig. 3(a). The loading rate influence on axial
strain history of points A and B is shown in Fig. 4, that is, the influence of loading
rate parameter K on axial strain response vs. normalized time t

T
. Due to friction effects,

point B undergoes smaller strains than point A, since this phenomenon restricts the radial
displacement at platen/specimen interface. However, increasing K leads to a decrease in
axial strain of point A, while it induces an increase in axial strain of B.
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Figure 5: Axial stress vs. strain curves: (a) Quasi -static case, K = 4× 10−4 s−1; (b) K = 103 s−1; (c)
K = 6× 103 s−1; (d) K = 9× 103 s−1.

Figures 5(a)-(d) display, for different values of K, the axial rotated Kirchhoff stress
vs. strain curves of points A and B. In addition to results obtained from numerical
simulations of frictional compression test, these figures also show the numerical predictions
for frictionless situation as well as for the rigid-viscoplastic analytical solution given in Eq.
(57). Note that frictionless numerical predictions are very close to analytical reference
solution. In friction case, the response of point A remains close to that obtained in
frictionless compression (reference situation) until a strain of about 20%. Beyond this
strain level, the response in friction case begins to deviate from this reference situation.
In contrast, due to confined strain state, stress triaxiality appears in vicinity of point B
right after the loading process has started, leading to lower strain and higher stress levels
than at point A.

Comparisons for different values of K of axial rotated Kirchhoff stress vs. logarithmic
strain curves are shown in Figs. 6(a) and (b) for frictional compression test. This com-
parisons indicate that increasing the value of K induces higher absolute stress levels in
the specimen. However, the maximum strain level decreases with K at point A, while it
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exhibits opposite trend at point B.
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Figure 6: Influence of loading rate parameter K on axial stress vs. strain curves (friction cases): (a)
Point A; (b) Point B.
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Figure 7: Influence of loading rate parameter K on pressure transmission coefficient cpt =
τ̄22
τ̄11

vs. strain
curves (friction cases): (a) Point A; (b) Point B.

Stress triaxiality effects are illustrated in Figs. 7(a) and 7(b), where the pressure
transmission coefficients4 cpt =

τ̄22
τ̄11

at points A and B are plotted against the axial strain.
Scalars τ̄11 and τ̄22 refer to axial and radial rotated Kirchhoff stresses, respectively. In
accordance with observations related to Figs. 5, it is first observed that ratio cpt at point
A remains very small for strain lower than 20%, and then increases continuously with the
strain level (Fig. 7(a)). In contrast, ratio cpt at point B increases rapidly with strain in
the small range (until ≈ 5%), followed by a moderate decreasing with strain level (Fig.
7(b)).

4It is worth to recall that in an axisymmetric deformation the value cpt = 0 indicates an axial stress
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Figure 8: Influence of loading rate parameterK on flow stress of Point A and Point B, for a given absolute
strain of 0.2 (friction cases). Analytical solution is taken from Eq. (57), considering a frictionless rigid-
viscoplastic case. Experimental data were taken from references [3, 7, 35] considering an annealed OFHC
copper (see also reference [26]).

Concerning the strain rate sensitivity, in Fig. 8 the influence of loading rate parameter
K on flow stress response can be realized, considering a given absolute strain level of 0.2.
In this figure an upturn in the rate sensitivity is observed for values of K greater than
103 s−1. As discussed by some authors (see for instance [48, 8, 26]) this sudden upturn
behavior is a result of the strain rate hardening observed e.g. in FCC metals as copper and
aluminum. Notice that the stress response of point A is very close to the frictionless rigid-
viscoplastic analytical solution given in Eq. (57) and to the experimental data related to
annealed OFHC copper, see [3, 7, 35]. However, in contrast to point A, due to confined
strain state and then to higher stress triaxiality, point B presents a higher absolute stress
level for the same given total strain of 0.2.

The overall behavior of structure may be characterized by means of the evolution
of resultant vertical force applied to specimen with respect to prescribed displacement.
Figures 9(a)-(d) show the results obtained from numerical simulations as well as analytical
solution for frictionless compression obtained from stress solution of Eq. (57)

|f1| =
V0

l
|τ̄11| , (60)

where |f1| is the resultant applied force, V0 is the initial volume and l is the current length
of workpiece. The numerical frictionless results are very close to analytical reference
solutions. However, slight effects of friction are observed as prescribed displacement is
increasing. It is emphasized that the whole results should be interpreted keeping in mind
that the considered value of friction coefficient is rather small (fc = 0.1). Regarding the
influence of strain rate parameter K, Figs. 10(a) and (b) corroborate, as expected, that
higher forces are needed to impose a given displacement when the loading rateK increases.

state and cpt = 1 a hydrostatic stress state.
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Figure 9: Applied force vs. applied displacement curves: (a) Quasi -static case, K = 4 × 10−4 s−1;
(b) K = 103 s−1; (c) K = 6 × 103 s−1; (d) K = 9 × 103 s−1. Notice that the reference solution is for
rigid-viscoplastic case, see Eq. (57), while the FE solution is for elastic-viscoplastic one.

The capability of the proposed constitutive model to capture the effects of strain rate
on stress response has been illustrated in Figs. 6, which indicate that axial stress-strain
curves are significantly affected by the value of imposed loading rate K. At strain rates
until 103 s−1 the rate dependence is mainly due to viscous effects, and for strain rates
exceeding 103 s−1 proposed model accounts for the dependence of hardening with respect
to strain rate (see for instance [26]). The effects of strain rate on the material hardening
response are clearly evidenced in Figs. 11(a) and (b) in frictional compression test with
fc = 0.1. These figures emphasize how increasing the value of K induces, for a given
accumulated viscoplastic strain, a larger material hardening. However, note that the
curves related to cases Q.S. and K = 103 s−1 are practically overwritten, what clearly
shows that for strain rates < 103 s−1 the proposed model predicts a small strain rate
influence on hardening response.

The analysis performed during loading phase (t ≤ T ) suggests that, due to rate sen-
sitivity of material hardening, significant effects of strain rate on flow stress rise when
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|ū1| [mm]

|f
1
|[
N
]

Q.S.
1000 1/s
6000 1/s
9000 1/s

0 0.2 0.4 0.6 0.8 1
0

500

1000

1500

2000

2500
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Figure 10: Influence of loading rate parameter K on applied force vs. applied displacement curves: (a)
Frictionless; (b) Frictional cases.
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Figure 11: Influence of loading rate parameter K on stress hardening vs. accumulated viscoplastic
strain (friction cases): (a) Point A; (b) Point B.

K > 103 s−1. This feature is also corroborated in the relaxation phase imposed to speci-
men. Figures 12(a) and (b) present the stress relaxation curves of points A and B, i.e.,
evolution of axial rotated Kirchhoff stress vs. time t. It is observed from these figures
that the equilibrium stress state (asymptotic stress state) reached after relaxation process
is generally sensitive to strain rate history. However, since equilibrium stress quantity is
a direct consequence of material hardening, as commented early, the strain rate influence
on relaxed state becomes significant only for loading rates K > 103 s−1. Consequently,
the case with K = 103 s−1 tends asymptotically to the Q.S. curve. The reference time
t = 0 in Fig. 12 corresponds to instant (T ) at which the stress relaxation starts.

An alternative way to illustrate the strain rate history effects on specimen response
consists of visualizing the contours of von Mises equivalent stress, as displayed in Figs.
13(a)-(d). Two particular instants are considered for each value of K, namely at the
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Figure 12: Influence of loading rate parameter K on stress relaxation (friction cases): (a) Point A; (b)
Point B.

onset of stress relaxation (t = T ) and at the relaxed state. Once again, these figures
confirm the existence of a value of loading rate beyond which strain rate history effects
prove significant. As expected, no noticeable change is observed between the “before
relaxation” and “after relaxation” states for the quasi -static case. In contrast, significant
changes between the “before relaxation” and “after relaxation” states are observed for
the high strain rate cases (K ≥ 103 s−1), what is due to instantaneous viscous effects.
Furthermore, comparison of all “after relaxation” states indicates that the K = 103 s−1

case relaxes to a state close to the quasi -static one. On the other hand, higher values of
K leads to higher absolute values of equilibrium stress fields.

The performance of numerical procedure is assessed by means of convergence analyzes
in both quasi -static and high strain rate (K = 9× 103 s−1) cases. The results are summa-
rized in Tab. 3 for t

T
∈ {0.02, 0.2, 0.5, 1.0} considering frictionless (fc = 0) and frictional

(fc = 0.1) compression. In this table term ALi stands for the number of iterations to
reach convergence in the Augmented Lagrangian algorithm employed to solve contact
problem [46, 47] and niter for the number of iterations to reach finite element equilib-
rium (‖rn+1‖∞ ≤ 10−6). The end of loading phase (t = T ) in Q.S. case correspond to the
higher required iterations for numerical convergence (niter = 15). Table 3 also indicates
that convergence is enhanced with higher loading rate K.

Convergence curves are displayed in Figs. 14(a) and (b) for simulations considering
smooth and frictional contact in the quasi -static and high strain rate (K = 9× 103 s−1)
cases. Two particular instants were examined, namely t

T
= 0.02 and t

T
= 1.0. Figure

14(a) shows that there is no significant difference between the quasi -static and high strain
rate cases for frictionless compression simulations. On the other hand, it is observed in
Fig. 14(b) that the convergence is significantly improved when imposing a higher strain
rate in the case of frictional compression test. As a matter of fact, the number of iterations
for convergence drops from 50 to 5 at instant t

T
= 1.0 and iteration ALi = 2 of Augmented

Lagrangian algorithm. Furthermore, as can be seen in Tab. 3, the Augmented Lagrangian
algorithm took 3 steps to converge in the quasi -static frictional problem. The quasi -static

23

427



Tiago dos Santos, Pedro A. R. Rosa, Samir Maghous and Rodrigo Rossi

Before relaxation After relaxation

(a)

Before relaxation After relaxation

(b) 785.0
711.2
637.5
563.8
490.0
416.2
342.5
268.8
195.0

Before relaxation After relaxation

(c)

Before relaxation After relaxation

(d)

Figure 13: Contours of von Mises equivalent stress [MPa], before stress relaxation (t = T ) and after
stress relaxation: (a) Quasi -static case, K = 4 × 10−4 s−1; (b) K = 103 s−1; (c) K = 6 × 103 s−1; (d)
K = 9× 103 s−1.

simulation has a worse global convergence because, in addition to the trial elastic state
being far from the current solution, in this case a higher time increment ∆t is obtained,
what can give an ill-conditioned tangent operator Dvp. See for instance Eqs. (51)-(55), as
well as Eqs. (70) and (71).

Table 3: Number of iterations required for convergence of frictional contact algorithm.

Quasi -static K = 9× 103 s−1

t
T
- (step number) ALi

niter niter

fc = 0 fc = 0.1 fc = 0 fc = 0.1

0.02 - (1)
1 15 25 11 15
2 11 17 8 11

0.2 - (10)
1 6 9 7 7
2 5 9 5 6

0.5 - (25)
1 6 8 6 7
2 5 9 4 5

1.0 - (50)
1 6 42 6 7
2 4 50 4 5
3 − 29 − −

6 Conclusions

A finite strain elastic-viscoplastic numerical framework was developed and implemented
into the FE context. The overall approach is intended to simulate high velocity plastic de-
formation processes in which loading history effects have to be considered. The main goal
was to provide an adequate and computationally efficient numerical tool for high strain
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Figure 14: Convergence curves for quasi -static (solid lines) and high strain rate
(
K = 9× 103 s−1

)
(dash-doted lines) cases: (a) Frictionless compression; (b) Frictional compression.

rate straining of metals. The accuracy of constitutive modeling and related numerical
procedure was assessed by means of homogeneous decremental strain rate and constant
strain rate loading followed by stress relaxation testing, and global analysis consisting
of a billet upsetting considering friction contact conditions. The loading process in the
latter analysis is also defined by an initial constant loading rate stage followed by a stress
relaxation phase. All these analysis have demonstrated the capabilities of the constitu-
tive and numerical modeling to properly capture the main features of strain rate history
effects on material and structural response of elastic-viscoplastic media. The algorithm
convergence analyzes emphasized the good performance and robustness of numerical pro-
cedure. The numerical results obtained in this paper contribute to the understanding of
high strain rate processes while encouraging for future developments in high strain rate
material modeling.

Acknowledgements

The author Tiago dos Santos wishes to acknowledge the doctoral scholarship support of
CAPES, Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior of Brazil. Process
number BEX 7023/15-4. The author Rodrigo Rossi wishes to acknowledge the support of
CNPq, Conselho Nacional de Desenvolvimento Cient́ıfico e Tecnológico of Brazil. Grant
number 304044/2015-6.

REFERENCES

[1] Klepaczko, J. Thermally activated flow and strain rate history effects for some poly-
crystalline f.c.c. metals. Mater. Sci. Engng. (1975) 18:121–135.

[2] Chiem, C. and Duffy, J. Strain rate history effects and observations of dislocation
substructure in aluminum single crystals following dynamic deformation. Mater. Sci.
Engng. (1983) 57:233–247.

25

429



Tiago dos Santos, Pedro A. R. Rosa, Samir Maghous and Rodrigo Rossi

[3] Tanner, A.B. and McDowell, D.L. Deformation, temperature and strain rate sequence
experiments on OFHC Cu. Int. J. Plast. (1999) 15:375–399.

[4] Huang, F. and Tao, N. Effects of strain rate and deformation temperature on mi-
crostructures and hardness in plastically deformed pure aluminum. J. Mater. Sci.
Tech. (2011) 27:1–7.

[5] Luo, Z., Zhang, H., Hansen, N. and Lu, K. Quantification of the microstructures
of high purity nickel subjected to dynamic plastic deformation. Acta Mater. (2012)
60:1322–1333.

[6] Follansbee, P. and Kocks, U. A constitutive description of the deformation of copper
based on the use of the mechanical threshold stress as an internal state variable. Acta
Metall. (1988) 36:81–93.

[7] Nemat-Nasser, S. and Li, Y. Flow stress of f.c.c. polycrystals with application to
OFHC Cu. Acta Mater. (1998) 46:565–577.

[8] Gao, C. and Zhang, L. Constitutive modelling of plasticity of fcc metals under ex-
tremely high strain rates. Int. J. Plast. (2012) 32-33:121–133.
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A Tangent quantities for return mapping algorithm

The return mapping algorithm is used to solve the nonlinear equations (43), (44) and
(45), making use of an iterative procedure, such as the Newton-Raphson algorithm. In
this context, some tangent quantities have to be evaluated. The system of nonlinear linear
equations to be solved can be set as

f1 =
∥∥∥τ̄Dtrial

n+1

∥∥∥−∆λ2µ−
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3
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where involved unknowns are
{
∆λ,An+1, A∞n+1

}
. Accordingly, the tangent terms are

defined by

∂f1
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= −2µ− ∂Θ̄−1

∂∆λ
, (64)
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∂f1
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From Eq. (18) we have the derivatives

∂Θ̄−1

∂∆λ
=

√
2

3
(σy + An+1)

1

m

ϑ

∆t

(
1 + ϑ

∆λ

∆t

) 1
m
−1

, (70)

∂Θ̄−1

∂An+1

=

√
2

3

[(
1 + ϑ

∆λ

∆t

) 1
m

− 1

]
. (71)

B Analytical consistent tangent operator

Evaluation of Dvp
n+1 is obtained from linearization of Eqs. (37), (39), (45) and (44),

dEe
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Combining Eqs. (74) and (75) reads to

dAn+1 = Λd (∆λ) , (80)
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Inserting Eq. (80) into Eq. (73) yields
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Substitution of Eq. (82) in Eq. (72) provides
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Observing that (A⊗G) : K = (G : K)A, the above equation writes
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and from the elastic relationship dEe
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(
De−1

+∆λ
∂N τ̄n+1

∂τ̄ n+1

)
: dτ̄ n+1 +

1

χ

(
N τ̄n+1 ⊗N τ̄n+1

)
: dτ̄ n+1 = dEetrial

n+1 , (86)

leading finally to
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Abstract. The use of external confining devices to confine concrete has become widely used. 
One of the purposes is to gain additional concrete strength and ductility. Although there are 
many types of external confining devices, in this paper, the attention is limited to the use of the 
steel tube as an external confining device. One of the main objectives of this research is to study 
the plastic dilation rate behavior of concrete-filled-steel-tube (CFST) columns. The 
experimental data for the plastic dilation rate is extracted, and compared with the authors 
concrete plasticity model. In the authors’ previous research, the calibration of the plastic 
dilation rate model was based on confined concrete tested under both active and passive 
confinement using FRP wraps. Since the behavior of the steel tube and the FRP materials are 
different, the author’s plastic dilation rate model needs to be re-evaluated for CFST columns.
Comparisons of the extracted experimental plastic dilation rates with the model prediction for
CFST specimens with normal strength concrete show good agreement and requires no
adjustment in the formulation. However, for a specimen with 80 MPa concrete, the proposed 
formulation shows slightly lower plastic dilation rates. More experimental data for CFST using 
high strength concretes is required for further investigation. For the sake of completeness, the 
overall response of two CFST specimens is also evaluated using an in-house three-dimensional 
non-linear finite element analysis (3D-NLFEA) using the author’s proposed plasticity 
formulation for confined concrete.

1 INTRODUCTION
The use of external confining devices to confine concrete is widely used. The external 

confining device is defined as any material other than concrete (such as FRP or steel tube) 
which has a mechanism to provide a kinematic lateral restraint [1] for the confined material. 
One of the purposes is to gain additional concrete strength and ductility. The kinematic lateral 
restraint is related to the lateral modulus (EL) of the external confining devices. The lateral 
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modulus (EL) of the confining device can be computed by solving the compatibility equation 
between the external confining device and the concrete core. By using EL, the effectiveness of 
the confinement can be measured. For an external confining device made of a material with a 
simple stress-strain relationship, such as FRP wrap, the lateral modulus EL can be assumed to 
be constant throughout the loading. However, for a concrete-filled-steel-tube (CFST) the lateral 
modulus EL keeps changing once the steel yields.

Recently, the authors proposed a constitutive plasticity model [2, 3] for confined concrete.
In this model, the flow rule is a function of the plastic dilation rate of the confined concrete. 
The plastic dilation rate (β) was defined as the ratio of the lateral to axial plastic strains (

p p
lat axial/β ε ε= ). The plastic dilation rate formulation itself is a function of the confining 

pressures of the concrete core and lateral modulus (EL) of the external confining device. The 
proposed plastic dilation rate model was calibrated using the experimental data from both active 
and passive confinement. However, for the passive confinement, the calibration of the plastic 
dilation rate was solely based on the FRP confined concrete [2], and therefore, further validation 
of the proposed model with different types of the external confining devices needs to be carried 
out.

In this paper, the model of [2, 3] is validated for cases where the steel tube is used as the 
external confining device. The focus is to obtain the plastic dilation rate behavior of the 
concrete-filled-steel-tube (CFST). The steel tube material has a different behavior in 
comparison to FRP material. The FRP material has a linear elastic behavior up to failure and is 
considered an orthotropic material. Usually, the axial load carrying capacity of the FRP tube is 
sufficiently small and thus neglected in the analysis. In contrast, the steel tube material is 
considered as an isotropic material and obeys a J2 plasticity model with zero hardening 
modulus. When the CFST column is axially loaded, due to the higher elastic modulus in 
comparison with the concrete material, the steel tube yields first before the concrete core 
reaches its peak stress capacity. Further, at the state where the steel tube is yielding, the axial 
stress is much higher than the stress in the other directions which may complicate the 
measurement of the lateral modulus, as well as the confining pressures to the concrete core.
Hence, investigating the plastic dilation rate characteristic for CFST is a challenge.

To maintain clarity in the discussion, the sections in this paper are organized by firstly 
presenting a short introduction showing the main objective of the paper followed by the study 
on the plastic dilation rate behavior for CFST. In the second section, previous studies on the 
plastic dilation rate behavior for FRP confined concrete and then the plastic dilation rate 
behavior for the CFST are discussed. It will be shown that despite the different constitutive 
behavior between the FRP confined concrete and CFST, the authors’ plastic dilation rate 
formulation is sufficiently accurate and adaptable. In the third section, numerical modeling to 
investigate the performance of the authors’ plasticity model is presented by using a three-
dimensional non-linear finite element analysis (3D-NLFEA) developed by the authors [4].
Finally, conclusions are drawn, and some future research suggested.

2 PLASTIC DILATION RATE BEHAVIOR OF CFST
The plastic dilation rate from any experiment is evaluated by observing the changes of the 

plastic strain both in the lateral and axial direction. However, from the experiments, mostly,
only the axial force, axial strain and circumferential strain are obtained. Hence, to get the plastic 
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dilation rate from the experiments, the raw data needs to be further processed. During the 
extraction process, some assumptions are made, and it is important to note that different 
assumptions may lead to a different value for the plastic dilation rate. The plastic dilation rate 
itself is highly sensitive to the increment of the selected data points from the experiment. The 
smaller the increment, the distortion of the plastic dilation rate becomes more pronounced. Due 
to this sensitivity, obtaining the data from available experiments in the literature requires a 
special filtering, unless, the experiments have complete data sets including the computed
confining pressure and the axial stress within the concrete core.

To extract the confining pressure from the experiments, it is required computing the stress 
in the radial direction which is equal to the confining pressure of the concrete core. In the case 
of FRP confined concrete, because the FRP material is always elastic up to the fracturing point,
the computation of the confining pressure is obtained by multiplying the lateral strain with the 
lateral modulus of the FRP confining device. Further, for FRP confined concrete, the axial stress 
in the FRP material can be neglected. These material assumptions simplify the data extraction 
for the plastic dilation rate. However, for an external confining devices with a yield point such 
as a steel-tube, computing the confining pressure must conform to the stress-strain relation of 
the J2 material. Generally, during the loading, initially before the steel starts to yield, the axial 
stress in the steel tube is higher than the stresses in other directions. Once the steel yields, the 
axial stress in the steel tube reduces and the stresses in other directions increase.

Before looking further at the plastic dilation rate behavior for CFST columns, it is important 
to understand the plastic dilation rate behavior for FRP confined concrete. Figure 1 shows the 
plastic dilation rate behavior for FRP confined concrete extracted from experiments. A method 
to extract the plastic dilation rate for FRP confined concrete is explained in [2]. The expression 
of the plastic dilation rate formulation at peak stress in [2] is written here as:

( )
4

r
0 core 0 4 '

c

tanh
b

fa
f

β β β β
  
 = + −     

(1)

in the above, β0 is the uniaxial plastic dilation rate at the peak stress, βcore is the upper limit of 
the plastic core compaction, a4 and b4 are the calibrated parameters. Samani and Attard [5]
suggested a value for β0 of -2.5. The upper limit of the plastic core compaction (βcore) is 
calibrated with the experimental data for FRP confined concrete and is a function of both the 
confining pressure (fr) and the lateral modulus (EL) of the external confining devices. However, 
the value for βcore should not be less than the elastic Poisson’s ratio of the external confining 
devices (μExt). The expression for βcore is:

r L
core Ext ' '

c c

0.5 0.0275  f E
f f

β µ= − + Φ ≤ − Φ = (2)

in the above, fc is the uniaxial concrete compressive strength. In [2], the calibration of the 
parameters a4 and b4 uses a genetic optimization algorithm, and the expressions for both 
parameters are:

'L r L
4 4 c c' ' '

c c c

 2.5 0.25 0.0915 exp 0.0192 73E f Ea b f f
f f f

 = + = − Φ − Φ =  (3)

In Eqn.(3), the presence of the McCauley bracket is because of the variation of the plastic 
dilation rate for high strength concrete. To implement the plastic dilation rate formulation in 
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the flow rule, a method involving the plastic dilation rate control parameter ( P0α ) in the flow 
rule is used in [2]. Further a scaling function is introduced for the smooth transition of the plastic 
dilation rate from the beginning of plastic flow up to the peak stress. At the start of plastic flow, 
the plastic dilation rate is equal to zero and at the peak stress, the plastic dilation rate is equal 
to Eqn.(1).
In Figure 1, there are two regions of the plastic dilation rate. The first region is where the 
increment of the plastic volumetric strain is in compaction ( 0.5β < ) and the second region is 

where the increment of the plastic volumetric strain is in dilation ( 0.5β > ). The predicted
plastic dilation rates in Figure 1 are generated using the expression from Eqn. (1). The 
predictions represent different stiffness of the external confining devices and their effect on the 
plastic dilation rate behavior of FRP confined concrete. Note that the observed value of the 
plastic dilation rate, which is shown in Figure 1, shows the peak plastic dilation rate. For 
actively confined concrete (EL = 0 MPa), the plastic dilation rate asymptotes to a value of -0.5.
As the EL increases, the plastic dilation rate shifts to the plastic volumetric compaction region. 
This phenomenon occurs for FRP confined concrete with sufficiently high stiffness [6, 7].

Figure 1 Plastic dilation rate behavior for FRP confined concrete [2]

Figure 2 shows the development of the plastic dilation rate for FRP confined concrete with 
different ply tested by [8] with ID 01-09. In Figure 2, the prediction of the plastic dilation rate 
using Eqn.(1) and also using the complete stress-strain curve for FRP confined concrete via the 
constitutive driver are presented. By looking at the complete development of the plastic dilation 
rate from the analysis, at the initial plastic flow, the value of the plastic dilation rate starts from 
zero and goes up to a value of -0.5. this region is called the initial plastic compaction. It is also 
worth mentioning that a flow rule that always dilates such as in [9, 10], will never be able to 
capture initial plastic compaction. After passing the initial plastic compaction region, the plastic 
dilation rate keeps increasing until reaching the peak plastic dilation ratio and continues to 
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follow the path of the peak plastic dilation rate as shown in Figure 2. Note, in the experiments, 
the plastic dilation rate also starts from zero. In Figure 2, however, the experimental plastic 
dilation rate is plotted once the minimum secant dilation rate is found in the experiment (see 
[2]) and therefore the plastic dilation rate from the zero point up to the minimum plastic dilation 
rate is not shown.

For CFST, it is expected that the plastic dilation rate after the steel tube yields should be 
almost equal to that of actively confined concrete (EL = 0). After the steel yields, the confining 
pressure increases, the value for the initial lateral modulus will be small. The experiments 
carried out in [11] are examined and are used in this study. The work in [11] provides a complete 
data set which can be used for evaluating the plastic dilation rate for CFST. The axial stress in 
the concrete and the confining pressure is extracted, and Hook’s law is used to compute the 
axial and lateral elastic strains. The axial and lateral plastic strains are further computed by 
subtracting the elastic strains from the total strains. The plastic dilation rate is obtained by 
computing the ratio of the lateral to axial plastic strains.

Figure 2 Comparison of the plastic dilation rate formulation with the constitutive driver and the experiments [2]

Figure 3 shows the plastic dilation rate behavior for CFST specimens taken from [11] are 
selected for investigation. Two specimens with normal strength concrete (NSC) and one 
specimen with high strength concrete (HSC) are selected. In Figure 3, the plastic dilation rates 
are plotted as a function of axial strain. In Figure 3, the peak plastic dilation rate are generated 
using Eqn. (1) with two different values of the lateral modulus. One with zero lateral modulus,
which in Figure 3 is represented as the active model and the other with the lateral modulus 
calculated from the experiments and is represented as the passive model. Note, for zero 
confining pressure (uniaxial case) or when the confining pressure is tensile, the plastic dilation 
rate at the peak stress is equal to β0 which is equal to -2.5. Hence, in Figure 3, at the initial
loading stage, where the confining pressure is in tension (see [11]), the peak plastic dilation rate 
is equal to -2.5.
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The plastic dilation rate from all the specimens starts at zero plastic dilation rate which 
clearly identifies the initial plastic volumetric compaction for CFST specimens. As the loading 
increases, the absolute value of the plastic dilation rate also increases up to the maximum value. 
For NSC, it is difficult to distinguish between the maximum and the minimum values of the 
plastic dilation rate once the steel tube yields. However, for the HSC specimen, we can easily 
distinguish between the maximum and the minimum values of the plastic dilation rate. The 
maximum absolute plastic dilation rate for the 80 MPa concrete occurs at an axial strain of 
about -0.0025 and as the loading increases, the plastic dilation rate drops to a value of -1.2. 
Notice that there is a small increase in the plastic dilation rate throughout the loading for HSC 
while for NSC, the plastic dilation rate is almost constant. 

Figure 3 Plastic dilation rate behavior for CFST specimens

For normal strength concrete, the prediction of the plastic dilation rate for CFST is excellent. 
The model for passively confined concrete can capture the plastic dilation rate behavior of 
CFST while the actively confined concrete model has a higher plastic dilation rate. From both 
the experiments and the model prediction, the plastic dilation rate is almost constant after the 
CFST yields. However, the almost constant plastic dilation rate does not mean that the confining 
pressure is constant. The confining pressure is still increasing but the lateral modulus decreases 
which means the effectiveness of the external confining device is also decreasing. This finding 
is important and the model can explain this behavior clearly. A model without a clear definition 
between active and passive modes cannot identify this difference and although these models 
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may provide good predictions, they lack the explanation of what is happening in the 
experiments.

For high strength concrete, the prediction of the plastic dilation rate is lower in absolute 
terms than the experiments. When evaluating the experimental data for FRP confined concrete, 
there is a term inside the McCauley bracket Eqn.(3) to cater for the test results available for 
HSC which were from one source and had a compressive strength of 73 MPa. The term has a 
purpose to accelerate the increase in the plastic dilation rate for high strength concrete. It is 
therefore important to investigate more HSC experimental results and re-evaluate Eqn.(3).
Further, for a CFST specimen, the yielding of the steel tube lowered the value of the lateral 
modulus, and thus the limit of plastic dilation rate as shown in Eqn.(2) remain untouched.

3 MODELLING AND DISCUSSION
This section presents two finite element models for CFST short column specimen using an 

in-house three-dimensional non-linear finite element analysis (3DNLFEA) program.
3DNLFEA is an in-house program developed by the authors which focuses on non-linear 
analysis for reinforced concrete structures. 3DNLFEA is now under heavy development 
focusing on parallel computation and the use of Graphical Processing Unit (GPU) to improve
the computational performance. The pre- and post-processor use SALOME [12] and ParaView
[13, 14], respectively. In solving the global equilibrium equations in the non-linear finite 
element analysis, the initial elastic stiffness method combined with a process modification [15]
(acceleration technique) are used in the analysis. The constitutive model for concrete and steel 
materials are based on the plasticity model developed by the authors [2, 3] and a J2 plasticity
with zero hardening modulus, respectively. The 2nd order effects are considered using an
updated Lagrangian formulation.

Two experiments from Lai and Ho [11] are selected for comparisons. The first and the second 
specimen have an annotation of CN0_4_139_100 and CN0_8_168_120, respectively. The first 
term of the annotation which is “CN0” shows that the specimen is a pure CFST column with 
no additional external confining devices provided. The second term shows the thickness of the 
steel tube in mm. The outer diameter (mm) is shown in the third term and the uniaxial concrete 
compressive strength (MPa) is shown in the fourth term. The height of the CN0_4_139_100 
and CN0_8_168_120 specimens are 420 mm and 330 mm, respectively. The CN0_4_139_100 
and CN0_8_168_120 specimens are constructed with 1,953 and 1,944 hexahedral elements,
respectively. Both ends of the CFST column are fixed. The loading in the analysis is controlled 
using a displacement control applied at the top end of the specimen.

Figure 4 and Figure 5 shows the meshed elements, Von-Mises stresses, the hardening 
parameter and the lateral modulus for the CN0_4_139_100 and CN0_8_168_120 specimens, 
respectively. The output data was evaluated at the final load step. The Von-Mises stress 
distribution in concrete for both specimens is similar despite the different ratio of the height 
over diameter (l/d) of the specimen (see Figures 1b and 2b). Since both ends of the specimens 
were fixed, the localization during softening occurs at the mid-height of the specimen. From
Figures 4c and 5c, the hardening parameter (k), which is a measure of cumulative plastic 
volumetric strain, has the highest value at the mid height. As for the lateral modulus, 
theoretically, if there are no increases in the confining pressure, the value of the lateral modulus 
should be zero. However, the values of the lateral modulus shown in Figures 4d and 5d are not 
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zero which explains that even under softening, the confining pressure is still increasing.
Figure 6 and Figure 7 show the comparison of the axial force versus the axial strain between 

the 3DNLFEA and the experimental results. Note that in Figures 6 and 7, the input data for the 
3DNLFEA is shown below the specimen ID. For example, in Figure 6, the first line below the 
specimen ID identifies the actual concrete compressive strength in MPa (F104.5), the Young’s 
Modulus of the concrete in GPa (E34.5) and the concrete uniaxial axial peak strain at the peak 
stress (EPS0.0038). The second line below the specimen ID shows the actual yield stress of the 
steel tube in MPa (S361), the Poisson’s ratio of the steel tube (P0.29), the Young’s Modulus of 
the steel tube in GPa (E205) and the thickness of the steel tube in mm (T7.82).

From the comparisons, the overall predicted responses for both specimens are in good 
agreement. The prediction of the peak axial load for CN0_4_139_100 is slightly higher than 
the experiment and the traced softening response is steeper than the experiment. However, the 
predicted residual stress, where the axial load is almost like a plateau, is in good agreement with 
the experiments. For the CN0_8_168_120 specimen, the predicted peak stress and peak strain 
are excellent. The softening response is excellent up to some degree, however, as the specimen 
softens further, the predicted axial load carrying capacity is higher than the experiment. 

(a) (b) (c) (d)
Figure 4 (a) 3D Model of CN0_4_139_100 specimen (b) Von-Mises Stress (c) Hardening parameter 

(d) Lateral Modulus parameter (EL)
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(a) (b) (c) (d)
Figure 5 (a) 3D Model of CN0_8_168_120 specimen (b) Von-Mises Stress (c) Hardening parameter 

(d) Lateral Modulus parameter (EL)

Figure 6 Comparison between 3DNLFEA and CN0_4_139_100 experimental result
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Figure 7 Comparison between 3DNLFEA and CN0_8_168_120 experimental result

4 CONCLUSIONS
This paper investigates the plastic dilation rate behavior of CFST columns. The experimentally 
extracted plastic dilation rates are compared with the plastic dilation rate formulation proposed 
by the authors. The comparison of the plastic dilation rate shows good agreement despite
slightly higher prediction for high strength concrete. For a concrete-filled-steel-tube (CFST) 
specimen, once the steel tube yields, the value of the lateral modulus drops and thus the limit 
of the plastic dilation rate [2] remains untouched. Further, it was found that for normal strength 
concrete, the plastic dilation rate after the steel tube yields is almost constant. However, this did
not mean that the confining pressure is constant. The confining pressure increases, but the 
lateral modulus reduces and produces an almost constant plastic dilation rate. Although the 
plastic dilation formulation was initially developed using data from FRP confined concrete, the 
formulation is also valid for CFST specimens. To further verify the developed plasticity 
constitutive model, comparisons between the CFST experiments from the literature with the 
non-linear finite element analysis (3D-NLFEA) were also presented. The comparisons between 
the model and the experiments were excellent with sufficiently high accuracy prediction of the 
peak axial load and peak axial strain. Further work will concentrate on obtaining more 
experimental data for high strength concretes.
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Summary:  The mechanical behavior of visco-plastic materials such as nickel-based alloys is 
highly dependent on temperature. Some characteristics such as viscosity, hardening, static 
recovery, dynamic recovery have more or less influence on the overall behavior depending on 
the considered temperature. The unified constitutive model developed by Chaboche [1] is 
very efficient in representing this complexity as it is very adaptable and can contain many 
features. A basic Chaboche model contains a viscosity law and one or several hardening 
equations. Within these hardening equations, it is possible to add several features that will 
represent the complex behavior of the material. 

The aim of this study is to understand the role of the different parameters and the influence 
of the different features in an advanced Chaboche model adapted to cyclic anisothermal 
loading. This specific model was also developed in [2],[3]. However, part of this study is 
based on particular cases where different features of the model are analyzed [4]–[6]. 

1 INTRODUCTION 
The use of nickel-based superalloys at high temperature requires advanced visco-plastic 

models to accurately represent the material behavior. The Chaboche model is very efficient 
for representing complex behavior as it can include various features such as isotropic 
hardening, kinematic hardening, static recovery, or thermo-mechanical behavior. The 
drawback of this type of model is the number of parameters. Indeed, a high level of accuracy 
of the model requires a high number of parameters. As a consequence, the determination of 
these parameters can be an arduous task. To facilitate this important step in the completion of 
the model, a sensitivity study can provide valuable information. The sensitivity analysis 
reveals which tests are more relevant for the determination of each parameter, but also how 
the parameters can impact the model and what physical meaning they have. 
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2 VISCO-PLASTIC MODELING 
The visco-plastic model used in this study is a Chaboche-type constitutive model as 

developed in Ahmed, 2013 [2] for superalloy Haynes 230 at high temperture. This model, 
described hereafter, was implemented in the 3D finite element code Lagamine [7] developed 
at the University of Liège. For simplification, the model is described here as a 1D model, 
since only uniaxial tests are used in this study. 

2.1 Visco-plasticity 
The mechanical strain can be decomposed in an elastic contribution and a visco-plastic 

contribution: 
          (1) 

The elastic strain and the stress are related through Hooke's law, where E  is the Young's 
modulus: 

       (2) 

The yield locus is defined by the von-Mises criterion, with   the back-stress,    the initial 
yield strength, and   the isotropic hardening variable: 

              (3) 

The viscosity is modeled through Norton's equation (equation (4)), with viscous 
parameters   and  .  
                 

 

                   
        

  

(4) 

2.2 Hardening equations 
The evolution of the isotropic variable  , described by equation (5) depends on the plastic 

strain rate    and on two parameters   and  .   can be understood as the rate at which variable 
  will reach its saturation value  . 
             (5) 

The back-stress   is composed of one or several back stresses   . Each of these    obeys a 
non linear kinematic hardening rule defined through an Armstrong-Frederick equation [8]. 
Following the work of Yaguchi et al., 2002 [4], [5] a state variable    can be added in the 
equation in order to model the evolution of the mean stress and a temperature-dependency 
term is used for anisothermal modeling. The variable    is controlled by parameters      and 
     , both positive. The equation of a back stress    therefore consists of 4 terms:  

 strain hardening, controlled by parameter   ; 
 dynamic recovery, controlled by parameter   ; 
 static recovery, controlled by parameters    and   ; 
 temperature rate, with the influence of parameter   . 
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(6) 

Cyclic hardening is represented by the evolution of the dynamic recovery parameter   . The 
rate of evolution of this parameter is controlled by the plastic strain rate    and a parameter 
   . The parameter    evolves towards a saturation value     which depends on the radius of 
the strain memory surface  . The strain memory surface    is defined by equation (8), where 
     is the Heaviside step function. 
                   

                  
      

(7) 

                     
                
             

(8) 

2.3 Influence of the maximum temperature 
In the case of anisothermal cyclic loading on Haynes 230, experiments show that the 

maximum temperature of the cycle has an influence on the overall behavior of the material 
[2]. This is modeled by a variation of the Young's modulus, expressed as a weighted average 
of the initial Young's modulus at temperature   and the Young's modulus at maximum 
temperature     : 
                   

                 
(9) 

The weighted average factor    represents the weight of the initial Young's modulus. A 
small value of    corresponds to a significant influence of the maximum temperature.    
evolves at a rate    towards a saturated value    . 

3 METHOD 
The sensitivity study was conducted using reference sets of parameters available in the 

literature. These sets of parameters came from models that did not contain as many features as 
the model hereinbefore presented. However, using different sub-models allowed to study the 
sensitivity of the model to each of the parameters. 

3.1 Numerical tests 
The sensitivity study was conducted numerically on each parameter by performing a cyclic 

test and modifying one parameter at a time. Different sets of reference parameters were used 
to perform the simulations. Table 1 summarizes the reference articles used depending on the 
tested parameters.  
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Table 1 : Reference articles used to obtain parameters 

Parameter studied Set of reference parameters used 
                    Zhan and Tong, 2007 [6] 

                                   Yaguchi et al., 2002a [4] 
       Yaguchi et al., 2002b [5] 

 
The first model used [6] is an isothermal model describing the behavior of Alloy X at 

650°C with two back-stresses for kinematic hardening, where no static recovery effect is 
taken into account. To study the influence of static recovery, variable Y, and cyclic hardening, 
a different model was used [4]. The latter describes the behavior of IN738LC at 850°C. 
Kinematic hardening is modeled using only one back-stress, with an internal variable Y. The 
influence of parameters    and     was tested on an anisothermal model [5] identical to [4]. 

It is to be noted that no reference was available for parameters                      and    , 
therefore, a reference value was determined for each of these parameters through trial and 
error, to obtain results that seemed coherent with the experimental data available (although 
the parameters were not determined to fit experimental curves). These reference values are 
summarized in Table 2. 

Table 2 : Reference parameters 

                         
10 300 100 10 0.2 1000 0.2 

 
The sensitivity of the model on the different parameters was tested on two strain-controlled 

cyclic tests. A schematic representation of one period of the cyclic tests is given in Figure 1 
(a). Anisothermal tests (Figure 1 (b)) were used to evaluate the sensitivity of the model to 
parameters    and    . For both Test 1 and Test 2, the strain amplitude is      . The strain 
rates    and hold times    of Test 1 and 2 are respectively {0.1%/s, 20s} and {0.001%/s, 
1000s}. Each of these tests were performed for 50 cycles, which is enough for the stress-strain 
hysteresis loop to reach its saturation value using the reference parameters. 

 
(a) 

 
 

 

(b) 

 
Figure 1: (a) Strain-controlled isothermal test; (b) Strain-controlled anisothermal test 
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3.2 Sensitivity criteria 
Different criteria    were used to determine the sensitivity of the model to the different 

parameters: 
     The tensile stress before the first hold time (equivalent to the stress at the end of 

a tensile test); 
     The amount of stress relaxation during the first hold time (equivalent to a 

relaxation test); 
     The stress amplitude      

         
  at the 50th cycle; 

     The mean stress       
         

  at the 50th cycle. 
The mean stress and the stress amplitude were also used as criteria to study the sensitivity 

over the cycles. 
For each criterion   , the sensitivity to a parameter   is expressed as      . The criterion    is 

computed for three values of the parameter   and the sensitivity       is calculated as the slope 
of the       line obtained from a linear regression. 

4 RESULTS 

4.1 Viscous parameters     
The viscous parameters   and   represent the relation between the stress and the strain 

rate. Figure 2 shows the sensitivity of criteria          and   . Both parameters have an 
influence on the tensile stress (  ) and on the stabilized stress amplitude (  ). The stress 
relaxation is also influenced by these viscous parameters but to a smaller extent.  

 

  
Figure 2: (a) Sensitivity to the drag stress  ; (b) Sensitivity to the viscous exponent   

4.2 Isotropic hardening parameters     
The isotropic hardening parameters   and   control the growth of the yield surface. 

Knowing this, it is predictable that these parameters will influence mostly the tensile stress 
and the stress amplitude. Figure 3 shows that these parameters influence mainly the stress 
amplitude over the cycles, with   reaching a peak around the 10th cycle, where the stress 
amplitude starts to stabilize. The small sensitivity of the tensile stress to these isotropic 
hardening parameters is due to the test itself, which only reaches a 1% strain, therefore not 
allowing isotropic hardening to fully develop. In practise, a tensile test to rupture would show 
as much sensitivity to isotropic hardening as the cyclic tests that were performed here. 
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Figure 3 - (a) Sensitivity to parameter  ; (b) Stress amplitude and mean stress sensitivity to   over cycles; (c) 
Sensitivity to parameter   

4.3 Kinematic hardening parameters    
Kinematic hardening is characterized by a change in the position of the yield surface. As 

for isotropic hardening, the parameters controlling kinematic hardening influence the tensile 
stress and the stress amplitude, as seen in Figure 4. As shown in Tong et al. [9], the use of two 
parameters    and    allows the description of a transient region with a fast growing back-
stress    and a steady-state behaviour once    has reached its stabilized value, with back-
stress    growing at a quasi-steady pace. The parameters    and    also have an influence on 
the shape of the hysteresis loop, and more particularly on its curvature in the visco-platic 
domain. 

 

  
Figure 4 - (a) Sensitivity to parameter   ; (b) Sensitivity to parameter    

4.4 Dynamic recovery parameters    
The dynamic recovery parameters    and    have the opposite effect of    and   . Figure 5 

shows that    and    show a negative sensitivity to both    and   , which means an increase 
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in    will lead to a decrease in   . Similarly to the kinematic hardening parameters,     and    
also have an effect on the curvature of the hysteresis loop. 

 

  
Figure 5 - (a) Sensitivity to parameter   ; (b) Sensitivity to parameter    

4.5 Static recovery parameters       
To study the influence of the static recovery parameters, the internal variable   was not 

taken into account. Indeed, parameter    is used both in the static recovery term of the back-
stress evolution and in the evolution of internal variable   - equation (6). Figure 6 shows the 
sensitivity to static recovery parameters       without considering the effect of    on  . It is 
apparent that Test 2, which is slower and has longer hold times than Test 1, is much more 
impacted by the variation of these parameters. This is an expected result considering static 
recovery is a phenomenon that takes place at a constant strain. The influence is maximal on 
the stress relaxation (criterion   ), but also appears on the other criteria. This can be explained 
by equation (6): a higher value of    or    will lead to a greater decrease in the back-stress   , 
therefore lowering the tensile stress and stress amplitude.  

 

  

Figure 6 - (a) Sensitivity to   ; (b) Sensitivity to    (without considering the internal variable Y) 

4.6 Mean stress evolution parameters                
The internal variable    that controls the evolution of the mean stress over cycles is 

calculated using three parameters               . Figure 7 (a) represents the sensitivity to 
parameter     .  
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Figure 7 - (a) Sensitivity to     ; (b) Sensitivity to modified      

The sensitivity computed with Test 1 seems coherent: the parameter influences only the 
mean stress. However, sensitivities computed with Test 2 give rather unexpected results, and 
show a bigger influence on the stress amplitude than on the mean stress. The reason for this 
can be found by considering the evolution of variable    over time, described by equation (6). 
The variable    varies within        and       . Therefore, according to (6),     is positive 
when      and negative when      unless    has reached its upper bound or lower 
bound. During a cycle, if      is small enough,    decreases slowly while      (tensile 
deformation), and then increases when      (compressive deformation). The time spent in 
compressive deformation is much smaller than in tension, therefore, the variable    globally 
decreases over cycles. However, if      is too big compared to the frequency of the test, the 
variable    reaches its upper and lower bound during the first cycle. This is an unwanted 
effect because    will assume positive values, meaning the mean stress can increase over 
cycles, which is physically incoherent. 

As a result, in order to represent the mean stress evolution properly,      should be chosen 
accordingly to the frequency of the cyclic test. Particularly, the value of      should be bigger 
for bigger frequencies. Figure 7 (b) shows the sensitivity to     , using                for 
Test 2. It appears clearly that      then only influences the mean stress.  

The influence of parameters       and    is tested using the modified value of      for Test 
2. The results are shown in Figure 8.       has an influence on the mean stress, as expected.    
has an influence on both stress relaxation and mean stress since this parameter is used both for 
the variable    and for the static recovery term in the equation of the back-stress.  

 

  

Figure 8 - (a) Sensitivity to      ; (b) Sensitivity to    
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4.7 Cyclic hardening parameters                   

Cyclic hardening is described using five parameters that impact the value of parameter    
over the cycles. Parameters     and   control respectively the rate of cyclic hardening and the 
rate of growth of the plastic strain memorization surface. Figure 9 (a) and (b) show the 
sensitivity of the stress amplitude and mean stress to     and  . In both cases, the sensitivity 
grows to a peak value, and then decreases towards 0 as the values of    (for    ) and   (for  ) 
stabilize.         and     control the stabilized value of   . Therefore, it is expected that these 
parameters only influence the stabilized value of the stress amplitude, as seen in Figure 9. 
Parameters     and     have a negative influence while     has a positive influence on the 
stress amplitude. These parameters also have a small influence on the mean stress, which can 
be explained by the fact that the evolution law of    depends on the back-stress   , which is 
itself dependent on   . The sensitivity observed for Test 2 on the mean stress should however 
not be taken into account, as it is the result of the inadequacy of       mentioned in the 
previous paragraph.  

 

  

   

Figure 9 - (a) Cyclic sensitivity to    ; (b) Cyclic sensitivity to  ; (c) Sensitivity to    ; (d) Sensitivity to 
   ; (e) Sensitivity to     

4.8 Maximum temperature parameters        

Parameters    and    , that represent the influence of the maximum temperature, do not 
have a visible and clear influence on the criteria used previously. Figure 10 shows the 
stabilized hysteresis loop of Test 1 for three values of    . Small values of     - i.e. substantial 
influence of the maximum temperature - lead to a decrease in the slope of the stress-strain 
curve in the small temperature domain (corresponding to compression strain). This is an 
expected result considering that the Young's modulus, which partly controls the slope of the 
stress-strain curve, decreases with temperature. 
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Figure 10 - Influence of parameter     on the stabilized hysteresis loop 

The influence of    is difficult to show, as    represents the rate at which the slope 
decreases over time. Ahmed, 2013 [2] suggests that    should be chosen to make    evolve at 
a quick rate, so that the saturation value     is reached for a cumulative plastic strain   of 
approximately 0.2% for Haynes 230. 

5 CONCLUSION 
 Based on numerical tests, the sensitivity of the model to each of its parameters was 

determined based on various criteria. The results of this sensitivity study were analyzed to 
narrow down the number and type of tests necessary for the determination of each parameter. 
The study shows that tensile tests, relaxation tests, and cyclic tests are necessary for the 
determination of the parameters of this model. A special attention should be given to 
parameter      for the representation of the mean stress evolution. Indeed, the sensitivity 
study revealed that this parameter must be chosen with consideration to the frequency of the 
test simulated. Particularly, low-frequency cyclic tests should be modeled with a small value 
of     . 

Further work needs to be made to determine a dependency law between      and the test 
frequency, based on experimental tests. The sensitivity study can also serve as a basis to 
establish a method for the determination of the parameters. 
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 Ventricular assist device, blood damage, platelet activation, pulsatile flow. 

 A ventricular assist device (VAD) is a blood pump that works in parallel with 
heart. It is used as a mechanical assistance for patients that suffer cardiac insufficiency: as a 
therapy, as a bridge to transplant or to extend life. The blood flow simulation into VAD is of 
great interest for the design and evaluation, mainly before building the prototypes. In previous 
works, by means of blood flow simulation, was evaluated a new concept of implantable VAD 
consisting on a pump with a double effect piston, driven without contact and four active 
valves. In this work, the flow into VAD is analyzed for four frequencies values: 1.05, 2.10, 
3.15 and 4.20 Hz. The former is the physiologic frequency, the second allows the basal flow 
rate (5 l/min), while the others are higher in order to assure an increase in flow rates. The 
analysis is carried out comparing variables as velocity and pressure distribution into VAD and 
evaluating blood damage due to acting shear stress over cells. The blood flow simulation is 
performed on a 2D simplified geometry using COMSOL Multiphysics software to resolve 
NavierStokes and continuity equations, assuming blood as a Newtonian incompressible fluid. 
The blood damage is evaluated by means of platelet activation state index and a cumulative 
damage model. The global variables as flow rate, force and power to impel fluid, are shown in 
agreement with theoretical predictions. The risk of blood damage raises for higher 
frequencies, however, the predictions shown that the VAD analyzed is comparable and best to 
other VAD and mechanical heart valves. 
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Heart failure (HF) affects heart avoiding the accomplishment of its function; this is 

currently one of the greater pandemics in the world [1], mainly in the occidental world. 
People suffer HF can be assisted with different treatments, mainly when the pathology is in 
advanced stages. A possible one for patients with HF is the mechanical circulatory assistance 
(MCA), which has been accepted as a therapeutic option, as a bridge to heart transplant or in 
cases where this is not possible; even more when the number of people affected by HF 
increases and the number of donors for a heart transplant (HT) relatively diminishes. 
However, HT is the more accepted option by the medical community [2]. 

Ventricular assist devices are pumps that are placed in parallel to the heart, usually 
pumping blood from the left ventricle into the aorta (LVAD). Implantables VAD are given 
more attention because they can be fully implanted and allow longterm care (from months to 
some years), as well as to improve the quality of life because they allow patients to do simple 
daily activities. A VAD is a therapeutic option to be used as a definitive solution, as a bridge 
to HT or, in some cases, as a treatment to recover the normal function of the damaged heart. 

In previous works [3, 4, 5], using a numerical simulation of blood flow, a new concept of 
VAD was analyzed in a simplified way. This is a doubleacting pump with a noncontact and 
external driven piston (i.e. electromagnetically) and four active valves. In this work, the flow 
in the same device for four operating frequencies (f) (1.05, 2.10, 3.15 and 4.20 Hz) by 
comparing the fields of velocity and pressure and the applied power, is studied. In addition, 
blood damage caused by the shear forces for f=2.10 Hz and f=4.20 Hz are compared. Blood 
flow is simulated into a simplified twodimensional (2D) geometry using the COMSOL 
Multiphysics software, solving the NavierStokes and continuity equations, assuming blood as 
an incompressible and Newtonian fluid. Blood damage is assessed by calculating the platelet 
activation state (PAS) using a cumulative damage model [6, 7]. 

 


Starting from the concept of a simple design volumetric pump and taking into account the 

functional VAD’s characteristics, a twodimensional (2D) approach is made. This approach 
involves the simulation of blood flow to investigate its possible damage. The simplified VAD 
geometry is presented in Figure 1; it has a piston, two chambers, right and left (LC and RC), 
input and exit ducts, two inlet valves (Vi) and two output valves (Vo). Piston without contact 
would demand high electromagnetic technology to be driven. The 2D geometry is selected to 
acquire preliminary knowledge using standard computational resources, as a guide for further 
investigation with more realistic geometries. 

The double effect piston is assumed with periodical movement, in each run, piston pumps 
blood from one chamber and suctions it in the other, while two valves are open and two others 
are closed. The movement of each valve depends only of an actuator that controls the closing 
and reopening speed. The actuators move valves normally to flow in the input and exit 
conduits, they open and close in a few milliseconds assuming no secondary effects as rebound 
or vibration. The simulation of valves opening and closing, is done using moving meshes, 
with appropriate functions that allow a valve to be in synchronism with the piston movement, 
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as is described in a previous work [5]. 
Figure 1 shows a Cartesian twodimensional simplified diagram of VAD, where the piston 

is moving to the left, pumping blood from the left chamber to the outlet (red region), while 
the right chamber receives blood from the input (blue region). In this case, the upper Vi and 
lower Vo are closed to assure net flow rate. When the piston reaches the left end, the lower Vi 
and the upper Vo quickly close and the upper Vi and the lower Vo quickly open. The piston 
starts moving to the right, pumping blood from the CD to the exit and suction it from the inlet 
to the IC. 

 
: Description of VAD with input (in) and output (out) regions, the piston is moving to the left. There 

are some representative dimensions. 


As was said, numerical simulations of blood flow are made in a simplified 2D plane 

geometry. Considering blood as an incompressible and Newtonian fluid [8], the Navier
Stokes and continuity equations with the governing law of motion for piston and valves 
movements, are solved using an appropriate coordinate mapping as described in the next 
section. 


Equation 1 and 2 represent a simple harmonic motion (Xp), which is appropriate for this 

kind of pump, where A=2.0 cm is the amplitude in each chamber, Vp is the harmonic velocity 
of piston and f is the frequency of movement; the parameter of interest in this work. The 
movement of each valves, is implemented with ad hoc functions that avoid the collapse of the 
elements [3, 5]. This motion produces a deformation of the flow domain and to trace it, an 
Arbitrary LangrangianEulerian (ALE) deformable mesh technique is implemented [10] [9]. p =  sin (2f )  (1) 

p = 2f  cos (2f ) 
(2) 


On fixed and moving solid surfaces, noslip boundary conditions are considered. Thus, =0 on 
the chamber and ducts walls, =Vp on the piston wall and =Vvalve on the valves boundaries 
are imposed [5]. On the input and output sections, reference pressures are imposed: Pin = 0 
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and Pout =13.3 kPa (~ 100 mmHg), which approaches the mean aortic pressure. Furthermore, 
constant values are assumed for the viscosity and blood density: 1.060x103 kg/m3 and 3.5x103 

Pa·s, respectively [3, 10, 7].   


The 2D geometry is divided with a mesh of Ne (see table 1) triangular elements P3P2 

kind, whose size varies according to each adopted f. The maximum and minimum dimensions 
of elements where taken according to a suitable refinement test. The maximum time step is 
reduced as f increases. Table 1 shows these parameters for each of four simulations. The 
simulated time intervals are 1.2 s for 1.05 Hz, 1.0 s for 2.10 Hz, 0.5 s for 3.15 Hz and 0.5 s for 
4.20 Hz. The simulation time interval is selected to complete at least one operating cycle to do 
possible the computation and comparison of blood damage. 

The system of equations is solved simultaneously through a monolithic scheme. In order to 
start the simulation, a higher viscosity is used while all variables are initialized with zeros. 
Although the initial higher viscosity quickly descends to the assumed value, in all the 
simulations the first halfcycle is not considered for the analysis. 

: Parameters for each simulation. 

Frequency 
f [Hz] 1.05 2.10 3.15 4.20 

Simulated time 
period [s] 1.20 1.00 0.50 0.50 

Maximum time 
step [s] 1x103 5x104 4x104 2x104 

Maximum element 
size [m] 5 x103 5 x103 5x103 2.5 x103 

Total number of 
elements 
Ne (x103) 

206 206 206 376 

 


Since the DAV is a volumetric pump, the output flow is obtained by integrating the normal 

component of the velocity (vx) in the output section as defined in equation 3. The pumping 
force and the pumping power are determined by equation 4 and 5, respectively. It should be 
noted that the area integral for the force, becomes line integral over the contour of the piston 
for the 2D geometry, where , is the vector of tension x component over piston surface. 

 

 =    
(3) 

 =  ,   (4) 
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 =  ∗   (5) 


The platelet activation phenomenon modeling is a complex task. If considering only physical 
aspects, platelet activation state (PAS) can be predicted using a model based on the rate at 
which the shear stress is applied. This model should consider, also, the history of shear stress 
acting on the cells. Thus, in this work the model proposed by Nobili et al.[7] is adopted. For 
its application, the path of a set of PLs drifting in the flow domain must be known. For that 
purpose, it is supposed that PLs moves masslesslike virtual particles and their pathes are 
computed by integration of velocity field. Then, the equivalent shear stress (τ) is evaluated for 
each PL (particle) path by equation 6 proposed by De Tulio et al., [11]. Finally, the shear 
stress history is used in equation 7 to evaluate the PASn, that is the PAS for the nPL, where 
the constants a, b and C are extracted from Nobili et al. [7]. A global quantity PASmean can 
be computed as the average of all PASn by means of equation 8, over a set of PLs released at 
the same time in a given region. In this work, four groups, each one composed for a set of N= 
20 particles representing the PLs, are released. Four groups are considered for simulation, two 
groups corresponding to 2.10 Hz (one for each chamber) and, in the same way, two groups 
corresponding to 4.20 Hz, see table 2. 

 = 12 2  − 2  + 4   + 
 

(6) 

 =     +   
 

 /  
(7) 

 =  1  


  
(8) 

: PLs groups for blood damage evaluation. 

Groups 1 2 3 4 
N  Number of Pls  20 20 20 20 
Time initial [ms] 150 ms 150 ms 100 ms 100 ms 
Frecuency [Hz] 2.10 2.10 4.20 4.20 

Chamber LC RC LC RC 
Initial position Vi in LC Vi in RC Vi in LC Vi in RC 

 
The model used to evaluate the PASmean is the most used by the reserchers’ community and 
is the most cited in literature [6, 7, 10, 5, 12]. It predicts the platelet activation because of 
shear stress from physiological or artificial source. This cumulative damage model is adapted 
to represent experimental situations of pulsating shear stress, in this case the model works 
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appropriately as described by Nobili et al.[7]. However, there are situations of high shear 
stress in which the model can not properly represent the sensitization of PL [12]. 
It is important to note that numerical simulation of platelet activation is an open study field 
and there is not an optimal model for all situations of  blood flow (natural or artificial). The 
model used in this study was modified by Sheriff et al. (2013), incorporating new parameters 
to better represent blood damage in many flow situations. However, these researchers have 
pointed out model limitations to represent certain in vitro results due to the power law 
description (see equation 7). 
 

 

 
Figure 2 shows the output flow rate generated by the VAD operating at different 

frequencies. This flow rate is composed by: the flow rate pumps by the piston whose shape is 
a "sinusoidal rectified" function; the overflow rate induced for the closing of a respective 
valve (positive peak) and a backflow rate induced for the opening of the counterpart valve 
(negative peak). This flow rate is obtained integrating as is indicated by equation 3. On the 
other hand, in figure 3 is presented a comparison between the ideal flow rate for a cycle 
(without differential flow rates because valves), represented by the blue line, versus the 
average flow obtained in each simulation, indicated by red dots. 

Figure 4 depicts the magnitude of velocity field when the piston moves to the left at the 
maximum speed, in the four images the scale is the same (0 to 3 m/s). When the operating f 
raises, the speed at certain points is greater, as happens at the valve gaps. 

    

 

 Flow rate for each frequency. The horizontal line indicates the average flow rate. 
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: Average flow rate for each operating frequency (in red). The blue line indicates the ideal flow rate. 

 
 

a) f = 1.05 Hz  
Time in 0.476 s; Vp = 0.13 m/s and Vmax = 1.69 m/s 

c)  f = 3.15 Hz 
Time in 0.476 s; Vp = 0.39 m/s and Vmax = 2.2 m/s 

  
b) f = 2.10 Hz 

Time in 0.358 s; Vp = 0.27 m/s and Vmax = 1.72 m/s 
d) f = 4.20 Hz 

Time in 0.358 s; Vp = 0.52 m/s and Vmax = 3.4 m/s 

 

: Velocity field module for the instant when the piston moves at the maximum speed to the left. The 
maximum velocity is indicated with a red circle, in the location of valve gaps for a) and b), and into the input 

branch for c) and d).  

 
Figure 5 shows the pressure distribution in LC, very close to the edge of the piston. It is 

observed that the mean pressure in each halfcycle is equal to the inlet pressure (0 Pa) or the 
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outlet pressure (1.3x104 Pa). As frequency rises, the time derivative of pressure, raises too. In 
addition, the pressure peaks generated by the valves closing and opening are relatively higher 
because the closing and opening speed increases with frequency. 

 

 

: Pressure into the left chamber for each operating frequency. 

 
The Fx(t) required to drive the fluid over time, is obtained by equation 4 and is presented 

in figure 6 for the frequencies analyzed. As the f increases, the time derivative of Fx is 
strongly modified. The instantaneous pumping power (Pwr(t)) is depicted in figure 7, where 
the average power for a cycle is indicated by a line for each frequency. 

 

 
: Force on fluid for each operating frequency. 
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: Power on fluid for each operating frequency. 

 
The platelet trajectories in the blood flow are of the kind of those show in Fig. 8, the 

trajectories in dashed line correspond to PLs for the DAV operating at 2.1 Hz released at LC 
(group 1) and released at RC (group 2) for red and blue color respectively. While the 
trajectories in continuous line correspond to PLs for the DAV operating at 4.2 Hz, released at 
LC (group 3) and released at RC (group 4) for red and blue color respectively. 

 

 
: Some PLs paths correspond  to examples of: group 1 (2.1 Hz) released at LC (red dashed line), group 
2 (2.1 Hz) released at RC (blue dashed line), group 3 (4.2 Hz) released at LC (red solid line) and group 4 (4.2 

Hz) released at RC (blue solid line). The y dimension has been shifted to better comprehension. 

The calculated shear stress as indicated in equation 6 varies over time along of a PL path. 
Figure 9 shows the variation of the shear stress as a function of time, for the same trajectories 
presented in figure 8. It may be observed that the highest stress reaches 4.1 Pa for the 
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trajectory of group 4. When evaluated the PASn by equation 7 in these trajectories, the 
functions that are depicted in figure 10 are obtained. 

 
: Shears stress for the PL paths corresponding to examples of figure 8. 

 
: PASn for each path of the figure 8. Group 1: red dashed line, group 2: blue dashed line, group 3:red 

solid line and group 4: blue solid line. 

 
 

 PASmean for the four groups. Group 1 (2.1 Hz) released at LC (red dashed line), group 2 (2.1 Hz) 
released at RC (blue dashed line), group 3 (4.2 Hz) released at LC (red solid line) and group 4 (4.2 Hz) released 

at RC (blue solid line). 
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Figure 11 shows the all PASmeans obtained. Groups 1 and 2 have practically the same 
slope of growth at the end of curves, which is 2.85x106 1/s, while group 3 has a slope of 
3.65x106 1/s and group 4, 3.35x106 1/s. These high slopes for group 3 and 4, imply a greater 
possibility of blood damage. 

 

 
Fig. 3 shows that the VAD output flow rate is proportional to the frequency and is smaller 

than theoretical flow rate prediction. This occurs as a consequence of differential flow rate 
induced for the valve closing and reopening and losses for the pistonchamber wall clearance. 
Some unexpected results are obtained in the simulation of blood flow, those are the maximum 
velocities that appear inside the flow when driven frequencies are high (see fig. 4 c and d). 
This fact may be explained because the Re number has values of 900, 1900, 2800 to 3700 at 
the input and output conduits, for the four simulated frequencies. Thus, the laminar model in 
these cases of high frequencies may be inappropriate due to possible local turbulence, this 
may be resolved with more refined discretization and best computational resources. 

As the piston movement f increases, higher velocities are developed within the flow, which 
leads to an increase in the shear stress on blood involving an increasing risk of blood damage. 
This fact can be verified by comparing the shear stresses for the simulation corresponding to 
f= 2.10 Hz (groups 1 and 2) versus the simulation corresponding to f = 4.20 Hz (groups 3 and 
4), for practically the same number of cycles. Figure 9 shows the shear stresses are higher for 
groups 3 and 4, and it happens with faster variations in time (more abrupt peaks), in certain 
way, this is explained by the tortuous trajectories followed by particles (see figure 8). 

In Figure 2, it can be seen that the output flow rate as the frequency rises, has  
instantaneous higher peaks (positives and negatives) due to the valve closing and reopening, 
that derive in pumping efficiency loss and increasing possibility of blood damage. On the 
other hand, figure 5 shows that pressure peaks increase more than twice; the positive peak 
generated by the Vo closure, goes from 2.5x104 Pa for f = 2.10 Hz to 6.0x104 Pa for f = 4.20 
Hz, while the negative peak generated by the Vi opening goes from 1.0x104 Pa for f = 2.10 
Hz to 3.0x104 Pa for f = 4.20 Hz. This high reduction of suction pressure may promote blood 
damage by flow cavitation, as is discussed in a previous work [1, 2, 6]. 

When the PASmean results, from 2.85x106 1/s to 3.35x106 1/s for group 4, are compared, 
all of these values are lower than the results obtained by Morbiducci et al. [10] (6.0x106 1/s) 
by a simulation of 350 ms period of time for a mechanical cardiac valve (MHV). Therefore, 
even in the case of elevated frequency, VAD could cause less blood damage than an MHV. 

It is important to note that predictions in this work, must be compared with predictions of 
future research. The need of a 3D realistic geometry arises, so as to make the  model better for 
active valves and the piston driven without contact. A higher computational cost must be 
assumed. 

 

 
A ventricular assist device consisting in a driven piston without contact and four active 

valves, pumping at four different frequencies: 1.05, 2.10, 3.15 and 4.20 Hz, considering a 
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simplified plane 2D geometry and laminar flow conditions,was simulated. Global variables as 
output flow rate, force and power applied to the flow have practically linear dependence 
behavior with the driven frequency parameter. 

The results obtained show that, the emerging blood damage due to flow conditions, as 
velocities, pressures and acting shear stress, are far from the risk values. In this sense, the 
mean platelet activation state prediction, could be of the same order of magnitude, and smaller 
than which evaluated over mechanical heart valves and other pulsatile devices.  

It is important to emphasize that predictions must be corroborated by future researches, 
considering a 3D realistic geometry, and a flow model adapted to conditions of transition or 
turbulent flow, for high frequency pumping. However, the predictions communicated in this 
paper may be taken as preliminary to conduct new computational simulation or experimental 
analysis.  

  


 

[1] Ho K.K.L., Pinsky J.L., Kannel W.B., Levy D. The Epidemiology of Heart Failure: The 
Framingham Study. JACC Vol. 22. Nº 4 (Supplement A), October 1993:6A13A. 

[2] McCarthy P.M. Mechanical Assist Devices. Volume 16, Issue 3, May 2001 Page 177. 
[3] Di Paolo, J., Insfrán, J., Fríes, E.R., Berli, M.B., Campana, D.M. and Ubal, S. A 

preliminary simulation for the development of an implantable pulsatile blood pump, 
Advances in biomechanics and applications, 1, 12714, (2014). 

[4] Fríes, E.R., Berli, M.B., Campana, D.M., Ubal, S., and Di Paolo, J., Computer simulation 
of the blood flow in a planar configuration for a pulsatile ventricular assist device. 
IFMBE Proceedings (2015) 49: 892895. 

[5] Fríes E.R., Berli, M.B., Campana, D.M., Ubal S.  and Di Paolo, J. Computer simulation of 
platelet activation in a pulsatile ventricular assist device, through finite elements and a 
simplified geometry, Latin American Applied Research (LAAR), in press. 

[6] Alemu, Y. and Bluestein, D. Flowinduced Platelet Activation and Damage Accumulation 
in a Mechanical Heart Valve: Numerical Studies, Artificial Organs (2007) 31(9):677–
688. 

[7] Nobili, M., Sheriff, J., Morbiducci, U.et al., Platelet Activation Due to Hemodynamic 
Shear Stresses: Damage Accumulation Model and Comparison to In Vitro 
Measurements”. ASAIO Journal, 54(1):64–72, (2008). 

[8] Fraser, K., Taskin, M., Griffith, B. et al.  The use of computational fluid dynamics in the 
development of ventricular assist devices. Medical Engineering & Physics, (2010) 
33:263–280. 

[9] Donea, J., Huerta, A., Ponthot, J., y Ferran, R. Encyclopedia of Computational Mechanics, 
Chapter 14: Arbitrary Lagrangian–Eulerian Methods. Edited by Erwin Stein, Ren´e de 
Borst and Thomas J.R. Hughes. Volume 1: Fundamentals. (2004) John Wiley & Sons, 
Ltd. ISBN: 047084699. 

[10]Morbiducci, U., Ponzini, R., Nobili M. et al., Blood damage safety of prosthetic heart 
valves. Shearinduced platelet activation and local flow dynamics: A fluid–structure 
interaction approach. Journal of Biomechanics, 42:1952–1960, (2009). 

469



Exequiel R. Fríes and José Di Paolo  

 13

[11]De Tullio, D., Cristallo, A., Balaras, E., et al. Direct numerical simulation of the pulsatile 
flow through an aortic bileaflet mechanical heart valve. J. Fluid Mech (2009) 622:259–
290. 

[12]Sheriff, J., Silva Soares, J. S., Xenos, M., Jesty J. and Bluestein, D. Evaluation of Shear
Induced Platelet Activation Models Under Constant and Dynamic Shear Stress Loading 
Conditions Relevant to Devices. Ann Biomed Eng (2013) (6):1279–1296. 

470



CompositesAnalysis of pre-tensioned structures by means of a constitutive serial-parallel rule of mixtures

XIV International Conference on Computational Plasticity. Fundamentals and Applications 
COMPLAS 2017 

E. Oñate, D.R.J. Owen, D. Peric and M. Chiumenti (Eds) 
 
 
 

ANALYSIS OF PRE-TENSIONED STRUCTURES BY MEANS OF A 
CONSTITUTIVE SERIAL-PARALLEL RULE OF MIXTURES 

L. G. BARBU*, C. ESCUDERO†, A. CORNEJO†, X. MARTINEZ†, S. OLLER† AND A. 
H. BARBAT† 

*, †International Center for Numerical Methods in Engineering (CIMNE) 
Universidad Politécnica de Cataluña 

Campus Norte UPC, 08034 Barcelona, Spain 
e-mail: lgratiela@cimne.upc.edu 

Key words: Pre-stressed concrete, Rule of mixtures, Composites, FEM. 

Abstract. The main purpose of this paper is to develop a reliable method based on a three-
dimensional (3D) finite-element (FE) model to simulate the constitutive behaviour of reinforced 
concrete structures strengthened with post-tensioned tendons. A 3D FE model was used, where 
the nonlinear material behaviour and geometrical analysis based on incremental–iterative load 
methods were adopted. The pre-tensioned concrete is modelled as a composite material whose 
behaviour is described with the serial-parallel rule of mixtures (S/P RoM) [1-3]. The effective 
pre-tensioning stress was applied as an initial strain imposition in the steel material used to 
model the tendons. The methodology is valid for both straight and curvilinear steel tendons. 
Examples of both cases will be shown. Validation by comparison with the analytic solution is 
done for the case of a concrete beam with a straight pre-tensioned steel tendon embedded. Other 
examples are also included. 

 
 
1 INTRODUCTION AND STATE OF THE ART 
 

Pre-stressing a structure consists in introducing a system of forces previously to the action 
of the external loads, with the objective of achieving an equilibrium state without tensions or 
cracking. In order to carry out a pre-stressing system it is mandatory to use some high 
performance materials in terms of the concrete and the steel used in the pre-stressing tendons. 
One of the main advantages of the pre-stressing system is the reduction of the material needed 
in order to build a certain structure due to the increase of the efficiency of the concrete, whose 
behaviour is better in compression. The already mentioned pre-compression of the concrete 
induced by the steel tendons can reduce or even remove the cracks at short and long term, 
enhancing the durability and impermeability of the material. 

One of the most commonly used methods to simulate the pre-stressed system (for straight 
and parabolic shaped tendons) consists in adding concentrated loads at the anchoring zones and 
an ascending distributed load that represents the effect of the curvature of the tendon along its 
path [4]. The mentioned method is simple and straightforward but is limited to simple 
geometries in which the equivalent uniform effect of the pre-stressing can be computed 
analytically. A more sophisticated method consists in simulating the continuum by means of 
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finite elements (tetrahedral and hexahedral in general) and artificially add biarticulated 
elements connecting pairs of nodes that create the effect of the post tensioned tendons [5]. The 
previous method achieves satisfactory results but, implicitly, the mesh is conditioned by the 
path of the tendons whose trajectory has to connect nodes of the finite element mesh. This 
conditioning can be challenging when meshing. In addition, the sliding between the steel tendon 
and the concrete cannot be added as occurs in real cases. 

The formulation shown in this article requires only a finite element mesh of any type and 
any spatial discretization. In this case the steel tendons are taken into account in a constitutive 
way, which means that the active steel is a component of the composite material of each finite 
element of the mesh that coincides with (is intersected by) the path of the tendon. This implies 
that the stress and strain state at each integration point is computed from the participation of 
each component inside the influence zone of that integration point. This global participation 
results of imposing the equilibrium and/or compatibility between the simple materials at each 
point, by means of a formulation called Serial-Parallel Rule of Mixtures. Applying the 
mentioned theory one can assume that each material behaves following its own constitutive law 
(elasticity, damage, plasticity, viscoelasticity, etc.). The same formulation takes into account all 
the materials in order to obtain the behaviour of the composite. Finally, the pre-stressing is 
introduced as an initial imposed strain in the active steel which is going to be partially 
compensated by the concrete. Next, the displacement field is updated until a global convergence 
of forces is achieved. 

2 CONSTITUTIVE MODELLING OF PRE-STRESSED REINFORCED CONCRETE 
WITH THE SERIAL-PARALLEL RULE OF MIXTURES 

The serial/parallel mixing theory (S/P RoM) is based on the definition of two different 
compatibility equations between the strain and stress states of the composite constituent 
materials: it defines an iso-strain condition on the parallel direction, usually the fiber direction, 
and it defines an iso-stress condition on the serial direction, usually the remaining directions. 
Using these compatibility equations in a composite made of matrix and fiber, if the matrix 
structural capacity is lost due to excessive shear stresses, the iso-stress condition also reduces 
the shear capacity of fiber, and consequently the composite serial strength is also reduced.  

For this reason, it is necessary to define, and split, the serial and parallel parts of the strain 
and stress tensors. This is done with two complementary fourth order projector tensors, one 
corresponding to the serial direction ( SP ) and the other to the parallel direction ( PP ). These 
tensors are defined from the fibre axial direction in the composite. Thus, 

SP     with  :PP P  and  :SS P  (1) 

where,  
PS PIP  ; PPP NNP   and 11 eeNP   (2) 

Being 1e , the director vector that determines the parallel behaviour (fibre direction), and I  the 
identity. The stress state may be split analogously, finding its parallel and serial parts using also 
the 4th order tensors PP and SP : 
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SP    with  :PP P and  :SS P  (3) 

 
3.1 Hypothesis for the numerical modelling 

  
The numerical model developed to take into account this strain-stress state is based on the 

following hypothesis: 
1. The composite is composed by only two components: fibre and matrix  
2. Component materials have the same strain in parallel (fibre) direction.  
3. Component materials have the same stress in serial direction.  
4. Composite material response is in direct relation with the volume fractions of 

compounding materials. 
5. Homogeneous distribution of phases is considered in the composite.  
6. Perfect bounding between components is also considered. 
 

3.2 Constitutive equations of component materials  
 
Each composite component material is computed with its own constitutive equation. 

However, as in this paper the materials will be modelled with a damage formulation, the 
description of the formulation is done considering the particular case of isotropic damage. So, 
the stresses in matrix and fibre materials are obtained using:  

 mmmm Cd :)1(   

 ffff Cd :)1(   
(4)  

 
being Cm  and Cf  the matrix and fibre stiffness tensors, respectively. These equations can be 
rewritten taking into account the serial and parallel split of strain and stress tensors (equations 
(1) and (3)), obtaining:  
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3.3 Equilibrium and compatibility equations  

 
The equations that define the stress equilibrium and establish the stain compatibility between 

components arise from the analysis of the hypotheses previously exposed,  
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where superscripts c  , m and f stand for composite, matrix and fibre, respectively and ki  
corresponds to the volume fraction coefficient of each constituent in the composite. 

3.4 Serial/parallel rule of mixtures algorithm  

The known variable that enters the algorithm is the strain state c of the composite material 
at time tt  .  From this variable, the serial/parallel rule of mixtures algorithm has to find the 
strain and stress state of each component that fulfils the equilibrium, the compatibility and the 
constitutive equations and the evolution of the internal variables. The first thing done by the 
algorithm is to split the strain tensor into its parallel and its serial parts, in order to compute the 
strain state in the matrix and the fiber. The parallel strain component is, according to equation 
(7), the same for both materials and for the composite. On the other hand, the serial strain 
component requires a prediction of the strains expected in one of the composite components. If 
this prediction is done for the matrix, the increment of its serial strains can be computed as 

    P
c

SP
m

SP
ff

S
c

SS
f

S
m CCkCA   :::

0
 (9)  

 
with   1

 SS
mf

SS
fm CkCkA and    S

ct
S

ctt
S

m  
 .  

The initial prediction of matrix serial strains, proposed by Rastellini [1] and described in 
equation (9), is obtained considering that the distribution of the total strain, in its parallel and 
serial parts, is done in function of the composite tangent stiffness obtained in previous time 
step. With the prediction of the matrix serial strains, the fibre serial strains can be computed, in 
the iteration step n, according to equation (8),  
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mtt

f

m

S
ctt

f
n

S
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1
 (10)  

 
where      nS

m
S

mtn
S

mtt
 

 .  
Regrouping again the serial and parallel components of the strain tensor (equation (3)), the 

constitutive equations can be applied to the predicted strains to obtain the stress tensor for both 
materials and the update of their internal variables. Fibre and matrix are modelled, each one, 
with their own constitutive law. If both materials are described with an additive plasticity 
formulation, the stress vector for each one is obtained using equation (4). The stresses obtained 
must fulfil the following equation:  
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      toler
n

S
fttn

S
mttn

S 


  (11)  

 
 If the residual stress is smaller than the tolerance, the computed strains and stresses are 

considered to be correct and the structural calculation can continue. However, if equation (11) 
is not fulfilled, the initial prediction of the matrix strain tensor has to be corrected. This 
correction is performed using a Newton-Raphson scheme, in which the update is made using 
the Jacobian of the residual forces. It is obtained deriving the residue function with respect to 
the unknown. According to Rastellini [1], the expression for the Jacobian is given as follows:  

  

   nt
SS

f
f

mnt
SS

m C
k
kCJ   (12)  

 
and, the correction of the matrix serial strains becomes  
  

     nS
n

S
mttn

S
mtt

J   
:11

 (13)  

 
To obtain quadratic convergence in the S/P mixing theory, the Jacobian must be obtained 

using the tangent constitutive tensors for the fibres and the matrix. Depending on the 
constitutive equation defined for each material, the constitutive tensor cannot be obtained 
analytically. Thus, in order to obtain a reliable algorithm, the expression of the tangent tensor 
is obtained numerically with the procedure shown in Martinez et al. [1][3]. 

3.5 Peculiarities of the imposed strain loading  
 

The theoretical frame developed in the previous sections suffices to represent the behaviour 
of reinforced concrete as a composite material composed by concrete and passive steel. In order 
to take into account the case of the active steel, both for the pre and the post-tensioned case, it 
is necessary to rewrite the compatibility condition of the S/P RoM.  

Specifically, it is necessary to break the perfect adherence between the two components: 
active steel and concrete. 

6. Relative movement between the components is allowed if and only if an imposed strain 
condition exists over one of them.  

Therefore, loss of adherence is allowed only in the presence of the imposed strain loading, 
a peculiar load due to the fact that it is applied only on a component of the composite material. 
This implies that its contribution is not quantified in the external forces vector and it is an auto 
balanced load.  

Equations (7) must therefore be rewritten taking into account the imposition of an initial 
strain for the fiber in order to represent the pre-stressing or post-tensioning of the active steel. 
In the first iteration of the increment when the pre-stressing strain is to be applied, the fiber 
strain in the parallel direction is fixed to the desired pre-stress value. Based on the serial fiber 
strains (obtained with eq. (10)) and the parallel ones (eq. (14)) the fiber strain tensor is computed 
and, depending on the desired fiber constitutive model, the stress tensor is obtained. 
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The resolution algorithm of the S/P RoM equilibrates the serial components at each 
integration point and with the integrated stresses the internal forces vector is assembled. At this 
point in the problem resolution, the parallel component of the fiber stresses has yet to be 
balanced. Its effect is quantified in the system of equations in the residual forces computed at 
the end of the first global iteration of the problem. 
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(14)  

These residual forces are then used to correct the nodal displacements and consequently the 
strains at the integration points. In the second global iteration of the problem, the parallel 
component of the strains at layer level that is the input of the S/P RoM is equal to the matrix 
strain needed to accommodate the imposed fiber strain.  

Therefore, in the first global iteration the active steel has its parallel strain component fixed 
at the level of strain associated to the desired pre-stressing force, while in the second iteration 
the fiber strain is balanced by the resulting compression in the concrete.  

3 VALIDATION OF THE FORMULATION 
 

In this section some examples of application of the formulation shown in this article are 
presented. The two fist examples are compared with the expected analytical solution since their 
geometry is sufficiently simple to be solved. In the third example, a more complex problem has 
been analysed, so in this case the solution cannot be compared with any analytical expression. 
 
3.1 Pre-stressed beam with a straight tendon 

In this example, the behaviour of a 7 m length and 1 m quadrangular beam is analysed. 
Aligned with the center of gravity of the beam there is a linear steel tendon whose area, As, is 
equal to 0.04 m2 which means that the participation with respect to the concrete is 4%. The 
geometry of the specimen can be appreciated in the Fig 1a. The self-weight has been neglected 
in order to focus on the pre-stressing effect. In addition, one edge of the beam is free and the 
other one is clamped. 

The geometry shown in the Fig. 1a has been meshed with linear hexahedral finite elements 
obtaining the finite element mesh depicted in the Fig. 1b. The pre-stressed tendon has been 
stressed up to 1176 Mpa, corresponding to a strain, s, equal to 0.0056.  The Young’s modulus 
of the steel has been considered to be 210000 MPa whereas the concrete modulus is equal to 
35000 Mpa. 

The axial force in the steel tendon can be computed using the equation (15). On the other 
hand, the elastic shortening of the concrete can be obtained by means of the equation (16). 
Finally, the longitudinal displacement of the whole beam due to the pre-stressing load can be 
calculated using the equation (17). The finite elements intersected by the tendon can be seen in 
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the Fig. 1c. Those elements, which have a certain participation of active steel, will have an 
imposed strain loading condition, simulating the effect of the pre-stressing. 

𝑁𝑁𝑡𝑡 = 𝐴𝐴𝑠𝑠 𝜎𝜎𝑡𝑡 = 4.704 · 107 𝑁𝑁 (15) 

∆𝜀𝜀 = − 𝑁𝑁𝑡𝑡
𝐸𝐸𝑐𝑐𝐴𝐴𝑐𝑐 + 𝐸𝐸𝑠𝑠𝐴𝐴𝑠𝑠

= −1,12 · 10−3  (16) 

 
𝛿𝛿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = ∆𝜀𝜀 · 𝐿𝐿 = −7,840 · 10−3 𝑚𝑚 (17) 

 
Figure 1. a) Geometry of the beam; b) Finite element mesh (7000 elements); c) Elements intersected by the steel 

tendon  

Carrying out the calculation with the finite element code PLCd [6-9], one can obtain the 
displacement field shown in the Fig. 2. As can be seen in the previous figure, the maximum 
shortening of the beam has a value of 7.83·10-3 m whereas the analytical solution is 7.84·10-3 
m. This result shows the high precision of the formulation. 

 
Figure 2. Displacement field as resulting from the pre-stressing 

3.2 Pre-stressed beam with a curvilinear tendon 

In this case, a 10 m length and 1 m height beam has been simulated. In order to increase the 
complexity of the pre-stressing system, the steel tendon has a parabolic shaped curve, as is 
commonly used in pre-stressed beams. The geometry is shown in the Fig 3 and the local axes 
of the active steel can be seen in the Fig. 4a. Each colour in the Fig. 4b represents a different 
composite material in terms of steel participation as well as its direction since the slope of the 
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tendon is not constant. The steel tendon has been pre-stressed with a force, P, equal to 5000 kN 
and has an area of 0.005 m2. One can easily notice that the stress in the tendon is 1000 Mpa. 
The concrete used in the simulation has a Young’s modulus, Ec, equal to 35875 Mpa. 

The finite element mesh depicted in the Fig. 4a consists of 1288 linear hexahedra. In the 
same figure one can see the different composite materials existent inside the beam. 

 
Figure 3. Geometry of the beam and of the steel tendon  

 
Figure 4. a) Local axes of the tendon on the finite elements; b) Finite element mesh used  

In order to compute the analytical vertical displacement, one must simplify the structural 
system as can be seen in the Figs. 5 and 6. In the Fig. 6 one can appreciate the equivalent load 
system that simulates the effect of the pre-stressing force. In this case, the steel tendon has been 
substituted with two concentrated loads in the anchoring zone and, due to the eccentricity in the 
anchoring zone, two bending moments. The parabolic shape is represented by a uniformly 
distributed load whose value is obtained with the equation (18). 

𝜂𝜂 = 8𝑃𝑃(𝑒𝑒1 + 𝑒𝑒2)
𝐿𝐿2 = 240 𝑘𝑘𝑘𝑘𝑚𝑚  

(18) 

 

 
Figure 5. Schematic representation of the beam 
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By means of tables and the superposition hypothesis, one can obtain the analytical 
expression of the maximum vertical displacement of the beam (18). It is important to notice 
that the tables, in general, omit the effect of the shear strain as well as the elastic shortening of 
the concrete. 
 

 
Figure 6. Structural scheme of the beam with one curvilinear tendon 

 

𝛿𝛿 = 5𝜂𝜂𝐿𝐿4

384𝐸𝐸ℎ𝐼𝐼 − 3𝑃𝑃cos(𝜙𝜙)𝑒𝑒1𝐿𝐿2

24𝐸𝐸ℎ𝐼𝐼 = 4.38 mm 
(19) 

 
where 𝐸𝐸ℎ corresponds to the Young’s modulus of the homogenized section, 𝐼𝐼 is the inertia of 
the section and 𝜙𝜙 is the slope of the tendon in the anchoring zone. 

Using the in-house finite element code PLCd, one can obtain the displacement field depicted 
in the Fig. 7 with a maximum vertical displacement equal to 4.60 mm. Comparing the expected 
results with the simulated ones, the difference between them assuming that the analytical is 
exact, which is not entirely correct, is about a 5%. Additionally, the stress field for each simple 
material can be seen in the Figs. 8 and 9. As indicated in the previous figures, the pre-stressing 
system induces a bending state in the structure that causes tension on the superior fibre and 
compression on the lower fibre which compensates the effect of the self-weight. The stress field 
of the steel oscillates between the 900-1000 Mpa as has been indicated in the previous 
paragraphs. The mentioned variation is caused by the elastic shortening of the concrete.  

 
Figure 7. Displacement field obtained with PLCd 

 
Figure 8. Longitudinal stresses Sxx in the concrete 
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Figure 9. Longitudinal stresses Sxx in the active steel 

3.3 Concrete ring reinforced with pre-stressed tendons 

In order to analyse a more complex geometry, a three-dimensional model of a 10 m height 
and 1.15 m thickness concrete ring is shown. The structure is stiffened with 3 buttresses (spaced 
120º) and reinforced with 3 steel tendons whose anchoring zone coincides with the position of 
the buttresses. In Fig. 10 the geometry of the analysed structure is depicted, as well as the finite 
element mesh that consists of 69324 linear hexahedra elements. 

 
Figure 10. Geometry and finite element mesh of the ring 

In Fig. 11a the trajectory of the three steel tendons can be seen. In the same figure one can 
notice that each tendon covers 240º of the annular section. Those tendons have a diameter of 
0.082 m and have been pre-stressed with an imposed strain of 0.0062. The corresponding stress 
in each tendon is 1302 Mpa. 

As explained in previous paragraphs, the finite elements intersected by the linear elements 
(tendons) have a certain participation of active steel inside the composite material as well as a 
certain orientation of it. The mentioned orientation (local axes) of the steel can be analysed in 
the Fig. 11b for each tendon. 

The results of the numerical simulation are depicted in the Figs. 12 and 13. As expected, the 
central part of the ring experiences a deformation inwards. This tendency is smoother near the 
buttresses where the stiffness is greater, as expected. 
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Figure 11. a) Schematic trajectory of the steel tendons; b) Local axes of the finite elements intersected by the 

tendon 

The Figs. 13a and 13b represent a horizontal cut of the ring in the x-y plane showing the 
stress state in the two composite components, steel and concrete. The mentioned cut coincides 
with the path of one of the tendons so, in this case, one can appreciate the local effect of that 
tendon. 

 
Figure 12. Displacement field in m on the deformed shape of the geometry (100x) 

In the Fig. 13a, the concrete is fully compressed except for the anchoring zone where, in 
general, a large quantity of passive reinforcement is placed to compensate this effect that would 
lead to the cracking of the concrete. 

On the other hand, in Fig. 13b, one can observe that the steel tendon is completely tensioned. 
It is important to note that the stress along the tendon is not constant, being minimum in the 
mid-point of it. 

4 CONCLUSIONS 

As has been shown in the previous paragraphs, the current formulation is capable of 
simulating the effect of the pre-stressed system in arbitrary geometries and obtains coherent 
results with a reduced error in comparison with the most used methods to deal with similar 
problems. That said, one can conclude that the formulation presented in this article represents 
a powerful tool when dealing with complex geometries or sophisticated constitutive models of 
composite materials. 
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Figure 13. a) Stress field S1 in the concrete; b) Stress field S1 in the active steel 
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Abstract. Computational tests for ballistic impact energy absorption were developed on 
A356/CNTs composite material with the goal of estimating the improvement of the material’s 
mechanical properties by the contribution of the CNTs [1]. For the implementation of 
computational tests on the material exposed to projectile impact, A356/CNTs was configured 
by means of generalized Hooke’s model for anisotropic materials [1] and Johnson-Cook’s 
model was used to determine material failure and propagation of energy [2]. A curvilinear 
surface (semi-spheres on a plaque) with an area of 23x23 cm and thickness of 12 mm was 
elaborated to represent the composite material. The impact on surface was done with a 9 mm 
projectile and the surface was developed with 4.5 mm radium semi-spheres. It was used a 
0.3% of nanotube insertions on the composite total volume. The results indicated the plaque 
stopped the impact without drilling. Incidence of damage to wearer, as well as possibility of 
composite material improvement and the diffusion/dispersion analysis on the curvilinear 
surface was also done.

1 INTRODUCTION
A curvilinear plaque was elaborated in order to determine the behaviour of the surface 

when subjected to impact dynamic force. Semi-spheres of 4.5 mms de radium were designed 
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on the surface since this geometric shape provides greater resistance to the material. The 
materials’ properties values used during ballistic computational tests for A356/CNTs 
composite with a material type A356 and for CNTs were given a stiffness module of 1.81e12 
Pa and a Poisson ratio of 0.45  [3, 4, 5]. During computational tests, finite elements analysis 
(FEA) was used to study the behavior of A356/CNTs composite. 

A mesh was elaborated in order to determine the behavior of the surface when subjected to 
impact dynamic force. Solid elements were used to develop the mesh. NOM-166-SCFI-2005
was the main guideline for the development of simulations and the determination of ballistics-
specific characteristics [13].

2 MATHEMATICAL MODELING
For the implementation of computational tests on the material exposed to projectile impact, 

A356/CNTs was configured by means of generalized Hooke’s model for anisotropic materials 
[7, 8] and Johnson-Cook’s model was used to determine material failure and propagation of 
energy [7, 8]. In Hooke’s model, composite density was calculated from mass proportions [7,
8, 9, 10, 11]:

C

V

NTC

NTC

AL

AL
c Vmm

ρρρ

ρ
++

=
1

(1)

mNTC, mAL are the mass proportions of the constituent and Vc is the proportion in void 
volume. Johnson-Cook’s Constitutive Model describes the relationship between stress, strain,
strain rate and visco-elastic material temperature [8, 9, 10, 11].

This model is appropriate in a situation where strain rate varies between 102s -1 and 106s -1

and temperature varies according to plastic deformation caused by thermal softening. Stress 
flux model is represented as in (8) [8, 9]:

)1)(ln1)(( ** mn TCBA −++= εεσ  (2)

In (2) T is the system temperature, *ε is the velocity of equivalent plastic deformation, ε
is the equivalent plastic deformation, A is the initial cadence stress (MPa), B is the hardening 
module, n is the strain hardening exponent, C is the strain-rate dependent coefficient and m is 
the thermal softening coefficient.

The materials’ properties values used during diffusion process and ballistic computational 
tests for A356/CNTs composite with a material type A356 and for CNTs were given a 
stiffness module of 1.8×1012 and a Poisson ratio of 0.45 [9,10,11].

The fracture model is combined with the criteria of Cockcroft and Latham where the 
element is eroded when D = 1, is described as [8, 9, 10, 11]:

2
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𝐷𝐷 =
1
𝑊𝑊𝑐𝑐𝑐𝑐

� 𝑚𝑚𝑚𝑚𝑚𝑚 (𝜎𝜎1, 0)𝑑𝑑𝜀𝜀𝜀𝜀𝜀𝜀
𝜀𝜀𝜀𝜀𝜀𝜀

0

(3)

Where: 𝜎𝜎1main maximum stress, 𝑊𝑊𝑐𝑐𝑐𝑐 total plastic work.

3 COMPUTATIONAL MODELING
A curvilinear plaque with an area of 23x23 cm and and thickness of 12 mm was elaborated to 

represent the composite material, fig.1.

Figure 1. Three-dimensional plate with semi-spheres and core (test panel).

A Parabellum 9mm caliber projectile was selected to perform the tests. Based on
international standards for shielding and ballistic testing [13, 14, 15], criteria and reference 
data for computational tests were determined. Projectile velocity of 436 m/s ± 9.1 m/s,
dimensions and geometric characteristics were selected as show the fig. 2.

Figure 2. Parabellum 9mm-caliber projectile.

3
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The system of the plate and the projectile is presented, fig. 3.

Figure 3. Plate-projectile system for the development of impact tests

4 NUMERICAL MODELING
During computational tests, finite elements analysis (FEA) was used to study the behavior 

of A356/CNTs composite. A mesh was elaborated in order to determine the behavior of the plaque 
when subjected to dynamic impact energy. 3D elements of 20 nodes were used to develop the mesh, 
fig. 4.

Figure 4. Meshed of the 3D curvilinear plate by means of solid elements.

4
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In the same way, another numerical mesh for the 9 mm-caliber projectile was elaborated. 
This projectile impacted the curvilinear plaque, fig. 5.

Figure 5. Meshed of the 9 mm-caliber brass projectile.

5 RESULTS
Mechanical tests performed on the impact-subjected A356/CNTs composites indicated that 

reinforcement material favor the composite’s mechanical properties, achieving energy 
dissipation-absorption and effectively stopping the projectile trajectory. 

Results were validated by means experimental tests where the surface was impacted by a 
Parabellum projectile. Results of the simulations and of the experiments tests were similaires. 
In general, the results showed the composite exhibited kinetic energy dissipation modes and a 
capacity to diminish impact damage, fig 6 and fig. 7.

Figura 6. Initial position of projectile and panel A356 before impact.
.

5
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Figure 7. Penetration of the projectile in the impact without perforation.

6 CONCLUSIONS
- Several simulations were executed on an A356/CNTs plaque subjected to dynamic 

impact load until the perforated surface didn’t pass the security limit defined by 
NOM-166-SCFI-2005 guidelines. Simulations considered a solid projectile in order 
to grant the design a higher safety factor.

- The most favorable result was achieved using a plaque made of semi-spheres. 
- This research offers insight on how perforation of composite materials subjected to 

ballistic impact is generated. Incidence of damage to wearer, as well as possibility of
reinforcement improvement and diffusion/dispersion of CNTS in A356 is also 
discussed. 
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Abstract: In geotechnical engineering, the main parameter for the performance of structures 
such as reinforced walls or deep foundations is often the shaft bearing capacity. In numerical 
analysis, important advancements have been made on studying the behavior of the soil and the 
retaining structures separately. 
    The performance of many geotechnical foundation systems depends on the shear behavior 
at the soil structure interface. For deep foundations, the main component that affects friction 
is the horizontal earth pressure. When a pile is getting axially loaded, the soil grain network at 
the interface, starts to move and rearrange. In conditions of axial cyclic loading a contractive 
behavior of soil can generally be observed as in [1] and [2]. This can be explained by the 
progressive densification and relaxation of the soil under cyclic shear at the soil pile interface, 
as well as the local refinement of the grain distribution by grain breakage and rearrangements. 
As the soil contracts and decreases in volume, the normal stress around the pile surface 
decreases and the soil pile friction degrades. This can lead to failure of the whole geotechnical 
foundation system.  
    The purpose of the work presented in this paper is to analyze locally (at the element level) 
the contact behavior of a soil-pile contact problem. Therefore, a 2D shear test is modeled 
using the Finite Element Method. The formulation of a 4 nodded zero-thickness interface 
element of Beer [3] is chosen with a linear interpolation function. Four constitutive contact 
models adapted for contact problems have been implemented. The simple Mohr-Coulomb [4] 
and Clough and Duncan [5] models were chosen initially, due to the ease of implementation 
and few number of parameters needed. After, more complicated models in the framework of 
elasto-plasticity such as: Lashkari [6] and Mortara [7] were implemented for the first time into 
the finite element code of the shear test problem. They include other phenomena such as: 
relative density of soil, the stress level and sand dilatancy. From the results the relation 
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between shear displacement and shear stress has been deduced. Finally, a discussion of the 
advantages and the drawbacks during computation of each model is given at the end.  
 

1 INTRODUCTION 
    In the last century, the number of geotechnical structures has increased significantly. 
Structures as: reinforced embankments, anchors and deep foundations (offshore and onshore) 
are becoming more and more present and sophisticated in the civil engineering domain. One 
of the main parameters of these elements is the shaft bearing capacity [8]. A significant 
component of the shaft bearing capacity is the shear resistance. 
    Important advancements have been made on modelling the behavior of the soil and the 
retaining structures (pile, wall, anchors) separately. The zone in which the soil is attached to a 
structure is called the interface or contact zone. Many issues and questions arise when it 
comes to the contact zone between soil and geotechnical element (ex: deep foundation). 
    The major used numerical technique for modelling the contact behavior in geotechnical 
engineering is the zero-thickness interface element (e.g. Beer [9] and Goodman [3]). The 
contact element itself, according to the current deformation and loading, can govern four 
different states: stick, slip, de-bonding (gap opening) and re-bonding.  
    The shear behavior of this contact zone is complex due to the composition of materials with 
a very high stiffness (structure) and in comparison, a very low stiffness (soil). A lot of 
different experimental studies have indicated the importance of this narrow zone for the 
global load displacement behavior of geotechnical structures (e.g. for piles [10] and [11]).  
The before mentioned importance is modelled since a long time using elastoplastic models as 
the simple Mohr-Coulomb model [4] or more recent elasto-plastic models e.g. Lashkari [6] 
and Liu [12]. Beside the classical elasto-plastic, generalized plasticity models Liu [13] or 
hypoplastic models by Stutz et al [14] and [15] exist.  
     In this paper, the focus was given to the local behavior at the contact zone. An 
implementation of four different contact constitutive models, two of them for the first time, 
into a zero-thickness interface element implementation is shown. Because advanced models 
are seldom implemented into finite-element codes and used for pile-soil interaction analysis. 
This issue is overcome into this publication. To demonstrate the implementation, a direct 
interface shear test is modelled using the finite element method. By the results of this direct 
interface shear test it is shown that the models can be implemented into zero-thickness 
interface elements even if they have different formulations than the mechanical model used by 
Goodman [9]. 

 
2 CONSTITUTIVE MODELS FOR CONTACT PROBLEMS 
When it comes to soil modelling many different constitutive models have been used the theories 
of elasto-plasticity, hyper-elasticity, hypo-plasticity, generalized plasticity. The majority of this 
constitutive frameworks have been used for modelling of the interface behavior. All constitutive 
models treated in the paper are in the framework of elasto-plasticity. The properties and 
parameters of each model are given in the following subsections. 

491



B. Kullolli, H. Stutz, J. Bronsert, P. Dutto and M. Baeßler 

 3 

  a 

                               a)                                                      b)                                                            c)     

Figure 1: Shear stress vs. shear strain relation for a) Mohr-Coulomb, b) Hyperbolic, c) Mortara and Lashkari 

2.1 Mohr-Coulomb model 
    Mohr-Coulomb model was introduced in 1821 by [4] and since then, further improvement 
or adaptations for different problems have been made. The formulation of the Mohr-Coulomb 
model for zero-thickness interface models from [16] is used. As it is a linear-elastic perfectly-
plastic model (Figure 1a), after the elastic stress limit is exceed no additional shear stresses 
are possible. The yield function 𝑓𝑓 is defined as: 

 𝑓𝑓 = |𝜏𝜏| + 𝜎𝜎𝑛𝑛 tan 𝜑𝜑 − 𝑐𝑐 
 

(1) 

    Where 𝜏𝜏 is the shear stress, 𝜎𝜎𝑛𝑛 is normal stress, 𝜑𝜑 is friction angle at interface, and 𝑐𝑐 the 
cohesion. Vanlangen [4] uses in his model non-associated plasticity. Therefore, the plastic 
potential g is defined as:  
 𝑔𝑔 = |𝜏𝜏| + 𝜎𝜎𝑛𝑛 tan 𝜓𝜓   (2) 

Where 𝜓𝜓 is the dilatation angle. The incremental constitutive relation is obtained as: 
 �̇�𝑡 = 𝐷𝐷𝑒𝑒𝑒𝑒𝑢𝑢𝑒𝑒 ̇                 𝐷𝐷𝑒𝑒𝑒𝑒 = 𝐷𝐷𝑒𝑒 − 𝛼𝛼

𝑑𝑑 𝐷𝐷𝑒𝑒 𝜕𝜕𝜕𝜕
𝜕𝜕𝜎𝜎𝑛𝑛

𝜕𝜕𝜕𝜕
𝜎𝜎𝑛𝑛

𝑇𝑇
𝐷𝐷𝑒𝑒   (3) 

    Where �̇�𝑡 denotes the rate of traction vector, 𝐷𝐷𝑒𝑒𝑒𝑒is the elasto-plastic matrix, 𝛼𝛼 indicates 
plasticity if (𝛼𝛼 =1) or elastic conditions (𝛼𝛼 =0).  

4.2 Hyperbolic model 
 Clough and Duncan [5] use the nonlinear elasticity model (Figure 1b) from the nonlinear soil 
model of [4]. To model the non-linear hardening behavior of the interface zone in a Goodman 
[9] type element. The hyperbola is approximated using some shear test data. The empirical 
derived equation for the interface behavior is: 
 
 
 
      
 
Here, 𝜏𝜏 is the shear stress, 𝑎𝑎𝑟𝑟, 𝑏𝑏𝑟𝑟= fitting parameters of hyperbola, 𝑢𝑢𝑠𝑠 = the interface shear 
displacement.  

𝜏𝜏 = 𝑢𝑢𝑠𝑠
𝑎𝑎𝑟𝑟 + 𝑏𝑏𝑟𝑟 ∙ 𝑢𝑢𝑠𝑠

    (4) 
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    The model is based on empirical equation converted by linearization to estimate the 
hyperbolic parameters. Then the straight lines are fitted to the experimental data at the points 
where the values of shear stress are 70% - 90% of the maximum values. 
    The shear stiffness depends on normal stress and it is updated at every loop increment. 

 
 

𝐾𝐾𝑠𝑠 = 𝐾𝐾𝐼𝐼𝛾𝛾𝑤𝑤 (𝜎𝜎𝑛𝑛
𝑝𝑝𝑎𝑎

)
𝑛𝑛𝑛𝑛𝑛𝑛

(1 −
𝑅𝑅𝑓𝑓𝜏𝜏

𝜎𝜎𝑛𝑛 tan 𝜑𝜑)
2
 

  (5) 

The shear stress is then calculated as 𝜏𝜏 = Ks*us  and the normal stress 𝜎𝜎𝑛𝑛 is constant in this 
model formulation.  

4.3 Lashkari model 
    Here the elasto-plastic model (Figure 1c) according to Lashkari [6] is introduced. The 
constitutive model relates stress rate vector [�̇�𝜎] to the velocity vector [∆̇] under monotonic 
shearing. In addition, the model is state dependent and considers the state parameter from Been 
and Jeffries [17]. By this the parameter calibration is unique for a soil and can be modified to 
its different states (e.g. loose or dense).  
   The stress vector [𝜎𝜎] and the relative displacement vector [∆] are defined as: 

                         [𝜎𝜎] = [ 𝜏𝜏
𝜎𝜎𝑛𝑛

]       ;       [∆] = [𝑢𝑢
𝑣𝑣]       ;    [∆̇] = [∆̇]𝑒𝑒 + [∆̇]𝑝𝑝                                  (6) 

    Where u, v are the normal and shear displacement respectively. The relative velocity vector 
is composed out of the elastic and plastic component. For the elastic branch of the velocity 
vector, the following relation is adapted: 

 [�̇�𝜎] = 1
𝑡𝑡 [𝐷𝐷]𝑒𝑒[∆̇]𝑒𝑒

        (7) 

 
    Here t represents the thickness and [D]e is the elastic material matrix. An important 
parameter is the stress ratio 𝜂𝜂 = 𝜎𝜎𝑛𝑛

𝜏𝜏 . It is the main component of model for the yielding 
plasticity. In case the stress ratio is constant, the behavior remains elastic.  
   The yield function 𝑓𝑓 is defined as:  
 𝑓𝑓 = 𝜏𝜏 − 𝜂𝜂𝜎𝜎𝑛𝑛                    (8) 

    Finally, the elasto-plastic matrix is given as below: 

                                                [𝐷𝐷]𝑒𝑒𝑝𝑝 =  [𝐷𝐷]𝑒𝑒 − [𝐷𝐷]𝑒𝑒{𝑅𝑅}{𝑛𝑛}𝑇𝑇[𝐷𝐷]𝑒𝑒

𝐾𝐾𝑝𝑝+{𝑛𝑛}𝑇𝑇[𝐷𝐷]𝑒𝑒{𝑅𝑅}                                         (9) 

    Here, {𝑛𝑛} denotes the yield direction vector, {𝑅𝑅} is the direction of plastic velocity 
vector and 𝐾𝐾𝑝𝑝 represents the hardening modulus. For additional details of the model it is 
referred to Lashkari [6].  

4.4 Mortara Model 

The elasto-plastic model (Figure 1c) proposed by [7] is an interface constitutive model, 
which is based on mathematical plasticity formulations. The main advantage of this model is 
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that can be calibrated with CNL tests, and simulate both Constant Normal Load (CNL) and 
Constant Normal Stiffness (CNS) boundary conditions in good agreement. In the elasto-plastic 
theory the stress and strain relation would be: 

 
   The expression for [𝐷𝐷]𝑒𝑒𝑒𝑒 is given as: 
 [𝐷𝐷]𝑒𝑒𝑒𝑒= [𝐷𝐷]𝑒𝑒 − [𝐷𝐷]𝑒𝑒𝑚𝑚𝑀𝑀

𝐻𝐻+𝑛𝑛𝑇𝑇[𝐷𝐷]𝑒𝑒𝑚𝑚𝑀𝑀
   (11) 

     The component terms of [𝐷𝐷]𝑒𝑒𝑒𝑒are: 

[𝐷𝐷]𝑒𝑒 = [𝐾𝐾𝑠𝑠
𝑒𝑒 0

0 𝐾𝐾𝑛𝑛
𝑒𝑒]          𝑚𝑚𝑀𝑀 = [

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜎𝜎𝑛𝑛

]                                 𝑛𝑛 = [
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜎𝜎𝑛𝑛

]         𝐻𝐻 = − 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑥𝑥

𝑝𝑝            (12)                                                       

    Where [𝐷𝐷]𝑒𝑒is the elastic matrix,  𝐾𝐾𝑠𝑠
𝑒𝑒and 𝐾𝐾𝑛𝑛

𝑒𝑒 are the elastic shear and normal stiffness, 𝑚𝑚𝑀𝑀 
is the gradient of plastic potential, 𝑛𝑛 is the gradient of plastic surface and 𝐻𝐻 is the hardening 
modulus. The plastic function of the model was deriving assuming as hardening parameter the 

normalized shear relative displacement [�̇�𝑤𝑛𝑛] = [𝑤𝑤�̇�𝑝]
[𝑤𝑤𝑝𝑝

𝑝𝑝]
.    

   The �̇�𝑤𝑒𝑒is the time derivative of the plastic shear relative displacement and 𝑤𝑤𝑒𝑒
𝑒𝑒 is the shear 

relative displacement corresponding to the maximum value of the stress ratio. The plastic 
yield function is given by the expression below: 

                                𝑓𝑓 = 𝜏𝜏 − 𝛼𝛼𝑀𝑀𝜎𝜎𝑛𝑛
𝛽𝛽𝑀𝑀 = 0                                                                  (13) 

Where 𝛼𝛼𝑀𝑀 is the current value of the hardening rule. More details of the model can be found 
in [18] and [19].The plastic potential is given as 𝑔𝑔 is given as: 

                              𝑔𝑔 = 𝜏𝜏 − 𝑏𝑏
1+𝑎𝑎 𝜎𝜎𝑛𝑛 [1 + 𝑎𝑎 (𝜎𝜎𝑛𝑛

𝜎𝜎𝑐𝑐
) − 1+𝑎𝑎

𝑎𝑎 ] = 0                                     (14) 

    Where 𝜎𝜎𝑐𝑐 is the critical stress. The parameters 𝑎𝑎 and 𝑏𝑏 are the slope and the intercept of the 
flow rule to the stress ratio 𝜂𝜂. 
 

3 CONTACT ELEMENT DESCRIPTION 
    Beside the constitutive models that are necessary, the numerical simulation technique for 
the discontinuity at the contact is also important. Here, we use the zero-thickness interface , 
beside this the thin-layer element formulation from Desai [20] and the Mortara [7] method 
can be used. For the shear test modeled numerically in this paper, the zero thickness element 
of [9] , was  used. It has 4 nodes and 8 displacement degrees of freedoms in total. The 
formulation is derived based on two relative displacements of the continuum element on both 
sides of the interface. One displacement component is the normal, and the other one is the 
tangential component to the interface. 
    Starting from the energy equation and minimizing with respect to nodal point 
displacements, the element stiffness for the four-nodal point element is indicated in Figure 2. 

 [�̇�𝜎] = [𝐷𝐷]𝑒𝑒𝑒𝑒[𝜀𝜀̇]            (10) 
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As the element has zero thickness, the nodes 1,4 and 2,3 have identical coordinates at the 
beginning of the simulation. 
 

 

Figure 2: Zero thickness contact element geometry [9] 

    The vector [𝒖𝒖] contains all nodal displacements in the local coordinate system, where 𝑢𝑢 
refers to horizontal displacement and 𝑣𝑣 to vertical displacement. Indexes 1,2,3,4 refer to the 
node number. 

 [𝒖𝒖] = [𝑢𝑢1 𝑣𝑣1 𝑢𝑢2 𝑣𝑣2 𝑢𝑢3 𝑣𝑣3 𝑢𝑢4 𝑣𝑣4] (15) 

The vector of relative displacements {𝑤𝑤} is defined as: 
 {𝑤𝑤} = {𝑤𝑤𝑠𝑠

𝑤𝑤𝑛𝑛
} = {𝑢𝑢𝑡𝑡−𝑢𝑢𝑏𝑏

𝑣𝑣𝑡𝑡−𝑣𝑣𝑏𝑏
} (16) 

 
     Where 𝑤𝑤𝑠𝑠, 𝑤𝑤𝑛𝑛 are tangential and normal relative displacements. 𝑢𝑢, 𝑣𝑣 are the displacements 
along x and y axis and 𝑡𝑡, 𝑏𝑏= top/bottom segment of the interface. Displacements 𝑢𝑢, 𝑣𝑣 can be 
approximated by using standard linear Gaussian interpolation functions 𝑁𝑁1, 𝑁𝑁2: 
 𝑁𝑁1 =  1

2 − 𝑥𝑥
𝑙𝑙                      𝑁𝑁2 =  1

2 + 𝑥𝑥
𝑙𝑙                         (17) 

 
 𝑢𝑢𝑡𝑡

𝑣𝑣𝑡𝑡
= [ −𝑁𝑁1         0     −  𝑁𝑁2        0      0         0         0      0

0         − 𝑁𝑁1       0      − 𝑁𝑁2      0        0            0        0 ][𝒖𝒖]   (18) 

 

 
 𝑢𝑢𝑏𝑏

𝑣𝑣𝑏𝑏
= [ 0          0          0        0      𝑁𝑁1         0           𝑁𝑁2          0              0      

0          0           0           0        0              𝑁𝑁1              0           𝑁𝑁2  ][𝒖𝒖]      (19) 

 
The strain displacement matrix [𝐵𝐵] is given as: 

 [𝐵𝐵] = [ −𝑁𝑁1    0   − 𝑁𝑁2        0          𝑁𝑁1     0         𝑁𝑁2      0
       0   − 𝑁𝑁1      0  − 𝑁𝑁2       0        𝑁𝑁1       0     𝑁𝑁2 ]   (20) 

 
The strain energy 𝑈𝑈 can be calculated as:  
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𝑈𝑈 = 1

2 [𝑢𝑢]𝑇𝑇 ∫ [𝐵𝐵]𝑇𝑇
𝑙𝑙/2

−𝑙𝑙/2
[𝐷𝐷 𝑒𝑒][𝐼𝐼][𝐵𝐵] 𝑑𝑑𝑑𝑑 

   (21) 

 

From the Eq. (21)  the stiffness matrix 𝐾𝐾 can be calculated: 

 
𝐾𝐾 = ∫ [𝐵𝐵]𝑇𝑇

𝑙𝑙

0
[𝐷𝐷 𝑒𝑒][𝐼𝐼][𝐵𝐵] 𝑑𝑑𝑑𝑑 

  (22) 

 

The strain matrix: 

 𝜀𝜀 = [𝐵𝐵] [𝑢𝑢] (23) 

   The assumption of Goodman et al. [9] is to have a continuous displacement field that leads 
to a continuous stress field through the length l. For an elastic behavior, the stress as obtained: 

   In the group of zero thickness family can be found more advanced contact elements which 
take in consideration more complicated phenomena. Cerfontaine et al [21] proposed a 3D 
hydro-mechanical coupled element. The element belongs to the zero-thickness formulation 
and the contact constraint is ensured by the penalty method. Fluid flow is discredited through 
a three-node scheme, discrediting the inner flow by additional nodes. The element can 
reproduce stick, slip, bonding, de-bonding degrees of freedom. Stutz et al [22] proposed an 
extended zero thickness element which reproduces the gap opening for cohesive soils. The 
interface element consists in a 16-node element with an isoparametric formulation. 
 

4 NUMERICAL MODEL 

4.1 Direct shear test model description 
 
    In order to study the local soil-pile interface behavior, a direct shear test was modeled 
numerically. The problem was treated with a 2D plane strain model. The model consists of 
two different domains: soil (upper part) and solid (lower part) as shown in Figure 3.  
 

 
Figure 3: Shear test geometry 

 𝜎𝜎 = [ 𝐷𝐷𝑒𝑒] [𝜀𝜀] (24) 
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    On the structure/solid block, zero displacement both in vertical and horizontal direction 
were imposed (Figure 4). The normal pressure 𝑝𝑝𝑛𝑛 =100kPa was imposed on top of the soil 
part and a shear displacement  𝑢𝑢𝑠𝑠 =1 cm was imposed on the left side. The continuum 
behavior of the solid and the soil domain are considered purely elastic. In this study only the 
non-linear behavior of the contact zone is studied. The dimensions of each block are 25cm x 5 
cm. The model has in total 20 elements. Each block is divided in 8 quadrilateral elements with 
4 nodes and the contact area has 4 zero thickness elements as in [3] also with 4 nodes. 
 

 
 

Figure 4: Shear test dimensions and boundary conditions  
 

4.2 Results and discussion 
    For each constitutive model the relation between shear stress and shear strain is plotted in 
Figure 5. Even though the continuum material properties and boundary conditions remained 
the same, different interface models lead to different stress-displacement results. The 
parameters for each model can be found in the Apendix A. 
    The Mohr-Coulomb contact model is advantageous in terms of computational effort, and it 
has only four parameters to consider. Being a bilinear model, has the disadvantage that once it 
reaches the maximal stress limit, no other additional stress is captured. The general behavior 
of this model does not include advances for softening and hardening behavior.  
    The hyperbolic model is very sensitive to any change of parameters. The displacement 
increment needs to be very small and having consequently many time steps.  
   The model from Lashkari [6] model involves 11 parameters . It does not converge until the 
end, but it is possible reach the peak value. The problem starts to appear when the softening 
behaviour should appear. 
    Mortara’s model [7] converges until the last step and it reproduces well hardening and 
softening behavior. The only drawback is the high number of parameters (15). 
    The comparison of all different implementation is not the aim of the paper, however it is 
shown that the implementation of advanced interface models is possible and successful. 
However differences in the achieved accuracy and computional robustness are obvious. A 
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comparison of values can not be done due to the differences parameter sets which was used in 
the simulations. The global behaviour of shear test under normal pressure loading and shear 
displacements is given in  Figure 6 using Mortara model. The global behaviour of the direct 
interface test simulation in terms of shear stress deformed shape is presented in Figure 6 and 
shows the expected results.  

 

[21] 

Figure 5: Results from the numerical model for each constitutive model 

             
Figure 6: Gid post-process results 

 

 

τ 
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5 CONCLUSIONS 
- Contact elements are an important tool to study the behavior of shaft friction. Along 

with an adequate constitutive model, they are able model numerically the phenomena 
that are important in the contact area between soil and pile. 

- Preliminary results on monotonic loading showed that Mortara’s model produces 
reasonable results compared to the other model. Nevertheless, the high number of 
parameters makes it challenging to use the model for different soils.  

- The study of the different models helps to identify issues and challenges for future 
work about the implementation and usage of the different models. In addition, this 
helps for model improvement and development of the models.  
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APENDIX A 

Mohr-Coulomb 
Parameter Definition        Unit Value 

𝐸𝐸 Young Modulus 𝑀𝑀𝑀𝑀𝑀𝑀 60 
𝜐𝜐 Poisson ratio - 0.35 
𝜑𝜑 Interface friction angle - 35 
𝑐𝑐 Cohesion KPa 1 

 

Hyperbolic 
Parameter Definition       Unit Value 

𝛾𝛾𝑤𝑤 Unit weight of water 𝑁𝑁/𝑚𝑚3 10000 
𝐾𝐾𝐼𝐼 Dimensionless stiffness number - 70000 
𝑛𝑛𝐻𝐻𝐻𝐻 Stiffness exponent - 0.75 
𝑅𝑅𝑓𝑓 Failure ratio - 0.92 
𝜑𝜑 Interface friction angle o 35 
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Mortara 
Parameter Definition        Unit Value 

𝐾𝐾𝑠𝑠0
𝑒𝑒  Elastic tangential stiffness 𝑀𝑀𝑀𝑀𝑀𝑀  500e6 

𝐾𝐾𝑛𝑛0
𝑒𝑒  Elastic Normal stiffness 𝑀𝑀𝑀𝑀𝑀𝑀 585e6 

𝐴𝐴0 Initial dilatancy constant - 11 
𝐴𝐴1𝐿𝐿 Intermediate dilatancy constant - 0.85 
ℎ0 Plastic hardening modulus constant - 0.35 
𝑀𝑀𝐿𝐿 Critical stress ratio - 0.638 
𝑒𝑒0 Initial void ratio - 1.01 
𝜆𝜆𝐿𝐿 Critical state line location in e-ln𝜎𝜎𝑛𝑛 - 0.09 
𝑛𝑛𝑏𝑏 Influence of interface state on peak stress ratio - 1.15 
𝑛𝑛𝑑𝑑 Influence of state on phase transformation - 0.73 
t thickness m 0.003 

 
 
 
Lashkari 
Parameter Definition       Unit Value 

𝐾𝐾𝑛𝑛
𝑒𝑒 Elastic normal stiffness 𝑀𝑀𝑀𝑀/𝑚𝑚  1.0e10 

𝐶𝐶𝑘𝑘 Ratio between normal and shear stiffness - 1 
𝛼𝛼𝑝𝑝 Maximum value of hardening value 𝑀𝑀𝐴𝐴1−𝛽𝛽𝛽𝛽 2.68 
𝛼𝛼𝑐𝑐 Asymptotic value of the hardening function 𝑀𝑀𝐴𝐴1−𝛽𝛽𝛽𝛽  2.15 
𝜉𝜉𝛽𝛽 𝜔𝜔𝑝𝑝 paramater 𝑀𝑀𝐴𝐴−1 3.68e-9 
𝜁𝜁 𝜔𝜔𝑝𝑝 paramater 𝑚𝑚 7.26e-5 

𝜇𝜇𝛽𝛽 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 paramater 𝑀𝑀𝐴𝐴−1 2.171e-7 
𝜐𝜐𝑑𝑑 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 paramater - 0.24 
𝜌𝜌𝛽𝛽 Ratio between stress ratios for d=0 for hardening 

or softening condition 
- 0.550 

𝛽𝛽𝛽𝛽 Exponent of plastic functions - 0.9 
𝜔𝜔 Hardening model parameter - 235.6 
𝜓𝜓 Hardening model parameter - 0.16 
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Abstract. This work aims to propose a comparison between the well known penalty method 

and the contact mesh approach in an Explicit Finite Element Method applied to a severe 

contact simulation. The contact mesh links the probable contact regions and minimizes the 

potential error. In this approach, the algorithm shrinks the whole model in the same 

proportion, searches for the nodes which will probably start contact in the next iterations, 

creates the contact mesh and transfers the conditions when the distance would be enough to 

start the contact without the shrinkage. After the simulation finishes, the whole model returns 

to its normal size to correct visualization. In order to test the method efficiency and guarantee 

a reliable comparison, a microindentation experiment that represents a severe contact problem 

was simulated using explicit integration for both contact approaches. As results, both methods 

showed similar good results when compared to experimental tests for large deformations and 

to observe the overall behavior. In the case of small deformations and to observe the local 

behavior of small contact areas, the penalty method presents instabilities variations that are 

close in size to the real deformations, different from the contact mesh approach, which shows 

smooth transition between the mesh nodes, similar to the experimental results. 

 

 

1 INTRODUCTION 

Numerical Methods are often used to solve mathematical problems which describe 

physical phenomena, when they have several variables or even does not have analytical 

solution. A heavily widespread numerical method is the Finite Element Method (FEM), which 

provides an approximate solution to differential equations that usually represent physical 

phenomena, such as continuum mechanics and fluid mechanics [1, 2, 3]. 
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The contact method most used in FEM commercial programs is the Penalty Method, in 

which is used a force to avoid the penetration of volumes. Its calculation considers 

geometrical and space conditions (such as body shape and penetration gap), other variables 

(material properties and process parameters) and a penalty constant to multiply the 

penetration, which is chosen by the user. A small value for the penalty could violate the 

contact condition (allow penetration) and a big value could destabilize the simulation. This 

method achieves good results for macro sized problems, like stamping process, but for micro 

and nano sized process, like microindentation tests, the error can be greater than the 

tolerances for a correct analysis. Another problem is the penalty constant given by the user, 

which is highly non-linear and dependent on the user experience. [4] 

Another method to deal with the contact problem is the Lagrange Method, which 

establishes a minimization with boundary conditions, creating a Lagrangian function. This 

function relates the objective function to the problem restrictions and is ensured by the Kuhn-

Tucker conditions [5]. Based on the Lagrange and Penalty Method the Augmented Lagrange 

Method can be also postulated, using both the penalty factor and the Lagrange multipliers, but 

in this case the Lagrange multipliers are updated each step and a finite penalty factor 

guarantee the convergence. This method is stable but it must iterate each step, which is a 

problem for explicit methods. [6] 

A relatively new approach on the contact problem is the contact domain approach, or 

contact mesh, which creates a mesh linking the nodes that will possibly begin contact from 

one surface to another, with a single layer of elements. This mesh is responsible for predicting 

the contact and reduces the error, by virtually shrinking the elements and transmitting the 

conditions from one surface to another.  

Thus, this work aims to compare the mesh approach method and the penalty method, both 

in Explicit FEM time integration codes. The first approach (contact mesh) was simulated 

using the COMFORM software, which is an academic algorithm, developed by the 

Polytechnic University of Catalunya (UPC) in partnership with other institutes [7].  The 

second contact approach (penalty method) was simulated using the STAMPACK® software, 

developed by QUANTECH ATZ, an explicit FEM commercial algorithm, focused on 

mechanical forming processes. The severe contact problem chosen to simulate were a 

microindentation problem in a copper specimen, with maximum penetration depth not 

superior to 3 µm. 

 

2 CONTACT MESH APPROACH 

According to Oliver et al. [8], the contact domain is a fictive intermediate region, with the 

same dimension as the contacting bodies, connecting the potential contact surfaces of those 

bodies. This leads to a purely displacement problem, because the contact function is now 

based on the dimensionless measure of the normal and tangential gaps. Therefore, the 

difference between this method and the node-to-node or segment-to-segment strategy lays on 

the interpretation of the contact domain. In the classical methods, the contact conditions are 

formulated due to a projection of the contact surface or point (slave contact surface) onto the 

other contact surface (master contact surface), as shown in Fig. 1 (a). Considering that, the 

contact problem is a subdomain, with lower dimension. On the other hand, the contact mesh 
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establishes patches, connecting the potential contact surfaces, in other words, an intermediate 

domain with the same dimension as the bodies in contact, Fig. 1 (b) [9,10,11]. In order to 

connect the potential contact surfaces, the patches created must not overlap, it must be a 

unique layer and it converge to the contact domain as the number of vertices increases. As 

shown on Fig. 2, the contact patches can be designed in multiples ways. In our study, we used 

only tetrahedral linear-linear shaped patches due to the best results in the contact formulation, 

according to Oliver et al. [8] 

 

 
Fig. 1. Imposition of contact constraints in: (a) Classical Methods; (b) Contact Domain Method. 

 (Adapted from [8]) 

 
Fig. 2. Possible patch definitions for a 2D problem. [8] 

It is important to note that the creation of a contact mesh is independent of the master/slave 

relation, it means that it doesn’t matter which body will be considered as master or slave in 

the contact pair. The determination of the contact mesh, i.e., which points of each contact pair 

will be connected and when the mesh will be created is defined by an active strategy, 

following 4 steps: i. the process starts with a FEM meshed pair of bodies, where the element 
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chosen doesn’t affect the contact approach (Fig. 3 (a)); ii. the interior nodes are removed and 

the boundaries are shrunk (Fig. 3 (b)); iii. the contact mesh is created, linking both bodies in 

the probable contact areas (Fig. 3 (c)); iv. The original boundary and mesh are retrieved (Fig. 

3.6 (d)). [10] 

 
Fig. 3. Generating of the contact mesh: (a) Original Mesh; (b) Removal of internal nodes and shrinkage; (c) 

Creation of the contact mesh; (d) Original boundary and mesh retrieved.[10] 

3 MICROINDENTATION TEST 

A microindentation test consists in an experimental method in which the specimen is 

pressed by a known shaped indenter, with controlled load and displacement. Analyzing the 

load, displacement and also the indentation mark, it is possible to calculate the bulk or multi-

layered materials properties. It is also possible to characterize the multi-layered material 

adhesion between layers and analyze other phenomena, such as the pile-up and sink-in. A 

microindentation experiment can be simulated as if the plastic deformations are greater when 

compared to elastic ones, enough to neglect the elastic part of the total deformations in the 

material formulation. Considering that, the formulation respected the big plastic deformation 

continuum mechanics theory, in which the process was considered purely mechanic, because 

in a quasistatic process, velocities are sufficiently low to neglect any heat or heat transfer. [12,   

13, 14, 15] 

The microindentation test performs a deformation in the specimen under the tool and that 

causes deformation in the mark´ surroundings. If the material experience hardening when it 

undergoes plastic deformation, the surroundings will go up, forming the pile up. On the other 

hand, if the specimen undergoes annealing during the plastic deformation, the surroundings 

go down, performing a sink in phenomena. Both the pile up and the sink in are represented by 

the Fig.4. [16, 17, 18]  
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Fig. 4. Pile up and sink in phenomena. (Adapted from [18]) 

 In order to validate and compare the simulations, experimental results from Da Silva 

[19] were used. Figure 5 shows the Force vs. Depth experimental curve for a maximum force 

of 5 N. Figure 6 shows the laser interferometry of the indented surface after the 

microindentation. Finally, Fig. 7 shows the roughness profile of the indented surface, 

emphasizing the pile up phenomena. 

 
Fig.5. 5N Brinell Microindentation Force vs. Depth curve [19] 

 
Fig. 6. Laser Interferometry of the 5N Brinell microindentation [19] 
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Fig. 7. 5N Brinell microindentation roughness profile. [19] 

4 MATERIALS AND METHODS 

In order to guarantee reliable results, both simulations used the same model, developed in 

the GiD software, which is a pre and post process platform. The model was constituted by a 

sphere shaped indenter with 2.5 mm diameter and a copper specimen (designed with 0.7 x 0.7 

x 1.4 mm). To decrease simulation time, the model was a quarter of the whole model, i.e., XZ 

and XY plans symmetry. The geometry was scale in 10 and the total time used 

was1.610. For the indenter in COMFORM, a hard material (tool steel) with elastic 

properties shown in table 1, was used. For STAMPACK, the indenter was considered a rigid 

body, and because of that, the indenter was reduced to a surface only. 

 

Table 1. Microindentation Simulation Indenter properties. 

 Value Unity 
Young Modulus (E) 210 GPa 
Poisson’s ratio () 0.3 - 

Density () 7850.0 Kg/m³ 
 

For the copper specimen, the same properties for both programs were used, from FELICE-

NETO [7], which constitutes  table 2. 

 
Table 2 Copper specimen properties. 

 Value 
Young Modulus (E) 117 GPa 
Yielding Stress () 110.83 MPa 
Poisson’s ratio () 0.3 

Density () 8960.0 kg/m³ 
Hardening modulus (k) 446.2088 MPa 
Hardening exponent (n) 0.2797 

 

The boundary conditions created for this model consists in the restriction of displacement 

of the bottom surface specimen nodes, in the axis X, Y and Z. The symmetry surfaces, XZ 

and YZ, had the Y displacement and X displacement equals to zero respectively, to guarantee 

the model symmetry.  
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The displacement imposed to the indenter is 3 µm (indentation depth) and shows 4 stages: 

i. In the first stage the displacement is in a short range, just to approximate the indenter to the 

copper specimen. The simulation did not start with the bodies in touch, because of several 

convergence problems found; ii. In the second stage the displacement is increased slowly to 

guarantee the algorithm convergence, until it comes to the maximum Z axis Displacement; iii. 

In the third stage the displacement is constant, to be sure that there are no dynamic effect or 

numerical disturbance, which would make the specimen surface point to move even with the 

indenter stopped; iv. The fourth stage is the unloading, which can be fast and is really 

important because the specimen material will undergo a spring-back (elastic deformation 

recuperation) that will enable the comparison between the final stage of the simulation with 

experimental specimen surface topography, measured with a Laser Interferometry. 

The two codes have different algorithms, which forbid some mesh properties. Considering 

that the meshes were created differently. For COMFORM the mesh created is constituted by 

tetrahedral elements in both bodies (indenter and specimen). The global element size for the 

unstructured mesh is 0.09. This size was chosen considering the minimum deformation 

expected in the copper specimen, i.e., the mesh must be small enough to perform the shape of 

the indentation mark left on the copper specimen surface. The indenter has the global element 

size for the bottom surface and the global size multiplied by a factor of 10, totalizing 1142 

nodes and 5750 elements. For the specimen, the top surface has the global element size (0.09) 

and the bottom surface has the global element size multiplied by a factor of 100, totalizing 

2636 nodes and 22847 elements. Fig.8 (a) represents the mesh created for the whole model. 

On the other hand, the STAMPACK mesh is constituted by triangular elements for the 

indenter (surface) and hexahedral elements for the indenter (volume). The indenter has 783 

nodes and 1539 elements and the specimen has 13002 nodes and 100000 elements, as shown 

in Fig. 8 (b). 

 
(a)      (b) 

Fig. 8. Mesh of the FEM Microindentation model.(a) COMFORM. (b) STAMPACK 
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5 RESULTS AND DISCUSSION 

After simulating in COMFORM and STAMPACK, the nodal Z displacement results were 

obtained for the indentation depth profile, for the nodes marked in the Fig.9. Considering that 

the two models had different meshes, the analyzed nodes positions had a minimum position 

variation, as shown in table 3. 

 

 
Fig. 9. Nodes taken in the surface, X axis, to analyze the microindentation Z displacement profile. 

Table 3. Analyzed nodes position 
Node (X,Y) position 

COMFORM 
(X,Y) position 
STAMPACK 

1 (0.0,0.31805) (0.0,0.31805) 
2 (0.02331,0.31805) (0.01396,0.31805) 
3 (0.04662,0.31805) (0.02793,0.31805) 
4 (0.06992,0.31805) (0.04195,0.31805) 
5 (0.09312,0.31805) (0.05599,0.31805) 
6 (0.11675,0.31805) (0.06997,0.31805) 
7 (0.14052,0.31805) (0.08410,0.31805) 
8 (0.16519,0.31805) (0.09864,0.31805) 

 

The Z axis Displacement vs. the X axis position for both simulations (Fig.10) shows a 

smoother result transition for the contact mesh approach (COMFORM) when compared to the 

penalty method approach (STAMPACK) result. 
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Fig.10. Z axis Displacement vs. the X axis position for both simulations. 

 

 

Figures 11 and 12 show the Z displacement distribution for the contact mesh and penalty 

method approaches respectively. The difference in the distribution along the surface indicates 

instability due to the contact development. For a macro sized contact, this instability probably 

would not represent great result divergence, but for micro sized analysis the contact gap error 

introduced by the penalty method could lead to considerable errors. 

 

6 CONCLUSIONS 

 

- First, it is important to emphasize that both simulations used similar models with 

different meshes due to limitations in the software used, not the contact method. This 

shows that the contact mesh approach can be as versatile as the penalty method, 

which is the most used in FEM algorithms. 

- Comparing the indentation depth results, the contact mesh approach shows smoother 

transition between nodes, which possibly lead to more reliable results for severe 

contact problems. 

- Comparing the simulation results to the experimental results from Da Silva [19], it is 

reasonable to infer that the contact mesh approach obtained more accurate results 

when compared to the penalty method approach. The maximum experimental 

indentation depth is ~1.5 µm, which is closer to 1.5132 µm from the contact mesh 

approach than from 1.4000 µm from the penalty method. 
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Fig. 11. Z Displacement for the Contact Mesh Approach 

 

 
Fig. 12. Z Displacement for the Penalty Method Approach 
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M.R. LAKSHMIKANTHA† AND J. ALVARELLOS†

∗ ETSECCPB (School of Civil Engineering-Barcelona)
UPC (Technical University of Catalonia)

E-08034 Barcelona
e-mail: joaquin.liaudat@upc.edu, daniel.garolera@upc.edu,ariadna.martinez.e@upc.edu,

ignacio.carol@upc.edu

†CTR-Repsol, 28935 Móstoles (Madrid)
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Abstract. In this paper, unstable fracture propagation obtained in a in-house performed
experimental Wedge Splitting Test (WST) is simulated by means of the FEM and fracture-
based zero-thickness interface elements. In order to obtain a specimen geometry suitable
for a stable WST without modifying the remaining significant parameters of the test
(machine stiffness and control parameter), additional simulations were performed varying
the length of the specimen notch, until a load-COD (Crack Opening Displacement) curve
without snap-back was obtained. Finally, a new experimental WST with the modified
geometry was carried out leading to a stable load-COD curve. In the simulations, elastic
continuum elements were used to represent the rock, the steel loading plates and the test-
ing machine compliance via an “equivalent spring”, whereas interface elements were used
for the notch and along the potential crack path. The interface elements representing the
notch were equipped with linear elastic constitutive law, with very low elastic stiffness Kn

and Kt so that they do not oppose any significant resistance to opening. For the inter-
face elements along the fracture path, an elastoplastic constitutive model with fracture
energy-based evolution laws was used.

1 INTRODUCTION

The Wedge Splitting Test (WST) is a method to generate fracture propagation in
quasi-brittle materials in order to determine fracture mechanics parameters in mode I,
such as the fracture toughness (KIC) for the linear theory, or the specific fracture energy
(GI

f ) for the linear or also non-linear theory [1, 2]. In any case, it is essential that the
propagation of the fracture occurs in a stable manner. A WST is stable if no sudden

1
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drop of the the applied load follows the peak. that is, a stable WST shows an overall
load-COD (Crack Opening Displacement) diagram with a descending branch after peak
load is reached [1]. The stability of the fracture propagation depends on the interaction
between of the control parameter chosen (displacement of the testing machine actuator or
COD), the stiffness of the testing machine, the specimen stiffness and geometry, as well
as the material properties.

In this paper, experimental results from an unstable WST are simulated via a Finite
Element model in order to interpret the reasons of the unstable propagation of the fracture,
and to explore possible solutions for avoiding it in following tests. Afterwards, based on
the conclusions reached in the first analysis, a new WST test was performed in which the
specimen geometry was slightly modified. As result, stable WST was obtained, proving
the effectiveness of the proposed procedure.

2 WST EXPERIMENTAL SET-UP

2.1 Principles

The method uses cylindrical or prismatic specimens in which a notch has been cut in
order to prefigure the cracking path. A pair of steel loading plates equipped with roller
bearings is glued to both sides of the notch mouth, and lateral opening displacement of
the rollers is imposed through a wedge moving vertically down in order to create a crack.
A scheme of the test setup and a free body diagram of forces on the wedge are shown
in Fig. 1, taken from Ref. [3]. The horizontal force applied to the specimen (PH) is
calculated by means of Eq. (1), where PV is the vertical load applied, θ is the wedge
angle and µ is the coefficient of friction between wedge and roller.

PH =
1− µ tan θ

2(µ+ tan θ)
PV (1)

If the fracture process is stable, the specific fracture energy of the material GI
f can be

obtained from the PH − COD response of the specimen using Eq. (2), where Al is the
surface of the ligament area (Al = L ·D, in Fig. 2).

GI
f =

1

Al

∫ +∞

0

PH dCOD (2)

The displacement of the wedge is imposed by means of a testing machine with a closed-
loop control, which can be controlled in two different ways: (1) by fixing the vertical
displacement rate of the machine actuator, or (2) by fixing a COD rate. According with
Brühwiler and Wittmann [1], the stability of the fracture process in each case depends on
fulfilling the following generic conditions:

Actuator control : lch > K · Lc · (ks/kM + 1) (3)

COD control : lch > K · Lc (4)

where lch(= E·GI
f/f

2
t ) is the characteristic length of the material (E is the elastic modulus,

ft is the tensile strength), K is a constant depending on the specimen geometry, Lc is the

2
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cantilever length, ks is the specimen stiffness, and kM is the testing machine (including
the WST device) stiffness.

Figure 1: Details of the Wedge Splitting Test (WST) set up: test setup of the WST specimen (left),
and free body diagram of forces (right). Taken from Ref. [3].

In this paper, results of two experimental WST performed on core samples from the
same source are presented. In both cases, the WST were performed controlling the actu-
ator displacement. In the first test, an unstable fracture was obtained. In order to avoid
this in the following test, the specimen stiffness ks was reduced according to the procedure
described in Sec. 4.

2.2 Apparatus

A WST device similar to the one illustrated in Fig. 1 was placed in a “ELE Digital
Tritest 100 testing machine” (loading capacity 500 kN). As mentioned above, the test
were performed controlling displacement rate of the actuator. The vertical load was
measured using a load cell UtilCell 610 (nominal load 25 kN, linearity error < ±0.25%
F.S.) with signal conditioning amplifiers Krenel CEL/M010. The COD was measured with
two LVDT sensors RDP GT2500 (±2.5 mm, linearity error < ±0.1% F.S.), with signal
conditioning amplifiers RDP S7AC. The LVDTs were placed in the axis of the horizontal
splitting force, one on each side of the specimen (COD1 on side 1, COD2 on side 2). The
experimental COD informed in Sec. 4 is the average of these two measurements. Finally,
the data from the sensors was acquire through a ELE Automatic Data Acquisition unit.

2.3 Specimens

The experimental WSTs were performed on a calcareous rock from a deep perforation
core of 100 mm diameter. No physical properties of this rock were known at the moment
of performing the WST. In order to prepare the specimens for the WSTs, two consecutive

3
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sections of 100 mm length were cut from the perforation core. Then, a groove and a notch
were cut in each specimen according to the geometry and dimensions indicated in Fig. 2,
where L is the ligament length and D the ligament depth. In order to force a straight
crack propagation path, a 5 mm-deep groove was cut on both sides of the specimen, on
the circular surfaces perpendicular to its axis (see perspective view in Fig. 2).

Figure 2: Dimensions of the WST specimen. Taken from Ref. [5].

The ligament length is given generically as L in Fig. 2 since it is the geometry parameter
to be determined in Sec. 4 in order to avoid fracture instability. Note that by reducing
L one can reduce the specimen stiffness (ks) and, eventually, make stable an originally
unstable test configuration by fulfilling the relationship stated in Eq. (3). On the other
hand, the ligament area must be large enough to be representative of the macroscopic
material behavior.

3 NUMERICAL MODELLING OF THE WST

The model geometry and the FE mesh used are presented in Fig. 3, where grey elements
represent the rock, blue elements represent the steel loading plates and magenta elements
represent an “equivalent spring” on behalf of the machine compliance. The notch (green
line) and the fracture path (red line) on the rock were represented by zero-thickness
interface elements.

The lower roller support was simulated by restricting the vertical displacement of the
lowest nodes. The horizontal displacements imposed on the roller bearings by the testing
machine were simulated by imposing horizontal displacements of same values and opposite
sign, on the equivalent springs.

4
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For continuum elements (rock, plates and equivalent spring), isotropic linear elastic
materials were assumed. The interface elements representing the notch were equipped
with a linear elastic constitutive law and very low elastic stiffness Kn and Kt, so that
they do not oppose any significant resistance to opening. The constitutive model used
for the interface elements along the fracture path was the elastoplastic constitutive model
with fracture energy-based evolution laws described in detail in Ref. [4].

    

Equivalent “spring” (machine compliance)  
(Continuum elements, linear elastic)  

Steel Loading Plates 
(Continuum elements, linear elastic)  

Notch  
(Interface elements , linear elastic , Kn=0, Kt=0) 

Cracking path 
(Interface elements, elasto-plastic law)  

(Carol et al., 1997)  

Rock 
(continuum elements, linear elastic) 

Figure 3: FE mesh and boundary conditions.

The stiffness of the 5× 5 mm equivalent spring has been calibrated in a previous work
[5], resulting in a elastic modulus E = 700 MPa with a Poisson’s coefficient of ν =0. For
the steel loading plates, conventional values of E = 200 GPa and ν = 0.30 were adopted.

No mechanical properties of the rock were known at the moment of performing the
WST and no additional tests, such compression tests, were performed. Therefore, the
mechanical parameters used int he simulations had to be obtained by fitting the experi-
mental WST curves presented in the next Section.

4 NUMERICAL AND EXPERIMENTAL RESULTS

4.1 Specimen 1 - Unstable fracture

The PH −COD curve obtained from the first tested specimen (Specimen 1) is plotted
in gray in Fig. 4. This specimen, with a ligament length of L = 34.5 mm and a ligament
depth of D = 90 mm, developed an unstable fracture propagation as it can be inferred
from the abrupt load drop in the PH−COD curve after peak. This behavior suggests that
the stiffness relation between the testing machine and the specimen was not high enough
to guarantee a stable fracture process. For the following specimen, not being possible to
increase the stiffness of the machine, it was decided to reduce the stiffness of the specimen
by reducing the length of the ligament (L).

5
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In order to illustrate the beneficial effect of reducing L on the fracture stability, Fig. 4
shows some PH −COD of curves obtained from the simulations performed with tentative
mechanical parameters of the rock for different L values, together with the experimental
results. The red curve, corresponding to a ligament length equal to the one of Specimen 1,
exhibits a snapback behavior, which explains the unstable load drop of the experimental
curve. As the ligament length is reduced, the snapback is reduced until it completely
disappears.The results suggested that a ligament length of about 20 mm would assure a
stable fracture process.
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Figure 4: PH−COD curve from experimental WST of Specimen 1 and from model simulations performed
with different ligament lengths L. All the curves are normalized to a specimen depth of 1000 mm.

4.2 Specimen 2 - Stable fracture

Specimen 2 was tested with a ligament length of 19.5 mm. As predicted, the PH−COD
curve obtained (Fig. 5) indicates a stable fracture process. The specific fracture energy
(GI

f ) measured was 52.9 N/m.
Finally, the experimental WST on Specimen 2 was numerically simulated using the

measured value of GI
f . The tensile strength (ft) and the elastic modulus of the rock (E)

were adjusted by trial and error to 10 MPa and 45 GPa, respectively, in order to fit the
experimental PH − COD curve, as it is shown in Fig. 5.

5 CONCLUDING REMARKS

- Numerical modelling of experimental WST has helped to interpret failed results and
to solve the underlying problems. Additionally, it has allowed to indirectly estimate
other mechanical parameters of the rock (E, ft) besides the specific fracture energy.

6

519



J. Liaudat, D. Garolera, A. Martnez, I. Carol, M.R. Lakshmikantha and J. Alvarellos

- More WST are needed in order to assess the statistical reliability of the measured
GI

f value reported.

- Standard uniaxial and triaxial tests would be also desirable in order to verify the
values estimated from retrofitting of numerical simulations.
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Figure 5: PH−COD curves from rock specimens obtained experimentally and from numerical simulation.
Results are normalized to a specimen depth of 1000 mm.
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1 INTRODUCTION 
This paper deals with the objective prediction of cracks in concrete structures within the 
framework of a local constitutive model. To reach this goal, it is necessary to overcome mesh 
dependency due to the softening of concrete. The constitutive law for concrete is an isotropic 
damage plastic model already described in [1]. The model has been introduced in 
EUROPLEXUS, a general finite element explicit code for fast transient analysis. The 
Hilleborg method used to maintain constant fracture energy regardless of element size is not 
able to deal with mesh-induced directional bias. In some cases, this leads to wrong failure 
mechanisms of the structure and to false ultimate load. Non-local models by their implicit 
nature are not adapted to explicit code and adversely affect its performance. This is the reason 
why the bounded rate concept presented in [2] has been introduced in the model. From a 
physical point of view, the basic idea is that the damage rate is finite because the cracking 
velocity is not instantaneous and from a mathematical point of view it was demonstrated in 
[2] that the problem remains well posed as long as damage rate is bounded and the damage 
not too close to 1. 

After a short theoretical overview of the model, numerical implementation and calibration 
procedure are succinctly described, and then comparisons with tests are presented. 
 

2 THEORETICAL OVERVIEW 
The DPDC model belongs to the wide family of phenomenological concrete models. It is 

an isotropic damage plastic model for concrete failure. The plastic part is based on stress of 
the undamaged state of the material (named effective stress) and the damage part is based on 
total strains. The behaviour of concrete is elastic until the yield surface is reached. The initial 
damage threshold surface is identical to the shear yield surface. This kind of concrete model is 
widely used because plasticity and damage are simply coupled and it mathematically leads to 

522



Daniel Guilbaud 

 2 

a well posed problem. Furthermore, calibration procedure of parameters is relatively easy to 
deal with. 

Experiments show an increase of concrete strength as strain rate increases, both in tension 
and in compression. In the model described here, this phenomenon is taken into account as 
follows: plasticity is replaced by viscoplasticity to allow stress state to lie outside the yield 
surface and damage rate is bounded to produce a viscous regularization.  

1.1 Elasto-viscoplastic formulation 
The elasto-viscoplastic formulation is an extension of the commonly used Duvaut-Lions 

model described in [3]. Simo postulated that the elasto-viscoplastic strain rate is given by: 

 1 1:vp vp epC  


   (1) 

where he introduced  called the “fluidity parameter” (physically,  is a time constant which 
could be related to crack propagation). ep is the elastoplastic stress and vp  the elasto-
viscoplastic stress, and C the Hooke’s tensor. The viscoplastic stress rate: 

   1: :vp vp vp epC C     


      

is replaced by the first order accurate formulae thanks to an Euler backward scheme:  

 1
1 1

1:
vp vp

vp epn n
n nC

t t
    




 
   

  
 

 (2) 

where t  is the current time step. 

From which we finally obtain: 

1
1

1

:

1

vp ep
n n vp ep

vp trial n
n

tC
t

t t

  
 









  
 

 
  

 (3) 

Then, the next step is to provide a fit between the fluidity coefficient  and the strain rate. 
The fluidity coefficient  varies with strain rate according to the generic expression below: 

0 0
ˆ / )( in

i i      (4) 

where ni, 0i , 0i are input parameters and ̂  is a measure of the strain rate defined as follows: 

ε̂ ( , / 3)d
VMax    (5) 

where :          1ε εε
d d

d n n

t
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ε ( ε)/ tV tr    

with      2 2 2 2 2 2
xx yy yy zz zz xx xy yz xz

1ε ε ε ε ε ε ε )(ε ε
2

6 εd
i

i

           
     , 1i n n   

εd
i is a measure of the deviatoric strain rate and εV  is the volumetric strain rate, the latter 

being introduced to have a strain rate in tri-tension. 

Two distinct fluidity parameters are used: these are the fluidity parameters in uniaxial 
tensile stress t and uniaxial compressive stress  𝜂𝜂𝑐𝑐. t  and c  are defined according to 
equation (4), but with different input parameters for each. 

 0 0
ˆ ˆε / ε t

t t

n
 


   0 0

ˆ ˆε / ε c

c c

n
 


  (6a&b) 

In both cases, 0ε̂  is chosen equal to 1 s-1. Default values of the four parameters: 0t , 0c , tn  
and cn  have to be identified on experimental correlations of Dynamic Increased Factors. 

For triaxial stress cases, the fluidity parameter  used in equation (3) is interpolated 
between tensile and compressive fluidity parameters as a function of the viscoplastic stress 
triaxiality 1 2/ 3vp

xT J J as follows: 

  (1 ( ))  min(1, )  ( )vp vp vp
x t x t x tcT TH H T             (7) 

when 1 0vp
xT   .  0, 0X X if X else       is the Macaulay brackets and H is the Heaviside 

function. 

1.2 The bounded rate model 
The bounded rate model is described in [2]. From a physical point of view, the basic idea is 

that the damage rate is finite because the cracking process is not instantaneous (the crack 
velocity is finite) and from a mathematical point of view it was demonstrated that the problem 
remains well posed as long as damage rate is bounded and the damage is not too close to 1. 

The damage rate d  is asymptotically bounded thanks to the following expression: 

 1
sb d dd d e 

   (8) 

where: d stands for the maximum damage rate, sd is the static damage i.e. calculated 
without rate effect, d is the damage and b is a parameter. 

When the argument of the exponential term is much smaller than one, the damage rate can 
be approximated by: 

s
s d d

d bd d d



 

 
(9) 
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This formula is that provided by simple delay damage model; see for example [4]. Expression 
(9) shows that the product bd  is the inverse of a time constant . As shown by parametrical 
studies, it was important to maintain this product constant so b is replaced by  that turns to 
be the new parameter of the model.  

Implementation of the model is easy. First, the time derivative of (8) is calculated and 
expressed as follow: 

( )( )sd b d d d d    
Then, as in viscoplasticity, an Euler backward scheme leads to the first order accurate 
formulae:  

1
1 1 1( )( )sn n

n n n
d d b d d d d

t


   


  
  

(10) 

So, it remains to solve the second order equation: 

2
1 1 1 1

1 0s s n
n n n n

dd d d d d d
b t b t     

           
from which the solution gives an explicit expression of damage rate at each time increment: 

2
1 1 1 1

1 1 1( ) ( ) 4( )
2

s s s n
n n n n

dd d d d d d d
b t b t b t      

 
        

      
(11) 

Damage at time step n+1 is finally obtained by integrating the damage rate over the time 
step: 

1 1n n nd d d t     (12) 

Brittle damage accumulation law is given by the linear law: 

  0 max max 0( ) ( ) 1s s
x

b
ma

s bA ford d A             (13) 

Brittle fracture energy is equal to the area under the stress-displacement curve after 
reaching the strength in tension and that gives the value of the shape parameter Abs: 

0

2
hbs c

b
f

LA
G


  (14) 

where Lch is the ‘crack band width’ of the integration domain also called the concrete 
characteristic length. Thanks to an equivalent interpretation due to [5], this parameter is the 
ratio of the specific energy per unit of volume b

fg  dissipated during the deformation to the 

fracture energy per unit of area b
fG : 

/b b
ch f fL G g  (15) 
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Within this model, damage is no longer localized in a single element but is spread over the 
concrete characteristic length. In [6], authors proposed to choose Lch within the range

3 , 5agg aggD D    where Dagg is the maximum aggregate size. Nevertheless, there is no 
consensus on this subject. For example, in [7], when studying calibration of concrete model 
on three sizes of concrete beams, the author obtained the better fit with a much larger value 
(x3). So, Lch is a parameter of the model to be calibrated such as  and d . 

With increasing deformation rate, damage is spread out over a larger band than Lch. Of 
course, the size of the mesh should be such that several elements are inside the band in order 
to have an adapted discretization (see Figure 3). Conversely, with decreasing deformation 
rate, damage is localized on a narrow band. Therefore a very fine mesh is required to avoid 
mesh dependency and, in practice, if the strain rate is too low, the bounded rate model is 
ineffective to regularize. Indeed, parametric studies have shown that regularization is obtained 
only when the following condition: sd d is fulfilled. 

To avoid introducing a new parameter,  could be taken as the fluidity parameter  which 
is consistent with the definition of the shifted damage threshold (eq. 9). The fluidity parameter 
 is nevertheless not constant but as it varies more slowly than damage, the previous 
implementation of the model is still relevant.  

3 EVALUATION TESTS 
After a single element test used to check the implementation of the bounded rate model 

within the DPDC constitutive law, two other tests are presented: the first one is an indirect 
tension test and the second a three-point bending test on an impacted notched beam. 

3.1 Single element test 
A cubic element is loaded in uniaxial tension along the z axis with a constant strain rate 

ε zz = 100 s-1. Default parameters values are used for the bounded rate model: Lch = 0.01 m and 

d  104 s-1. The element length of the cube is L = 0.001 m, one tenth of Lch.  

For this simple case, the initial damage threshold and the current thresholds read: 

max
0 max 0princ

p

b princ
zz pwhen the shear failure is reached at t t and

E E t


  
          

     

b princ
max zzE tE    

Then, the static damage is given by equations (13) and (14): 

  0
0( ) ( ) ( )'

2 2
s ch t ch

max zz zzb b
f f

bs
p p pA tL f Ld d E

G
t t t for t

G
t             

from which the static damage rate is deduced:   '
2

s t ch
zzb

f

f Ld
G

  .The numerical application 
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gives:  sd   2.64 104 s-1 in agreement with the calculation as can be verified on Figure 1 
showing static and dynamic damage. The third parameter:    affects the nonlinear part of 
the dynamic damage evolution (until the maximum damage rate is reached). 
 

 
Figure 1: Static damage (in red) and dynamic damage (in blue) for tension loading at a strain rate zz = 100 s-1. 

 

Stress time histories zz(t) within the bounded rate model are plotted on Figure 2. It can be 
seen that the transition between hardening and softening is smooth which is favorable to avoid 
localization. 

 
 

 
Figure 2: Stress time histories for a tension test at a strain rate zz = 100 s-1. 

(Plastic stress is colored in pink, viscoplastic stress in red, final stress in blue and final static stress in green.) 
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3.2 Dynamic Brazilian test 
The test in tension is a Brazilian one in which a vertical compressive load is applied 

diametrically to a cylindrical specimen by mean of two thin strip bearings between the sample 
and the steel plates. The cylinder is 7 cm high and 7 cm in diameter (B = 7 cm, D = 7 cm). 
The mean element size is 1.25 mm. The characteristic data used for concrete are: 
Ec  = 26.4 GPa, c = 0.2, c = 2400 kg/m3, f’c = 30 MPa and Dagg = 1.0 cm. All others 
parameters are default values given by the DPDC model, so f’t  = 3 MPa, Lch  = 1 cm and 
d  = 104 s-1. 

The bearings are modelled with an elastic material whose elastic properties are the same as 
the concrete. Perfect bond is assumed between the bearings and the specimen. The bottom 
steel plate is blocked and the upper one moved downward with a speed of 20 cm/s. 

To study mesh bias, the mesh is not aligned with the crack, but is rotated by about thirty 
degrees counter-clockwise. 

 

  

  

plastic volumetric strain brittle damage 

Figure 3: Damage patterns for the Brazilian test. 
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The plastic volumetric strain which is a good marker of cracks, and the brittle damage are 
plotted on Figure 3. It can be seen that both are vertical so no mesh bias is noticeable. 

The first instant is the one for which damage reached one along the entire vertical plane. 
Damage is not localized but varies smoothly within a vertical band. At the end of the 
simulation, this is no longer true, because the complete damaged zone (where db =1, in red on 
Figure 3) has gained ground on the intermediate damaged zone. Simultaneously, the crack 
width has increased. 

Vertical force time history and equivalent tension stress versus vertical displacement of 
bearings are drawn on Figure 4. The tensile stress decreases toward zero without any artificial 
rebound. The simulation gives σt = 5.2 MPa and the dynamic increase factor is DIF = 1.73 in 
reasonable agreement with the tabulated values. 
 

  

Vertical force time history Equivalent tension stress versus displacement 

Figure 4: Strengths obtained with the bounded rate model. 

 

3.3 Dynamic three-point bending tests on notched beams 
Zhang’s results about the fracture behavior of high-strength concrete at a wide range of 

loading rates are used to test the bounded rate model [8]. Dynamic tests were performed with 
a drop-weight impact machine. 

 

 
Figure 5: Geometry of specimen. 
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Three-point bending tests on notched beams were carried out as sketched on Figure 5 
where the dimensions of the tested beam are given. The mass of the hammer is 120.6 kg. 

Mechanical properties of concrete and steel for the hammer and the support rollers are 
gathered in Table 1 and Table 2 respectively. Here, the following values have been used: 
Lch = 1 cm (the maximum size of aggregates is 1.2 cm) and d  = 2 103 s-1. These low values 
have been chosen to favor regularization and to fit with the highest velocity of the hammer. 

 

Table 1: Mechanical properties of the high-strength concrete. 
 

 (kg/m3) E (GPa)  fc (MPa) ft (MPa) Gf (J/m2) 

2400. 43.3 0.18 105. 6.3 148. 
 

Table 2: Mechanical properties of steel. 
 

E (GPa) 

200 0.33 
 

3.3.1 Mesh objectivity 
Three element sizes are used for the meshes: L = 5 mm, L = 1.66 mm and L = 1 mm. 

Furthermore, to study mesh bias, the region of the mesh where the crack develops is not 
aligned with the crack, but is rotated by about thirty or seventy degrees clockwise. In these 
last cases, the element size is L = 1.66 mm. 

Brittle damage and plastic volumetric strain obtained with the various meshes when the 
initial velocity of the hammer is V0ham = 1.76 m/s are shown on Figure 6. In all cases, the 
brittle damage zone is almost the same whatever the size of the mesh and its orientation 
relative to the crack. Nevertheless, the plastic volumetric strain reveals two parallel cracks 
which is surprising. As the bifurcation occurs at the notch root, an area of stress 
concentration, the bounded rate model is suspected to be not suitable for zones of strong stress 
gradient. 

Reaction force time histories and internal energy time histories are plotted on Figure 7. The 
results are not identical but the discrepancies introduced by the meshes seem reasonable. 

3.3.1 Comparison with the experiments 
Reaction forces are plotted against loading point displacement of the notched beams for the 

two highest velocities of the hammer (see Figure 8). Due to the fit, the agreement for the test 
with the highest velocity is good, but the agreement is lost for the other tests. 

The maximum of reaction forces and the apparent fracture energies are gathered in Table 
3. It can be verified that the accuracy of the results decreases with the loading rate. 
Consequently, a single set of coefficient d seems not able to reproduce strain rate effect. 
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L = 5 mm L = 5 mm 

L = 1.66 mm 
 

L = 1.66 mm 

L = 1. mm L = 1. mm 

L = 1.66 mm - 30° skewed mesh 
 

L = 1.66 mm - 30° skewed mesh 

 
L = 1.66 mm – 70° skewed mesh 

 
L = 1.66 mm – 70° skewed mesh 

Brittle damage Plastic volumetric strain 

Figure 6: Damage patterns of the impacted notched beam – V0ham = 1.76 m/s. 

 

Table 3: Comparison between experiments and model. 
 

V0ham (m/s) 0.88 1.76 2.64  V0ham (m/s) 0.88 1.76 2.64 

Max. of reaction force (kN) - test 21.9 34.7 38.0 Gf  (J) -test 6.0 16.8 33.6 

Max. of reaction force (kN)- model 17.9 28.4 34.5 Gf  (J) -model 6.9 18.4 32.4 
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Figure 7: Reaction force and internal energy of the impacted notched beam – V0ham = 1.76 m/s. 

 

 
Figure 8: Reaction forces versus loading point displacement (left: V0ham = 1.76 m/s, right: V0ham = 2.64 m/s). 
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4 CONCLUSIONS 
The model is very easy to implement because it leads to an explicit expression of the rate 

of damage at each time increment. 

The new model has been verified on skewed mesh (relatively to crack) and compared to 
experimental results of the literature: an impacted notched beam [8] loaded at relatively 
moderate rates (  1 m/s). It was shown that the bounded rate model regularizes deformations 
when the strain rate is larger than 1 s-1 and the mesh size about 1 mm. In that case, damaged 
zones are almost mesh-independent in size and orientation. Nevertheless, crack pattern 
revealed by the plastic volumetric strain is not satisfactory because it does not match with a 
single crack. So, the bounded rate model is suspected to be not suitable for zone of strong 
stress gradient such as notch tip. 

Furthermore, calibration on these experiments has not led to a universal set of coefficients 
yet. So, a large amount of investigation remains to be done to broaden the loading rate range, 
to precise the lower bound rate that maintains regularization for a given mesh size, and to find 
a formulation with a single set of parameters. 
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Abstract. In this paper, an isotropic porous metal plasticity model accounting for both
void growth by diffuse plastic deformation and void ‘coalescence’ by localization of plastic
flow in the inter-void ligaments is presented. Predictions for the effective stress-strain
response, evolution of damage and the strains to failure are obtained by integrating the
model numerically under triaxial proportional loading conditions. The model predictions
are compared with results from micromechanical finite element simulations of the average
response of voided unit cells under similar loading conditions. It is shown that the model
predictions for the failure strains as a function of the loading path are in good qualitative
agreement with the results of the cell model simulations.

1 INTRODUCTION

Fracture of ductile materials is usually preceded by the localization of plasticity in a
failure process zone such as a diffuse neck or a shear band. Material separation occurs by
the growth and coalescence of micro-voids inside the process zone that initiate from second
phase particles or inclusions [1]. Both the condition for the onset of plastic instabilities
and the rate of crack growth within the localization zone are strongly influenced by the
local state of stress. Void growth by diffuse plastic flow around the voids depends on the
relative magnitude of the hydrostatic stress, while void coalescence occurs due to plastic
collapse of the ligament separating neighboring voids, which depends on the ligament
thickness and stress components in the transverse plane of the ligament. Denoting the
stress state via two commonly used non-dimensional parameters, the stress triaxiality, T ,
defined as the ratio of the mean and Von Mises effective stresses and the Lode parameter,
L, proportional to the determinant of the deviatoric stress, void growth by diffuse plastic
flow depends only on T , while void coalescence in general depends on both T and L.
Predictive modeling of ductile fracture therefore requires a physics-based plasticity model
that not only accounts for the effect of the loading path on the damage growth rates, but
also the condition for the onset of void coalescence and consequent rapid softening due to
transitions in the deformation mode at the micro-scale.

1
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Micromechanics-based plasticity models have been developed since the late 60’s to
predict the evolution of plastic strains and damage in a porous ductile material in the
pre-coalescence phase [2, 3]. The Gurson model [3] in particular has been successfully
used to predict several experimental features of ductile fracture [4–6] using a heuristic
criterion for the onset of coalescence proposed by Tvergaard and Needleman [4]. In
the Gurson-Tvergaard-Needleman (GTN) model, void coalescence is assumed to initiate
once the porosity reaches a critical value. When the critical porosity is exceeded, the
damage growth rate is accelerated to simulate the rapid material degradation as observed
in finite element simulations of void growth using the unit cell model. However, a major
limitation of the above phenomenological approach is that both the critical porosity for
the onset of coalescence and the form of the post-coalescence damage evolution law are
calibrated based on cell model simulations using a limited set of loading paths; mainly
axisymmetric loadings. Importantly, predictions for the ductility obtained using the GTN
model under proportional loading conditions depend only on the stress triaxiality T and
are independent of the Lode parameter L.

While the major influence of the stress triaxiality parameter on the ductility has been
understood for a long time, both experimentally [7] and computationally [8], the impor-
tance of the Lode parameter has only been appreciated recently, with the publication of
experimental data that appears to suggest that the ductility under low triaxiality load-
ing (typically T < 1) depends on the Lode parameter with significantly lower ductilities
predicted under shear dominated loadings compared to axisymmetric loadings at higher
triaxialities [9, 10]. Subsequently, several authors have investigated further the effect of
the Lode parameter on the strains to the onset of void coalescence at the micro-scale
using three-dimensional cell model simulations of void growth under combined axisym-
metric and shear loading [11–13]. A significant reduction in ductility has been consistently
observed in these simulations under shear dominated loadings. These results clearly es-
tablish that the critical porosity criterion in the GTN model needs to be replaced with
a stress-based criterion that includes the observed effect of the Lode parameter L on the
onset of coalescence, since the value of L allows to distinguish between axisymmetric and
shear dominated loadings at the same triaxiality.

In the past few years, several authors have attempted to develop such models by
extending the Thomason [14] model for void coalescence by internal necking to account
for coalescence under combined tension and shear [15–17]. Most recently, Keralavarma [18]
proposed a multi-surface plasticity model for void growth and coalescence in an isotropic
material by combining the Gurson [3] void growth model with the void coalescence model
of Keralavarma and Chockalingam [17], appropriately extended to account for arbitrary
orientations of the coalescence band. The objective of this paper is to examine predictions
for the material’s intrinsic ductility as a function of the applied loading path predicted
by the above multi-surface model under proportional loading conditions, and to compare
the predicted trends with those observed in recent cell model simulations under combined
tension and shear [11–13]. A brief summary of the model is presented in section 2, followed
by comparison of the model predictions with two-dimensional axisymmetric cell model
simulations and predictions from the GTN model in section 3.1. Finally, predictions for
the variation of the material’s ductility under general proportional loadings as a function
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of the loading path parameters T and L are presented and discussed in section 3.2.

2 MULTI-SURFACE POROUS PLASTICITY MODEL

Consider an elasto-plastic Von Mises material containing a random distribution of
equiaxed voids at the micro-scale. Assuming a dilute volume fraction of voids with poros-
ity f � 1, the yield stress of a macroscopic material element may be predicted using the
Gurson [3] yield criterion

FG(Σ) ≡
Σ2

eq

σ̄2
+ 2qf cosh

(
3

2

Σm

σ̄

)
− 1− (qf)2 = 0 (1)

whereΣ is the macroscopic stress tensor, Σm = 1
3
tr(Σ) and Σeq =

√
3
2
Σ

′
: Σ

′
are the mean

and Von Mises equivalent stresses respectively, Σ
′
is the deviatoric stress, σ̄ is the flow

stress of the matrix material and q is a heuristic parameter introduced by Tvergaard [19].
Capital symbol Σ is used for the stress to emphasize the fact that Σ is the average stress
tensor over a porous representative volume element (RVE) Ω; i.e. σ = 〈σ〉Ω where σ is
the Cauchy stress. The above yield function can be formally derived using limit analysis
by assuming that plastic flow occurs in the entire RVE during yielding.

However, at finite values of the porosity, an RVE can also yield by localized plastic flow
(coalescence) in a narrow band encompassing the ligaments connecting neighboring voids
and band width equal to the void diameter. For a given orientation of the localization (or
coalescence) band identified by the unit normal vector n, Keralavarma and Chockalingam
[17] derived the following yield function

FC(Σ, n) ≡ 3
Σ2

sh

σ̄2
+ 2fb cosh

(
Σn

Σc

)
− 1− f 2

b = 0 (2)

where Σn = n · Σn and Σsh =
√
n ·Σ2n− Σ2

n are respectively the normal and shear
stresses on the coalescence plane, fb = f 2/3 and Σc is a critical stress given by

Σc = σ̄

√
6

5

[
√
b2 + 1−

√
b2 + f 2

b + b ln

(
b+

√
b2 + f 2

b

fb(b+
√
b2 + 1)

)](
log

1

fb

)−1

(3)

with the parameter b given by

b =

√
1

3
+

5

288

(
1 +

1

fb
− 5fb + 3f 2

b

)
(4)

Σc is a positive definite function of fb that tends to infinity in the limit fb → 0+, so that
at dilute porosities, the yield surface defined by (2) falls outside the Gurson yield surface
(1) for most loading paths. However for finite values of f (typically f > ∼0.01), the
yield stress predicted by the coalescence criterion can be lower than the Gurson value for
several loading paths in stress space.

In a statistically isotropic material, the inter-void ligament dimensions are approx-
imately the same along any material direction. Therefore, according to limit analysis
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theory, coalescence occurs along the direction n that yields the smallest value of the yield
stress or, equivalently, maximizes the coalescence yield function FC in (2). Thus, the
coalescence criterion for an isotropic material is written as

FCiso

(Σ) ≡ max
n

FC(Σ, n) = 0 (5)

Performing the above maximization leads to the result that coalescence occurs either on
one of the principal stress planes or on a non-principal plane n on which the normal stress
Σn satisfies the following equation (see [18])

2Σn −
2

3

σ̄2

Σc
fb sinh

(
Σn

Σc

)
= Σ1 + Σ2 (6)

where Σ1 and Σ2 are two unequal principal stresses. Solving the above equation for every
unequal pair of principal stresses yields the normal stresses on planes where shear assisted
coalescence can occur, and the corresponding shear stress is found from the equation

Σ2
sh =

(
Σ1 − Σ2

2

)2

−
[
Σn −

(
Σ1 + Σ2

2

)]2
(7)

The value of the isotropic coalescence function FCiso
then corresponds to the maximum

value of FC over all (Σm,Σsh) pairs obtained above, and coalescence occurs when FCiso ≥
0. Finally, combining the Gurson and the isotropic coalescence models using the same
multi-surface approach, Keralavarma [18] proposed the following for the effective yield
criterion for a porous isotropic material accounting for both void growth and coalescence

F(Σ) ≡ max
{
FG(Σ),FCiso

(Σ)
}
= 0 (8)

The macroscopic plastic strain rate, Dp, is obtained from the yield function via the
normality property, which yields

Dp = λ̇N, N =
∂F
∂Σ

(9)

where λ̇ is the plastic multiplier and the direction of plastic flow N depends on the active
yield surface, F = FG or FC . We have

N =




3
Σ

′

σ̄2
+ q

f

σ̄
sinh

(
3

2

Σm

σ̄

)
I, F = FG

3

σ̄2
[n⊗Σn+Σn⊗ n− 2Σnn⊗ n] +

2fb
Σc

sinh

(
Σn

Σc

)
n⊗ n, F = FC(n)

(10)

The evolution of porosity follows from plastic incompressibility of the matrix, which yields

ḟ

1− f
= tr(Dp) =




λ̇
3f

σ̄
sinh

(
3

2

Σm

σ̄

)
, F = FG

λ̇
2fb
Σc

sinh

(
Σn

Σc

)
, F = FC(n)

(11)
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Strain hardening in the matrix is accounted for by making the matrix yield stress a
function of the plastic strain as σ̄ = σ̄(εpeq), where εpeq is an average measure of the
equivalent plastic strain in the matrix material, whose evolution is obtained from the
equivalence of the plastic power at the macro- and micro-scales; i.e.

Σ : Dp = (1− f)σ̄(εpeq)
˙εpeq (12)

In this paper, a power-law relationship between εpeq and σ̄ is assumed, of the form

σ̄ = σ0

(
1 +

εpeq
ε0

)n

(13)

where σ0 is the initial yield stress, ε0 is a reference strain and n is the strain hardening
exponent.

In the following section, rate equations (9)–(12) are integrated along radial loading
paths in stress space characterized by constant values of the loading path parameters, the
triaxiality T and the Lode parameter L, to obtain the evolution of the equivalent stress
and porosity as a function of the equivalent plastic strain εpeq. T and L are related to the
invariants of the stress tensor as

T =
Σm

Σeq

, L = −27

2

det(Σ
′
)

Σ3
eq

(14)

T is a measure of the magnitude of the hydrostatic stress relative to the deviatoric stresses,
while the value of L allows to distinguish between different states of stress for the same
T . L is bounded between -1 and +1, with L = −1 for axisymmetric loadings with a
major axial stress, L = 0 for pure shear with superposed hydrostatic stress and L = +1
for axisymmetric loading with major radial stresses.

3 RESULTS

3.1 Comparison with axisymmetric cell model simulations

The heuristic parameters in the classical GTN model, namely the Tvergaard parameter
q and the critical porosity for the onset of coalescence, fc, are usually calibrated by
comparison with cell model simulations under axisymmetric loading conditions (e.g. see
[8,19]). In the latter, the average response of a transversely isotropic distribution of voids
in an elastic-plastic matrix is simulated using finite element analysis of a two-dimensional
RVE subjected to proportional axisymmetric loading, as shown in Fig.1. A periodic
distribution of voids in the plane of analysis is assumed so that, exploiting the symmetries
of the geometry and the applied loading, the average response of the unit cell shown using
dashed lines in Fig.1(a) can be obtained from analysis of the quarter cell shown in Fig.1(b),
subject to symmetry boundary conditions on the inner boundaries (edges that intersect
the voids) and periodicity condition on the outer boundaries. The unit cell is loaded in
such a way that the ratio of the principal stresses in the axial and radial directions, or
equivalently the triaxiality T , remains constant during the deformation. The major stress
is applied in the axial direction, so that the Lode parameter L = −1 in all the simulations
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z

r

Σzz

Σrr

(a) (b)

Figure 1: (a) Schematic of a transversely isotropic porous material containing a periodic distribution of
voids in the plane of analysis, (b) one quarter of a periodic unit cell used in the finite element analysis.

presented here. Further details of the axisymmetric cell model simulations can be found
in [8].

Fig.2 shows the response of periodic unit cells of the type shown in Fig.1(b) made of an
elasto-plastic Von Mises material with power law hardening. The void shape is assumed
to be initially spherical with a volume fraction f = 0.001. The values of the material
properties assumed are Young’s modulus E = 210 GPa, Poisson ratio ν = 0.3, initial
yield stress σ0 = 420 MPa, hardening exponent n = 0.1 and reference strain ε0 = 0.002;
see Eq.(13). Fig.2(a) shows the equivalent stress-strain response of the unit cell (solid
black lines) for axisymmetric loadings with L = −1 and four different values of the
triaxiality T = 2/3, 1, 3/2 and 2. The equivalent stress and strains are defined as

Σeq = |Σzz − Σrr|, Eeq =
2

3
|Ezz − Err| (15)

where Σ = 〈σ〉Ω is the average Cauchy stress and Err and Ezz are the logarithmic strains
in the radial and axial directions of the cell respectively. The corresponding evolution of
the porosity f as a function of equivalent strain is shown in Fig.2(b). The simulations are
terminated at the onset of coalescence (indicated by the × symbol), when the deformation
localizes into the transverse ligament between the voids, which also coincides with the unit
cell switching to a uniaxial mode of deformation along the z direction.

The figure also shows predictions of the effective stress-strain response and damage
growth obtained from the the multi-surface plasticity model summarized in the previous
section (blue dashed lines) and the GTN model (red dotted lines). In the pre-coalescence
regime, the GTN model is identical to the multi-surface model, since the yield surface
coincides with the Gurson yield surface, i.e. F = FG, and the state evolution equations are
identical. However, the criterion for the onset of coalescence is different for the two models.
In the GTN model, coalescence occurs when the porosity reaches a critical value fc, while
coalescence occurs in the multi-surface model when FG ≤ FCiso

= 0; see section 2. In both
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Figure 2: Comparison of the effective response of two dimensional porous unit cells shown in Fig.1
subjected to axisymmetric proportional loading with L = −1 and various values of T (solid lines).
Predictions from the GTN (dotted lines) and multi-surface (dashed lines) porous plasticity models are
also shown. (a) Equivalent stress vs. strain and (b) porosity vs. equivalent strain.

cases, the simulations are terminated when the onset of coalescence is detected. The values
of the GTN model parameters are adopted from [8] with q = 1.25 and fc = 0.03. The same
value of the Tvergaard parameter q is also used in the simulations using the multi-surface
model. Further, the coalescence yield function of Eq.(2) is heuristically modified in the
spirit of Tvergaard’s modification of the original Gurson model to redefine the effective
porosity parameter as fb = qbf

2/3, where qb = q2/3 is assumed in the present calculations.
Comparison of the model predictions with the cell model simulations in Fig.2 shows

that both the GTN and the multi-surface models provide reasonable predictions for the
strains to the onset of coalescence. However, neither model is satisfactory for predicting
the correct trends for the porosity at the onset of coalescence, which appears to increase
with T in the cell model simulations, while the multi-surface model predicts the opposite
trend. Nevertheless, it is significant that the multi-surface model can capture the correct
trends for the ductility in the axisymmetric simulations, without use of the heuristic fc
parameter, because the coalescence criterion in the multi-surface model depends on both
the triaxiality T and the Lode parameter L, unlike the GTN model, which depends only
on T . Hence, the stress state dependence of the ductility can now be examined under
general triaxial loading conditions, as is done in the next section, and compared with the
trends reported in the recent literature.

3.2 Loading path dependence of the ductility

Fig.3 shows the effective stress strain response predicted by the multi-surface model
under triaxial radial loading with T = 1 and several values of the Lode parameter L.
Unlike in Fig.2, the post-coalescence response of the material is also included in Fig.3.
Notice that the effective stress-strain response depends on the Lode parameter unlike the
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Figure 3: Equivalent stress vs. strain response predicted by the multi-surface plasticity model under
triaxial proportional stressing with T = 1 and various values of L.

GTN model, whose predictions essentially collapse into a single curve (not shown). The
onset of coalescence is visible as a sharp change in the slope of the stress-strain curve in
some of the simulations for large |L|. However, for shear dominated loadings (|L| near
zero), coalescence tends to occur early and without a sharp change is the slope of the
stress-strain curve. Also, the material undergoes significant stable plastic flow and strain
hardening after the onset of coalescence, so that the strain to the onset of coalescence is
not an accurate measure of the ‘intrinsic’ ductility of the material. It is more reasonable
in such cases to adopt the plastic strain corresponding to the maximum in the stress-
strain curve as the material’s ductility. For the present study, we thus adopt the following
measure of the ‘failure strain’ εpf of the material

εpf = max {εpult, ε
p
coal} (16)

where εpult and εpcoal are the equivalent plastic strains corresponding to the ultimate stress
and the onset of coalescence respectively.

The results in Fig.3 show that the strain to failure under proportional stressing εpf , as
defined above, predicted by the multi-surface model shows a non-monotonic trend with
respect to L at fixed T , and the minimum ductility is predicted for shear dominated
stress states near L = 0. The Lode parameter dependence of the ductility is further
illustrated in Fig.4(a). The figure plots the strain to failure εpf as a function of L for
several representative values of T . Notice that the predicted curves have an approximately
convex shape, except for a region near L = 0 where slight concavity is observed. The
ductility minimum occurs for shear dominated stress states with small negative values
of L. Further, εpf also shows a dependence on the sign of L (equivalently the sign of
the determinant of the deviatoric stress), with relatively higher ductilities predicted for
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Figure 4: Variation of the strain to failure εpf under proportional loading as a function of: (a) the Lode
parameter L for various values of T and (b) the triaxiality T for various values of L.

positive values of L. In contrast, the triaxiality dependence of the ductility in Fig.4(a)
exhibits a monotonic trend as expected, with lower failure strains predicted towards higher
values of T . The triaxiality dependence of the ductility is also illustrated in Fig.4(b),
which plots εpf as a function of T for several values of L. The shapes of these curves
are in accordance with predictions from classical porous plasticity models, except for the
significant dependence on L.

Recently, several authors have performed cell model simulations in the spirit of sec-
tion 3.1, using three dimensional unit cells subjected to periodic boundary conditions and
combined tensile and shear loads to simulate proportional stressing for arbitrary values
of T and L [11–13]. They report predictions for the strains to the onset of coalescence
in remarkable qualitative agreement with the predictions from the multi-surface model
in Fig.4. In particular, the shape of the εpf vs. L and εpf vs. T curves and the depen-
dence of the failure strains on the sign of L are in qualitative agreement with the above
cell model simulations, which indicates that the mechanisms of coalescence assumed in
the multi-surface model are fundamentally correct. It remains to perform a quantitative
comparison and calibration of the model against three dimensional unit cell simulations,
with possibly introduction of additional heuristics to correct for some of the discrepancies
observed in Fig.2. The results of such a study will be reported in a future publication.

4 CONCLUSION

Conclusions from the above study are summarized below.

- It is shown that a multi-surface porous plasticity model [18], combining the Gurson
model with a void coalescence model accounting for arbitrary orientations of the
coalescence band and the effect of the loading path on the coalescence stress, can
predict the triaxiality and Lode parameter dependence of the ductility observed in
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three dimensional cell model simulations [11–13].

- Quantitative comparison with axisymmetric cell model simulations shows that the
strains to coalescence predicted by the multi-surface model are in reasonable agree-
ment with the simulations, although the results for the porosity at the onset of
coalescence are significantly different.

REFERENCES

[1] A. Pineau, A. A. Benzerga, and T. Pardoen. Failure of metals I: Brittle and ductile
fracture. Acta Mater., 107:424–483, 2016.

[2] J. R. Rice and D. M. Tracey. On the enlargement of voids in triaxial stress fields. J.
Mech. Phys. Solids, 17:201–217, 1969.

[3] A. L. Gurson. Continuum Theory of Ductile Rupture by Void Nucleation and Growth:
Part I– Yield Criteria and Flow Rules for Porous Ductile Media. J. Eng. Mat. Tech.,
99:2–15, 1977.

[4] V. Tvergaard and A. Needleman. Analysis of the cup–cone fracture in a round tensile
bar. Acta Metall., 32:157–169, 1984.

[5] A. Needleman and V. Tvergaard. An analysis of ductile rupture in notched bars. J.
Mech. Phys. Solids, 32:461–490, 1984.

[6] J. Besson, D. Steglich, and W. Brocks. Modeling of plane strain ductile rupture. Int.
J. Plasticity, 19:1517–1541, 2003.

[7] J. W. Hancock and D. K. Brown. On the role of strain and stress state in ductile
failure. J. Mech. Phys. Solids, 31:1–24, 1983.

[8] J. Koplik and A. Needleman. Void growth and coalescence in porous plastic solids.
Int. J. Solids Struct., 24(8):835–853, 1988.

[9] Y. Bao and T. Wierzbicki. On fracture locus in the equivalent strain and stress
triaxiality space. Int. J. of Mech. Sci., 46(81):81–98, 2004.

[10] I. Barsoum and J. Faleskog. Rupture mechanisms in combined tension and shear-
Experiments. Int. J. Solids Struct., 44:1768–1786, 2007.

[11] I. Barsoum and J. Faleskog. Micromechanical analysis on the influence of the lode
parameter on void growth and coalescence. Int. J. Solids Struct., 48(6):925–938,
2011.

[12] Matthieu Dunand and Dirk Mohr. Effect of lode parameter on plastic flow localization
after proportional loading at low stress triaxialities. J. Mech. Phys. Solids, 66:133–
153, 2014.

10

543



D. Reddi and S. M. Keralavarma
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Abstract. Results of experimental and numerical analysis of a broken motor vehicle helical 
spring are presented in this paper. Location of the fracture is on a first active coil of the spring. 
Experimental part of the research employed optical microscopy that revealed fractured surface 
microstructure and allowed for detection of inclusions. Corroded fracture surface limited 
scanning electron microscopy examination (SEM). Nevertheless, corrosion pits on the edge of 
the spring wire which served as crack initiation points could be detected by SEM along with 
radiating ridges left by the fracture front that propagated to the opposite edge of the wire. 
Optical emission spectrometer with glow discharge source sample stimulation was used to 
determine material chemical composition that is adequate to spring steel 61SiCr7. Additionally, 
hardness test was performed and obtained value was used to derive maximum tensile strength 
of the steel. Experimentally collected data served as input for numerical analysis of helical 
spring. Finite element analysis of a helical spring model was performed. Stress distribution was 
determined and fatigue life of the undamaged helical spring predicted. Results were compared 
with those obtained analytical. Causes of failure are outlined assessing the results of the 
performed experimental and numerical analysis. Insufficient corrosion protection and excessive 
contact between the coils caused damage that developed from initial crack to final fracture of 
the spring. Results obtained by this research are valuable in understanding fracture behavior of 
helical spring mounted in suspension system of various motor vehicles. Given the presented 
results, further improvements of spring design can be made in order to reduce failures. 
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 2 

 
1 INTRODUCTION 

Helical springs are used in the construction of motor vehicles suspension system as one of 
the primary elastic members connecting the wheel and the vehicle chassis. Absorption and 
subsequent release of external loads from uneven road surfaces comes in a form of elastic 
energy so, if designed properly, springs tend to return to their initial form when unloaded. 

To assure proper design, engineers can, among others, benefit from failure analysis of broken 
springs. Springs fail mostly because of the local stress raisers that come in a form of a material 
surface roughness, inclusions and deficient microstructure. Causes of common spring failures 
along with spring material characteristics, manufacturing of springs and their fundamental 
stress distribution are outlined in the work of Prawoto et al. [1]. Dealing with the failure of 
motor vehicle coil springs, some of the recent work includes failure analysis of shock absorption 
helical spring in a motorcycle [2] where insufficient shot peening and embrittlement induced 
from electroplating were recognized and, based on this, a process optimization was proposed 
to reach the standard service life. Experimental investigation of a prematurely failed passenger 
car coil spring discovered that it was caused by inherent material defects coupled with deficient 
processing [3]. Experimental procedures employed on a fractured torsion springs mounted on 
an electric-powered vehicle determined that the fractures initiated due to electric arc damage 
[4]. Besides experimental failure analysis, numerical approach is also employed to gain 
thorough insight into the mechanical behaviour of failed component. Stress analysis, fatigue 
life calculations and failure simulations are fairly easy performed using finite element analysis 
[5]. Causes of compression helical spring fracture were analysed by employing experimental 
methods while numerical methods served to determine contact points between the spring coils 
from which crack originated [6]. 

Additionally, it is also important to understand the behaviour of spring material in order to 
improve performance of springs. Some of the recent work on this topic includes a 
comprehensive overview of fatigue behaviour of spring steels DIN 17223C and 55Si7 coupled 
with mathematical models of adequate da/dN diagrams [7]. Ductility of Si-Cr spring steel is 
improved by refining grain boundary carbides using thermomechanical treatment [8]. Empirical 
corrosion fatigue life prediction models are developed based on a study of a crack initiation and 
growth behaviour in Si-Mn spring steel [9]. Basic spring material behaviour can be significantly 
improved by treatments like heating, quenching and tempering [10]. Also, microshot peening 
can be successfully employed to improve fatigue life of spring steel [11]. Proper surface 
treatment of coil spring steels needs to be employed in order to avoid surface defects that can 
become predominant origin of spring steel failures under very high cycle fatigue [12]. 

Research of springs is ongoing as new design and spring materials coupled with harsh 
service conditions give reason for continuous improvement. Failure analysis of fractured 
springs serves as a valuable tool for design improvement. This paper presents results of 
experimental and numerical analysis of a broken motor vehicle helical spring. Results can be 
taken as a reference in further improvement of helical springs, especially having in mind that 
local car dealership confirmed that there has been a noticeable amount of failures on that 
particular spring design.  
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 3 

2 EXPERIMENTAL ANALYSIS 

2.1 Visual and microscope examination 
Helical spring mounted on a front suspension of a passenger car fractured after 145.000 km 

and 7 years of service. Fracture occurred at the transition point from the lower bearing coil to 
the first upper coil. Geometry and dimensions of helical spring extracted from the car are shown 
in Fig. 1.  

 

  
Figure 1: Helical spring dimensions (in mm) 

In order to perform experimental analysis, specimens were cut from fractured helical spring, 
Fig. 2. Fracture surface is oriented at 45º to the wire centerline which is typical for torsional 
fatigue failure under cyclic loading. Protective layer of polymer-based paint is damaged around 
the fracture surface. Damage can be contributed to the contact of bearing and first active coil.  

 

 
Figure 2: Specimens extracted from failed coil spring 

547



Goran Vukelic, Marino Brcic, Darko Pastorcic 

 4 

Heavily corroded outer surface of the wire is exposed in Fig. 3 and there is a layer of rust on 
the fracture surface, also, Fig 4. Thicker and darker semicircular part of the rust layer marks 
portion of the surface where crack formed gradually and was exposed to corrosive environment 
for a longer period of time before the final failure occured. Rest of the fracture surface is 
covered in lighter layer of rust and marks a portion of surface where accelerated crack 
propagation happened. 

 

  
Figure 3: Heavily corroded wire surface 

 

  
Figure 4: Fracture surface 

Corrosion pits can be observed at the point where the protective layer of paint was damaged. 
Fracture originated from one of this pits and continued propagation towards opposite end 
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leaving radiating ridges behind and suggesting fatigue failure caused by cyclic loading from the 
vehicle. At the side opposite of the crack initiation point, fast fracture area can be observed 
corresponding to the final stage of failure. 

 Specimens of a failed helical spring were examined using optical and scanning electron 
microscope. Optical microscopy was performed using Olympus SZX10 stereo microscope and 
investigation of the fracture surface was concentrated on the area of probable crack initiation 
point, Fig. 5.  

 

  
Figure 5: Corrosion pit serving as crack initiation point 

 Corrosion pits can be observed at the edge of the fracture surface where the protective 
paint layer is damaged. Main pit served as crack initiation point from which crack propagated 
towards opposite edge of the wire causing final failure. 

 Crack initiation area, obtained by FEI Quanta 250 scanning electron microscope (SEM) 
under suitable magnification, is shown in Fig. 6. 

 

  
Figure 6: SEM magnification of crack initiation point at corrosion pit 
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 SEM analysis was difficult to perform because the fracture surface was damaged by 
corrosion. Examination of the fracture surface at 80x magnification revealed a heavily oxidized 
and corroded surface which obscured fracture surface details.  Although an attempt was made 
to remove the corrosion layer using aggressive cleaning agent, corrosion products could still be 
seen on SEM images. 

2.2 Material 
Glow discharge spectrometer (GDS) LECO GDS500A was used to determine chemical 

composition of spring material, Tab. 1.  
Table 1: Chemical composition of spring material (wt%). 

C Mn Si P S Mo Ni Cr V W Cu 
0.612 0.698 1.78 0.018 0.0165 0.0133 0.107 0.598 0.0139 0.0565 0.147 
Al Ti Co Nb Pb Sn As Sb Zr Rest  
0.0036 0.0134 0.0497 0.0704 0.0029 0.146 0.0213 0,003 0.0087 95.6  

 
Comparing it to standard materials used in spring manufacturing, composition is adequate 

to chromium-silicon steel 61SiCr7. This spring steel is typically used in production of light and 
heavy motor vehicle leaf springs and coil springs, safety valve springs, shock absorbers, 
instrument springs, friction plates, etc. If compared to EN 10089-2002 standard, percentage of 
manganese in tested steel is just below the standard range (0.7-1 %), while chromium exceeds 
the maximum standard value (0.2-0.45 %). Standard maximum tensile strength of steel 61SiCr7 
is 1850 MPa. 

Using Struers hardness tester Duramin-2 hardness test was performed. Mean hardness value 
is 590 HV (Vickers hardness number) and it can be used to derive maximum tensile strength of 
the tested material [13]:  

σTS = 3.2HV = 1888 MPa. (1) 

 

3 NUMERICAL ANALYSIS 
Common failure analysis usually constitutes only of experimental metallurgical analysis in 

order to establish the causes of failure. Since the failed structures are often subjected to tensile 
overload, excessive creep or localized fatigue damage, mechanics of the failure should also be 
considered, e.g. stress analyses, fatigue life analyses and simulations of failure process. Finite 
element (FE) analysis represents cost and time effective tool for determining the causes of 
failure and this numerically obtained results complement the ones obtained experimentally 
providing broader insight into the failure of structures. 

According to geometry in Fig. 1, simplified 3D FE model of helical spring was built in 
Ansys. A model without any crack was analyzed first, in order to determine stress range, contact 
point between the coils and fatigue life of undamaged spring. A load of 4000 N was applied on 
top coil and nodes on bottom coil were restrained from motion. Load was estimated as a quarter 
of total car weight plus average passenger weight. Material behavior was modelled according 
to available experimental data for 61SiCr7 spring steel [14]. In accordance with the previously 

550



Goran Vukelic, Marino Brcic, Darko Pastorcic 

 7 

derived value of maximum tensile strength, data for 61SiCr7 spring steel annealed at 425ºC 
were taken along with results of fatigue tests and S-N curves needed for proper numerical 
model.  

Shear stress distribution in the considered helical spring is presented in Fig. 7.  
 

  
Figure 7: Shear stress distribution 

It can be noted that the maximum value of stress is numerically predicted just at the point 
where actual fracture occurred. During service, dynamic loads and shocks resulted in contact 
between the bearing coil and the first active coil. As a result of repeated contact and impact 
between the coils, the contact surfaces were gradually worn out leading to crack occurrence and 
fracture. FE model was built to simulate frictionless contact behavior between the mentioned 
coils.  

In order to validate FE model, numerically obtained values of shear are compared to ones 
calculated analytically. The maximum stress in the spring wire, occurring on the inner surface, 
can be calculated as [15]:  

max 3

8
W

FDK
d




 , (2) 

 
where F is the load, D outer diameter of the spring, d wire diameter and KW is a Wahl’s 

coefficient:  
4 1 0.615
4 4W

CK
C C


 


, (3) 

while C is a spring index: 
DC
d

 . (4) 
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According to Eq. 2, maximum shear stress in considered helical spring is 827.4 MPa which 
can be correlated to 844.1 MPa obtained numerically. 

Also, in order to numerically predict fatigue life of helical spring, fatigue analysis is 
performed and results are presented in Fig. 8. 

 

  
Figure 8: Fatigue life 

In order to get more accurate results, loads coming from road irregularities are considered, 
also. Passing of the vehicle on irregular road surfaces generates oscillation of the vehicle mass 
with a consequent increase of the load. Final load is a combination of several factors, e.g. 
vehicle mass, travelling speed, type of suspension, road irregularities, etc. Quarter car model 
(QCM) [16] can be used to study the interaction between vehicle and road profile. Also, 
classification of road profiles according to ISO 8608 [17] has to be considered. The use of ISO 
8608 presumes that a specific road has equal statistical properties along an examined section. 
In this work, ISO A-B road profile was chosen along with 70 km/h vehicle speed. A Matlab 
code was written [18] to calculate the behavior of a vehicle according to road irregularities and 
further to estimate the effect on helical spring fatigue life. Fig. 9 shows non-constant amplitude 
load used in the analysis.  
 

 
Figure 9: Non-constant amplitude load 
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Fig. 10 has shear stress distribution in the considered helical spring with load from road 
irregularities added and Fig. 11 predicted fatigue life.  

 

  
Figure 10: Shear stress distribution with road irregularities load accounted 

 
  

Figure 11: Fatigue life with road irregularities load accounted 

5 DISCUSSION 
Visual examination of failed helical spring revealed that the protective layer of paint was 

mechanically damaged at the contact point between the lower bearing coil and first adjacent 
active coil. Therefore, wire surface was exposed to corrosive environment allowing the 
formation of corrosion pits. These pits served as crack initiation points influenced by cyclic 
loading from the vehicle travelling on the road irregularities. Primary fracture zone that was 
exposed to corrosion for a longer period of time can be observed on the fracture surface. Crack 
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front propagated towards opposite edge of the wire leaving radiating ridges behind. Finally, fast 
fracture zone can be observed near the opposite edge of the spring wire, marking the final stage 
of failure. 

Experimental analysis revealed that spring was made of 61SiCr7, a spring steel with 
somewhat elevated content of silicone and chromium. Chromium at steels tends to increase 
tensile strength, hardness, toughness, resistance to wear and corrosion [19], while silicon is used 
as a deoxidizer in the manufacture of steel and it slightly increases tensile strength and can help 
in increasing the toughness and hardness levels. However, special attention must be taken to 
ensure that paint layer remains undamaged in order to protect spring against exposure to 
corrosive environment. 

Optical and scanning electron microscopy examination revealed damage to the wire surface 
caused by continuous contact between the coils. Heavily oxidized and corroded fracture surface 
limited SEM examination so deeper insight could not be performed. 

Performed finite element analysis served to determine stress distribution along the spring, 
contact point between the coils and fatigue life of undamaged spring. Comparing results of 
numerically predicted and analytically calculated maximum stress level, it can be noted that FE 
model successfully represents real helical spring. In order to obtain accurate fatigue life, load 
on helical spring is modelled first just as a quarter of average vehicle weight, then additionally 
with load from road irregularities. Difference in fatigue is significant suggesting that load from 
road irregularities should also be included in vehicle helical spring calculation. 

 

6 CONCLUSION 
Results of the research presented in this paper gave insight into the causes of motor vehicle 

helical spring failure. Failed spring was examined experimentally; visual observation, 
determination of chemical composition, hardness testing, optical and scanning electron 
microscope analysis were employed. Additionally, FE analysis was performed to determine 
stress ranges, contact points between the coils and fatigue life. 

Experimental results suggest a corrosion fatigue failure. Protective layer of paint was 
damaged which introduced corrosion pits on the surface of the wire. Corrosion pits served as 
crack initiation points that grew under the influence of cycling loading causing the final 
fracture. Radiating ridges on the fracture surface show the path of crack advancement. 

Finite element analysis was employed to determine stress levels in helical coil spring along 
with numerical estimation of fatigue life. Obtained results are valuable in understanding 
fracture behavior of helical spring as a part of motor vehicle suspension system. Further 
improvements of spring design are possible in order to reduce potential failures.  
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Abstract. In the present contribution we focus on a phase-field approach to ductile frac-
ture applied to large deformation contact problems. Phase-field approaches to fracture
allow for an efficient numerical investigation of complex three-dimensional fracture prob-
lems, as they arise in contact and impact situations. To account for large deformations
the underlying formulation is based on a multiplicative decomposition of the deformation
gradient into an elastic and plastic part. Moreover, we make use of a fourth-order crack
regularization combined with gradient plasticity. Eventually, a demonstrative example
shows the capability of the proposed framework.

1 INTRODUCTION

The numerical investigation of fracture using phase-field approaches has gained increas-
ing attention in the last decade, see Miehe et al. [1] and Kuhn and Müller [2]. In contrast
to the costly and complex computational modeling of sharp cracks, the formulation in this
works is based on the introduction of a diffusive interface, see also Weinberg and Hesch [3]
for a detailed investigation on Allen-Cahn type as well as Cahn-Hilliard type equations.

1
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∇s·N = 0∂∇ϕΨ·N = T̄
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ϕ= ϕ̄ α= ᾱ

X X ∈ B0X ∈ B0X ∈ B0
α F p

deformation phase-field plastic strainglobal hardening

Figure 1: Primary fields of inelastic deformable solids coupled with phase field fracture.

The assumption that the material fails locally upon the attainment of a specific fracture
energy as introduced by Francfort and Marigo [4] and Bourdin et al. [5], allows to formu-
late a variational statement for brittle fracture, see e.g. Karma et al. [6]. An extension to
large deformations relying on a multiplicative decomposition of the deformation gradient
into a compressive and a tensile part along with a structure preserving time integration
scheme is given in Hesch and Weinberg [7], whereas adaptations to ductile fracture have
recently proposed in e.g. Aldakheel [8], Miehe et al. [9] and Borden et al. [10]. The formu-
lations introduced therein are able to predict fracture in ductile solids which undergoes
large elastic and/or plastic deformations. In addition, the application of a phase-field
fracture approach to contact and impact problems was recently proposed in Hesch et al.
[11] and Dittmann et al. [12].

The purpose of the present contribution is to introduce a framework for the simulation
of ductile fracture within large deformation contact and impact situations. Therefore,
we combine a nonlinear elastoplastic formulation based on a multiplicative decomposition
of the deformation gradient with a fourth order phase-field formulation and gradient
plasticity. Eventually, we apply the proposed approach along with a frictional mortar
contact formulation and demonstrate the capability on a representative example.

2 GOVERNING EQUATIONS

Let B0 ⊂ R
n with n ∈ {2, 3} be the reference configuration of the body of inter-

est. The proposed multi-field approach to phase-field-type crack propagation in inelastic
deformable solids is described by the following primary fields of the coupled problem:

• The deformation map ϕ which maps at time t ∈ T points X ∈ B0 of the reference
configuration B0 onto points x ∈ Bt of the current configuration Bt

ϕ(X) : B0 × T → R
n with x = ϕ(X, t) (1)

as depicted in Figure 1a. The material deformation gradient is defined by F :=
∇ϕ(X) with J :=det[F ] > 0.

• The crack phase-field s is interpreted as an auxiliary variable that approximates the
sharp crack topology. It defines a regularized crack surface functional Γl(s) that

2
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converges in the limit lf →0 to the sharp crack surface Γ0

s(X, t) : B0 × T → R, with s ∈ [0, 1] and ṡ ≥ 0 (2)

as indicated in Figure 1b, where the value s(X, t) = 0 refers to the unbroken and
s(X, t) = 1 to the fully broken state of the material. The crack growth creates a
new internal boundary Γcr

0 (t) ⊂ R
n−1 based on energetic criterion. Here, the total

energy within the sharp crack interface Ecr is approximated based on a crack surface
density function γ resulting with a regularized crack interface as

∫

Γcr
0

gc dΓ ≈
∫

B0

gcγ dV with γ(s, ∇s, ∆s) =
1

4lf
s

2 +
lf
2

∇s · ∇s +
l3
f
4

(∆s)2 (3)

gc is the Griffith-type critical energy release rate and lf is the fracture length scale.

• The long-range micro-motion field α denoted as the global hardening variable

α(X, t) : B0 × T → R with α = ᾱ on ∂Bαd
0 and ∇α · N = 0 on ∂Bαn (4)

illustrated in Figure 1c, where the gradient ∇α(X, t) is governed by a plastic length

scale lp that accounts for nonlocal hardening effects. Following the recent work
Miehe et al. [14], the fracture length scale is lf ≤ lp to ensures that the damage
zones of ductile fracture are inside of plastic zones.

• The short range micro-motion field F p denoted as the plastic deformation map

F p(X, t) : B0 × T → R
n×n, det[F p] = 1, (5)

is locally defined and not constrained by boundary conditions, see Figure 1d.

The subsequent constitutive approach to phase-field ductile fracture focuses on the set

C := {∇ϕ, F p, α, ∇α, s, ∇s, ∆s} , (6)

2.1 Evolution of the Regularized Crack Surface Topology

Following the recent work of Miehe et al. [9], the rate of the work needed to create a dif-
fusive fracture topology is driven by constitutive functions, postulating a global evolution
equation of regularized crack surface

Ėcr =
∫

B0

gc δsγ̂(s, ∇s, ∆s) ṡ dV =
∫

B0

[
H − R

]
ṡ dV (7)

Here, H is the crack driving force defined in (27) and R = ηf ṡ is a viscous crack resistance,
where ηf ≥ 0 is a material parameter which characterize viscosity of the crack propagation.
The functional derivative of the crack density function is defined as

δsγ̂(s, ∇s, ∆s) := ∂sγ̂ − Div[∂∇sγ̂] + ∆[∂∆sγ̂] . (8)

3
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Then equation (7) gives the crack phase field evolution as a generalized Ginzburg-Landau-
type structure

ηf ṡ = H − gc
[ 1

2lf
s − lf∆s +

l3
f
2

∆∆s

]
, (9)

along with the Neumann-type boundary conditions

∇(l2
f ∆s − s) · N = 0 on ∂Bsn

0 and ∆s · N = 0 on ∂Bsn
0 , (10)

where the expression ∆∆s = Div[Div[∇2
s]] is the Bi-Laplacian of the crack phase field.

Based on thermodynamical arguments, we demand irreversible crack evolution Ėcr ≥ 0,
as discussed in the work of Miehe et al. [1, 9]. This global irreversibility constraint of
crack evolution is satisfied by ensuring a positive evolution of the crack phase field as

ṡ =
1

ηf

〈
H − gc

[ 1

2lf
s − lf∆s +

l3
f
2

∆∆s

] 〉
≥ 0 , (11)

where �x� := (x + |x|)/2 is the McAuley bracket.

2.2 Coupling Gradient Plasticity to Gradient Damage Mechanics

In large strain context, the deformation gradient is given by a multiplicative decomposi-
tion into elastic and plastic parts F = F eF p. Then, an elastic deformation measure is the
contra-variant Eulerian elastic Finger tensor be = F e(F e)T that provides the definition

be = F (Cp)−1F T with Cp = (F p)TF p . (12)

The kinematic basis for a decoupling of the constitutive response into volumetric elastic
and isochoric elastic-plastic contributions is

be = J2/3b̄
e

(13)

which defines the volumetric and isochoric parts

J = det[F ] = det[F eF p] = det[F e] = Je and b̄
e

= J−2/3F (Cp)−1F T . (14)

The storage energy function Ψ̂ is assumed to depend on the array C of constitutive state
variables introduced in (6) as

Ψ̂(C) = Ψ̂e(be; s) + Ψ̂p(α, ∇α) . (15)

Here, the phase field s enters the constitutive functions as a generalized internal variable.
However, it is considered as a geometric property that models a regularized crack surface.
The elastic contributions are given by

Ψ̂e = gvol(s)Ψ̂
e
vol(J) + gdev(s)Ψ̂e

dev(b̄
e
)

=
κ

2
gvol(s)(J − 1)2 +

µ

2
gdev(s)(tr[b̄

e
] − 3)

(16)
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in terms of the volumetric and isochoric degradation functions defined as

gvol(s) =





g(s) J > 1

1 J ≤ 1
and gdev(s) = g(s), (17)

where g(s) = ag((1−s)3 − (1−s)2)−2(1−s)3 +3(1−s)2 with ag ≥ 0. Next, we introduce
the constitutive relation related to the Kirchhoff stress as

τ = 2
∂ �Ψe

∂be be = τ vol + τ dev (18)

with the volumetric and isochoric stress parts defined as

τ vol = κgvol(s)(J
2 − J)I and τ dev = µgdev(s)dev[b̄

e
]. (19)

The plastic contribution is decomposed into local and gradient parts. For the modeling
of length scale effects in isotropic gradient plasticity, we focus on the equivalent plastic
strain α and its gradient ∇α. It is assumed to have the form

�Ψp(α, ∇α) =

α�

0

�y(α̃) dα̃ + y0
l2
p

2
�∇α�2, (20)

where lp ≥ 0 is a plastic length scale related to a strain-gradient hardening effect. �y(α)
is an isotropic local hardening function obtained form homogeneous experiments. We use
in what follows the saturation-type function

�y(α) = y0 + (y∞ − y0)(1 − exp[−ηα]) + hα (21)

widely used in metal plasticity, in terms of the four material parameters y0 > 0, y∞ ≥ y0,
η > 0 and h ≥ 0, where the initial yield stress y0 determines the threshold of the effective
elastic response. Next, we define the dissipation energy locally as the difference of the
external stress power and the evolution of the energy storage, by the standard Clausius-
Planck inequality

D = τ : d −
d

dt
�Ψe ≥ 0, (22)

where the rate of the deformation tensor d is the symmetric part of the spatial velocity
gradient l = Ḟ F −1. Moreover, the rate of change of the energy storage reads

d

dt
�Ψe =

∂ �Ψe

∂be : ḃe +
∂ �Ψe

∂s
ṡ, (23)

the evolution of the elastic storage energy function can be expressed in terms of the
material time derivative

ḃ
e

= lbe + belT + F (Ċ
p
)−1F T, Ċ

p
= (Ḟ

p
)TF p + (F p)TḞ

p
. (24)
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In case of isotropy, the skew-symmetric part of the spatial velocity gradient vanishes, i.e.
l = d, and ∂beΨ̂e commutes with be such that the first term in (23) can be written as

∂Ψ̂e

∂be : ḃe =

[
∂Ψ̂e

∂be be
]

: d +

[
be ∂Ψ̂e

∂be

]
: d +

[
∂Ψ̂e

∂be be
]

: [F (Ċ
p
)−1F T(be)−1]

=

[
2

∂Ψ̂e

∂be be
]

: [d − dp],

(25)

where dp = −1
2F (Ċ

p
)−1F T(be)−1 is the Eulerian plastic rate of deformation tensor. With

the Kirchoff stress we obtain the dissipation in the more explicit form

D = τ : dp + Hṡ. (26)

Therein, the former terms represent the plastic part of dissipation and the latter term is
the fracture part of dissipation. Here, we introduced per definition the energetic driving
force for the fracture phase-field H as

H = −∂sΨ̂e. (27)

Regarding to the plastic material behavior, we postulate a von Mises type plastic yield
function as

Φ̂p(τ , rp) = �τ dev� −

√
2

3
rp (28)

in terms of the dissipative resistance force rp dual to the hardening variable α defined by
the variational derivative of Ψ̂p by α as

rp := δαΨ̂p = ∂αΨ̂p − Div[∂∇αΨ̂p] (29)

reflecting the characteristics of the gradient-extended plasticity model under considera-
tion. A plastic Lagrange multiplier λp can introduced to enforce the Karush-Kuhn-Tucker
conditions

λp ≥ 0, Φ̂p ≤ 0, λpΦ̂p = 0. (30)

An extended dissipation potential can now be defined for the constrained optimization
problem based on the concept of maximum dissipation

V̂ (Ċ) = sup︸︷︷︸
τ ,rp

sup︸︷︷︸
λp

[
τ : dp − rpα̇ − λpΦ̂p(τ , rp)

]
, (31)

where the Lagrange parameter λp control the non-smooth evolution of the plasticity. This
allows us to define the associated plastic evolution equations as follows

dp = λp ∂Φ̂p

∂τ
= λpn and α̇ = −λp ∂Φ̂p

∂rp , (32)
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along with the loading-unloading condition introduced in (30). The evolution of the
plastic deformation can be reformulated as

(Ċ
p
)−1 = −2λpF −1nbeF −T (33)

To calculate the Lagrange multiplier, a penalty regularization can be utilized as follows

λp =
3

2ηp

〈
Φ̂p(τ , rp)

〉
≥ 0, (34)

such that we obtain

V̂ (Ċ) = sup︸︷︷︸
τ ,rp

[
τ : dp − rpα̇ −

3

4ηp

〈
Φ̂p(τ , rp)

〉2
]

. (35)

This approach can be interpreted physically as a viscous regularization function. ηp is an
additional material parameter which characterize viscosity of the plastic deformation.

The time integration of the plastic evolution equations is performed by a backward
Euler scheme that leads to the construction of a return-mapping algorithm (see e.g. Simo
and Hughes [13]) which is outlined in the following. For each time interval [tn, tn+1] we
assume the state at time tn and the time step size ∆t = tn+1 − tn are known. Furthermore
we assume a trial state based on a purely elastic deformation and obtain the following
trial variables

be
tr = F n+1(C

p)−1
n F T

n+1 ,

τ dev,tr = µgdev(s)dev[b̄
e
tr] ,

ntr =
τ dev,tr

�τ dev,tr�
,

Φ̂p
tr = �τ dev,tr� −

√
2

3
rp

n ,

(36)

where (•)n, (•)n+1 and (•)tr denote the value of a given physical quantity for the respective
state. A simplified time integration of (33) with the backward Euler scheme leads to

(Cp
n+1)

−1 = (Cp
n)−1 −

2

3
∆tλp

n+1tr[be
tr]F

−1
n+1ntrF

−T
n+1 (37)

supplemented by

αn+1 = αn +

√
2

3
∆tλp

n+1. (38)

If Φ̂p
tr ≤ 0, then the process is purely elastic and the elastic trial state is the solution,

i.e λp
n+1 = 0. If, on the other hand Φ̂p

tr > 0, then the trial state is not admissible and a
plastic correction is needed.

λp
n+1 =

3

2ηp

〈
Φ̂p

n+1

〉
=

3

2ηp

〈
�τ dev,n+1� −

√
2

3
rp

n+1

〉
(39)

Because of the simplifications regarding the time integration of Cp in (37), the incom-
pressibility of the plastic deformation is not preserved. As a correction, we apply the
return-map update only onto the deviatoric part of Cp and make additionally use of the
constraint det(b̄

e
n+1) = 1, see Borden et al. [10] for more details.
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2.3 Contact formulation

Assuming that multiple bodies i are in contact, the boundary of the mechanical field
is subdivided into Dirichlet, Neumann and contact boundaries

∂B
(i),ϕ
0 ∪ ∂B

(i),σ
0 ∪ ∂B

(i),c
0 = ∂B

(i)
0 . (40)

Note that the actual contact surface ∂B
(i),c
0 does not interfere with the phase-field or

hardening-field boundary, which is in contrast to, e.g. a thermal boundary of a thermo-
mechanical problem which establishes an energy transfer across the contact zone, see e.g.
Dittmann et al. [15]. Taking the local linear momentum balance across the contact in-
terface into account, the contact contributions to the total virtual work of a two body
contact problem can be written as

Gc =
∫

∂B
(1),c
0

t(1) · (δϕ(1) − δϕ(2)) dA, (41)

where t(1) denote the Piola tractions related to the surface ∂B
(1),c
0 . Next, we decompose

the contact tractions in normal and tangential components as

t(1) = tNν + tT, tT · ν = 0, tT = tT,αaα. (42)

Here, ν denotes the current outward normal vector on ∂B
(1),c
0 and aα, α ∈ [1, 2] the

contravariant tangential basis vectors. For convenience, we introduce the gap functions
in normal and tangential directions

gN = ν · (ϕ(1) − ϕ(2)), gT = (I − ν ⊗ ν) · (ϕ(1) − ϕ(2)). (43)

The normal contact conditions are given in the form of Karush Kuhn-Tucker (KKT)
conditions via

gN ≤ 0, tN ≥ 0, tNgN = 0, (44)

which are the classical complementary condition for contact problems. Furthermore, we
postulate that the frictional response is prescribed by Coulomb’s friction law, given as
follows

φ̂c := �tT� − µ|tN| ≤ 0, ζ̇ ≥ 0, φ̂cζ̇ = 0, L tT = ǫT

(
ġT − ζ̇

tT

�tT�

)
. (45)

The last equation makes use of the Lie derivative L tT = ṫT,αaα of the frictional tractions
and aligns them to the tangential velocity ġT with respect to the tangential penalty
parameter ǫT. Note that the penalization of the stick condition implies an additive split
of the tangential gap into a reversible (elastic) part ge

T and an irreversible (inelastic)
part gs

T. Moreover, µ denotes the coefficient of friction and ζ̇ a consistency parameter in
analogy to the plastic multiplier in plasticity, where ζ̇ = 0 represents stick and ζ̇ > 0 slip.
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To demonstrate thermodynamical consistency, we introduce a local energy density
function Ψc := Ψc(ϕ) and substitute again δϕ = ϕ̇. The global power balance across the
interface reads now

�

∂B
(1),c
0

Ψ̇c dV =
�

∂B
(1),c
0

tNġN + tT · (ġe
T + ġs

T) dV. (46)

Enforcing (44) exactly and assuming that the elastic part of the tangential gap is small
enough to be neglected, the global frictional dissipation is given by

Dc =
�

∂B
(1),c
0

tT · ġs
T dV. (47)

Along with the dissipation of energy due to plastic deformation Dp and fracture Df , the
total dissipation is given by D = Dp + Df + Dc. This total dissipation D represents the
amount of energy transferred into the thermal field, which we did not consider here.

To determine the Coulomb frictional traction a return map strategy together with the
Euler backward scheme is applied. In particular on the basis of a trial state for the
frictional tractions (for more details see Hesch et al. [11]) the slip function given by (45)1
is evaluated and the frictional tractions are computed with

tT,n+1 =





ttrial
T,n+1, if φ̂c,n+1 ≤ 0,

µ|tN,n,n+1|
ttrial
T,n+1

�ttrial
T,n+1

�
, elseif φ̂c,n+1 > 0.

(48)

For the spatial discretization of the contact boundaries the variational consistent mortar
method is applied. See Hesch et al. [11] for more details on the mortar method.

2.4 Weak formulation

The resulting variational formulation and the constitutive contact laws for the cou-
pled phase-field approach to ductile fracture are summarized in Table 1. Note that the
Macaulay bracket for the crack phase field in (11) and the plastic multiplier in (34) are
evaluated by inserting the local variables χp in (50) and χf in (51).

3 NUMERICAL EXAMPLE

Finally, we present a demonstrative example for the considered ductile fracture and
contact formulation, cf. Hesch et al. [11] and Dittmann [12]. In particular, we consider
a deformable block to be in contact with an elastic plate, see Figure 2 for the initial
configuration. The plate is clamped on the right hand side, whereas the upper surface
of the block is moved downwards with a constant increment size of ∆u = 0.15 × 10−3m.
Moreover, the plate of size 0.3m × 0.2m × 0.02m is discretized by 13 × 19 × 2 quadratic
B-spline based finite elements and block is of size 0.04m × 0.04m × 0.04m is discretized
by 5 × 5 × 5 quadratic B-spline elements. The center point of the block is placed 0.265m
away form the clamping in longitudinal direction. For both bodies, we assume that the
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Table 1: Variational formulation of the coupled contact problem

1) Mechanical field

∑

i

∫

B
(i)
0

P (i) : ∇δϕ(i) − δϕ(i) · B(i) dV −
∑

i

∫

∂B
(i),T

0

δϕ(i) · T̄
(i)

dA

+

∫

∂B
(1),c

0

(tNδgN + tT · δgT) dA = 0

(49)

2) Hardening Field

∫

B
(i)
0

ηpδα(i)α̇(i) + χpδα(i)

(
ŷ(i) −

√
3

2
�τ

(i)
dev�

)
+ χpy0l2

p∇δα(i) · ∇α(i) dV = 0 (50)

3) Phase-field

∫

B
(i)
0

ηf δs(i)
ṡ

(i) − χfδs
(i)

(
H(i) −

gc

2lf
s

(i)
)

+ χfgclf∇δs(i) · ∇s
(i) +

χfgcl
3
f

2
∆δs(i) ∆s

(i) dV = 0

(51)
4) Interface conditions

• Normal contact
gN ≥ 0, tN ≤ 0, tNgN = 0 (52)

• Tangential contact

φ̂c = �tT� − µc|tN| ≤ 0, ζ̇ ≥ 0, φ̂cζ̇ = 0, ġT = ζ̇
tT

�tT�
(53)

constitutive behavior is governed by the Neo-Hookean material law defined in (16). The
material parameters of the plate correspond to an aluminum-like material and take the
values µ = 26.455GPa and κ = 72.917GPa supplemented by an initial yield stress of
y0 = 95MPa and an ultimate yield stress of y∞ = 110MPa. The parameters of the block
are given by µ = 35MPa and κ = 333MPa, which correspond to a synthetic substance
with Young’s modulus of E = 100MPa and a Poisson ratio of ν = 0.45. In addition, the
phase-field parameters of the plate are specified as gc = 150kJ/m2, l = 15.79 × 10−3m
and ag = 2, whereas the saturation exponent for hardening is chosen as η = 25.4.

Eventually, the phase-field as well as hardening field is depicted in Figure 3. As ex-
pected, the plate will ripped out of the clamping and plastic deformation occurs in this
region of the plate.

4 CONCLUSIONS

In this paper, mortar contact formulations are adapted to the field of coupled gradi-
ent plasticity and gradient damage mechanics. The underlying formulation based on a
multiplicative elastoplastic decomposition of the deformation gradient allows for the nu-
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Figure 2: Bending contact fracture problem: Reference configuration.

merical treatment of large deformation problems, whereas a phase-field approach enables
the prediction of complex three-dimensional fracture patterns in ductile solids. The re-
sulting numerical framework is able to investigate ductile crack propagation within large
deformation contact and impact problems. Eventually, the capability of the approach is
demonstrated via a representative example.

Figure 3: Bending contact fracture problem: Phase-field (left) and hardening field (right) after 113
quasi-static time steps.
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E. Oñate, D.R.J. Owen, D. Peric & M. Chiumenti (Eds)

LATTICE MODEL FOR FAILURE BASED ON EMBEDDED
STRONG DISCONTINUITIES IN DYNAMIC FRAMEWORK

Mijo Nikolic∗, Jakov Cesic†, Adnan Ibrahimbegovic†† and Zeljana Nikolic†

∗ University of Split
Faculty of Civil Engineering, Architecture and Geodesy

Matice hrvatske 15, 21000 Split, Croatia
e-mail: mijo.nikolic@gradst.hr

†University of Split
Faculty of Civil Engineering, Architecture and Geodesy

Matice hrvatske 15, 21000 Split, Croatia

††Chair for Computational Mechanics
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Abstract. Identifying the failure of materials and structures is still a challenging task
and there is no unique approach or model to tackle this problem. Complexities that arise
in failure modelling are numerous, starting from mesh dependency for softening to various
numerical difficulties and instabilities, tracking algorithms, multiple cracking with crack
interactions etc. Failure in the dynamic framework is even more challenging bringing
inertial effects, crack branching etc. In this paper, lattice model for dynamic failure is
presented. The final goal is to simulate crack initiation and propagation in 2D brittle
and quasi-brittle structures exposed to dynamic environment. The strength of the lattice
models is in their successful representation of failure mechanisms. The presented model is
based on a triangular lattice of Timoshenko beams which act as cohesive links between the
Voronoi cells used to compute beam cross sections. The embedded strong discontinuities
in axial and transversal beam directions serve for representation of failure mechanisms in
modes I and II, while mass and inertial effects are included into lattice network.

1 INTRODUCTION

Modeling of failure mechanisms and fracture are still challenging topics and are impor-
tant for many applications. The main difficulties arise from non-smooth solution character
and one needs to deal with discontinuities in displacement (or strain) fields [1]. Among
different approaches to tackle fracture and failure mechanisms, lattice element models
are a class of discrete models which have been widely used to simulate failure in terms
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of localized crack initiation or propagation [2]. Moreover, it is possible to account for
heterogeneities in material structure, multiple crack propagation, crack coalescence with
respect to heterogeneities. This is suitable for failure of heterogeneous materials, such as
rocks or concrete, but the approach can also be used to simulate the failure of structures
or solids. The main idea is to use spatial beam elements, which are geometrically built
using Delaunay triangulation inside the domain of interest. The Delaunay edges in tri-
angulation can be converted into lattice elements representing cohesive links between the
Voronoi cells which are dual to Delaunay triangulation (Figure 1.a). Such Voronoi cells
represent units of material in the domain, while lattice elements are here Timoshenko
beams. Each beam in domain has its own geometrical properties; namely cross section
is extracted from common area between the two neighboring Voronoi cells (Figure 1.b).
In order to represent failure of single cohesive link between the Voronoi cells, we enhance
the Timoshenko beams with embedded strong discontinuities, which provide jump in the
displacement fields [1]. Introduction of embedded strong discontinuity into beams ax-
ial direction is related to mode I opening, while mode II is related to discontinuity in
transversal direction. Such model for quasi-static crack propagation is given in [3, 4, 5].
The focus in this work is to enhance the existing formulation and to give the framework
for dynamic crack propagation. Notable papers which deal with dynamic crack propaga-
tion where displacement fields are enriched to provide non-smooth discontinuous solutions
with XFEM (Extended Finite Element Method) are [6, 7], or with embedded strong dis-
continuities in solid elements [8]. Lattice model with Reissner’s beams as lattice elements
for dynamic crack propagation is given in [9]. The outline is as follows. Section 2 explains
the numerical model for crack propagation in dynamic environment. Section 3 provides
representative numerical simulation. Conclusions are given at the end of paper.

(a) (b)

Pi
Pj

lij /2

x
y

i

j

lij /2

hij

Figure 1: (a) Structure of discrete lattice model with Voronoi cells as units of heteroge-
neous material and cohesive links between them (b) two neighbouring Voronoi cells
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2 NUMERICAL MODEL

As already indicated above, model is assembled from Voronoi cells which are kept
together by Timoshenko beams as cohesive links. Failure of Timoshenko beams occur
when certain threshold is reached. Furthermore, plasticity softening regime is triggered
together with activation of embedded discontinuities in axial and transversal direction of
beams. The strains for standard Timoshenko beams of length le and cross section A are

εεε(x) =




ε(x) = du
dx

γ(x) = dv
dx

− θ
κ(x) = dθ

dx


 (1)

Standard kinematics is enhanced with additional degrees of freedom in the element interior
multiplied by Dirac function. Thus, enhanced beam element with standard and additional
degrees of freedom is constructed (Figure 2.) The non-regular strain field can be written

εεε(x) = εεε(x) +αααδxc =




ε(x)
γ(x)
κ(x)


+




αu

αv

0


 δxc (2)

Finite element interpolation for beam element with interpolation functions {N1(x) =
1 − x

le
, N2(x) =

x
le
} and their derivatives {Bd

1(x) = − 1
le
, Bd

2(x) =
1
le
} produces enhanced

strain field which can be written in matrix form

εεε = Bd+Gααα, (3)

where B is a strain displacement matrix and matrix G contains interpolation function G
for discontinuity (Figure 2).

11

δ

θ1

v 1

v

1 2

v 2

θ2

le
2

xc

M(x)

G(x)

Figure 2: Enhanced Timoshenko beam element with standard and additional degrees of
freedom. M and G are interpolation functions for discontinuity

Such enhancement of strain field produces the localized failure of cohesive links between
Voronoi cells (Figure 3.) Virtual strain field can be written with the same interpolations

3
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displacement
jump 

Figure 3: Localized failure of cohesive links when threshold is reached and discontinuity
is activated

as the real strain field resulting with enhanced virtual work with Gint as internal work

Gint =

∫

le

(Bδd)Tσσσdx+

∫

le

δαααT (G+ δxc)σσσdx.

︸ ︷︷ ︸
h(e)=0

(4)

Standard internal force vector and the local residual vector due to discontinuity are ob-
tained from enhanced virtual work

Fint =
∫ le
0
Bd,Tσσσdx

h(e) =
∫ le
0
(G+ δxc)σσσdx.

(5)

Vector of internal forces can be obtained through the regular part of the enhanced local
function

t = −
∫ le

0

Gσσσdx, t = (tu, tv, 0)
T (6)

Softening plasticity law is implemented in computation of traction forces, while the inter-
nal variables are obtained with local return mapping algorithm for softening. Reader is
referred to [1, 2, 3, 4] for more details. Linearization of enhanced virtual work and local
character of embedded discontinuities allow to perform static condensation of stiffness
matrix resulting with single element contribution to the FE assembly

Anel
e=1

(
K̂

(e),(i)
n+1 ∆d

(e),(i)
n+1

)
= Anel

e=1

(
Fext,(e) − Fint,(e),(i−1)

)
(7)

where K̂
(e),(i)
n+1 is statically condensed stiffness matrix.
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The extension of quasi-static system from above (7) towards dynamic regime can be
achieved taking into consideration that local problem with embedded strong discontinu-
ities is not directly affected by dynamic effects [8]. Thus, standard finite element procedure
for dynamic case results with typical inertial terms based on a global mass matrix

Mna
(i)
n+1 +Kn∆d(i) = F ext

n+1 − F
(i−1)
n+1 (8)

where M is a global mass matrix, K global stiffness matrix assembled from statically
condensed local matrices due to embedded discontinuities, n and i denote time step and
iteration respectively. The velocity-dependent damping is not considered presently. Di-
rect time integration procedure is applied here for the analysis of presented nonlinear
dynamic problem, with trapezoidal rule, or yet called the average acceleration method.
By applying the trapezoidal rule (e.g. [10]) to the equations of motion, we obtain second
order approximation to evolution equations for displacement d and velocity v, which can
be written:

ḋ(t) = v(t) =⇒ dn+1 − dn = h
2
(vn + vn+1)

v̇(t) = a(t) =⇒ vn+1 − vn = h
2
(an + an+1)

(9)

Rewriting the result in (9)1 we can obtain the corresponding approximation for the velocity
vector in terms of displacement increment:

vn+1 = −vn +
2

h
(dn+1 − dn) (10)

Acceleration vector at time tn+1 can then be obtained similarly from (9)2 using the same
kind of approximation

an+1 = −an −
4

h
vn +

4

h2
(dn+1 − dn) (11)

Both of these approximations are implicit in the sense that they depend upon the dis-
placement value at time tn+1. If we implement Newton iterative algorithm, we can rewrite
equations from (10) and (11) in sense of iterations

v
(i)
n+1 = −vn +

2
h
(d

(i−1)
n+1 +∆d(i) − dn)

a
(i)
n+1 = −an − 4

h
vn +

4
h2 (d

(i−1)
n+1 +∆d(i) − dn)

(12)

We have to solve at each iteration the consistently linearized form of the system, which
can be written as

[
4

h2
M +Kn]d

(i)
n+1 = F ext

n+1 − F
(i−1)
n+1 −M [−an −

4

h
vn +

4

h2
(d

(i−1)
n+1 − dn)]

︸ ︷︷ ︸
a
(i−1)
n+1

(13)
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History 2

Figure 4: Uniaxial tension test and final failure pattern. Increasing softening elements at
the end of simulation are red coloured

3 NUMERICAL SIMULATION

We consider here the uniaxial tension test of specimen from Figure 4. It is a het-
erogeneous specimen constructed from two phase elements with equal volume fraction
randomly distributed throughout the domain, where one phase is strong and the other
is weak [3]. The dimensions of the specimen are 10x10 cm, with moduli of elasticity
being 7000kN/cm2 and 1000kN/cm2 for strong and weak phase elements and Poisson
ratio 0.2. Weak phase elements are allowed to break, trigering the softening behaviour,
with failure threshold for tension failure (mode I) being 0.2kN/cm2 and for shear failure
(mode II) 0.13kN/cm2. Fracture energies for softening behaviour for weak elements are
0.0001kN/cm for tension failure case and 0.0005kN/cm for shear failure case. The test is
conducted with imposed displacement on the upper side of the specimen, while the sum
of all reactions is monitored and plotted (Figure 5) providing the macroscopic response
of the specimen. Three tests are performed, including quasi-static case and two dynamic
cases with differently imposed displacement rates.

It can be noted that specimen is completely broken with macro crack which propagated
through the specimen (Figure 5), while in dynamic regime macroscopic curves oscillate
around static response due to inertial effects. It is also observed that global softening is
triggered in the time step when macro-crack found its way throughout complete specimen
(Figure 4).

4 CONCLUSIONS

Lattice element model for localized failure of heterogeneous materials and structures
is presented, with its extension towards dynamic regime. The main advantage of the
approach is that inertial effects can be considered without changing formulation for stat-

6

573



Mijo Nikolic, Jakov Cesic, Adnan Ibrahimbegovic and Zeljana Nikolic

0 1 2 3 4 5 6

x 10
−3

0

5

10

15

20

25

displacement (cm)

re
a
c
ti
o
n
 (

k
N

)

 

 

dynamic 1

dynamic 2

quasi−static

Figure 5: Macroscopic response in uniaxial tension test. Static response versus dynamic1
and dynamic2 (imposed displacement rate is two times higher for dynamic1 than for
dynamic2 load )

ically condensed stiffness matrix which arises due to local discontinuous enhancements.
Representative numerical simulation is performed comparing the results for static and
dynamic analysis.
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Abstract. In this study, the constitutive modeling of loading state dependent strain
hardening and martensite evolution of high alloyed TRIP-steels are addressed, which
are experimentally observed comparing uni-axial tension and compression test results.
Furthermore, a damage mechanics extension of the model is proposed, which is based
on the continuum damage mechanics framework. An implicit gradient based enrichment
method is applied to realize a non-local damage formulation. For the implementation into
the commercial FEM-software ABAQUS, the analogy between the additional Helmholtz-
type equation of implicit gradient enrichment and the already built-in heat conduction
equation is used. Finally, the developed model is fitted to experimental data and cell
model calculations. A convergence study using the non-local extension is discussed.

1 INTRODUCTION

Metastable austenitic steels exhibit outstanding strain hardening and ductility prop-
erties due to a martensitic phase transformation during thermo-mechanical loading. The
typical strain hardening behavior and the additional plastic deformations caused by phase
transition are often summarized as TRIP-effect (TRansformation Induced Plasticity).

In this paper, we focus on the mechanical behavior of a special TRIP-steel considering
its stress state dependent material response. Starting point is the experimental observa-
tion of asymmetric strain hardening and martensite evolution under uni-axial tension and
compression loading. We propose a model, which comprises both features. Similar effects
are extensively discussed in literature (see e. g. [1, 2]).

Furthermore, the description of the material’s failure is addressed. Existing local ap-
proaches to fracture for TRIP-steels (see [3, 4]) suffer from their well known mesh depen-
dency in finite element computations. Therefore, a continuum damage mechanics model
with non-local regularization is also proposed in this paper to include failure into the
developed constitutive model of TRIP-steel.
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The modeling approaches are successively applied: (i) The plasticity model is fit-
ted to tension and compression experiments conducted for a high alloyed TRIP-steel.
(ii) The proposed damage extension of the model is calibrated and tested with help of cell
model simulations of TRIP-steel containing micro-voids. (iii) The mentioned regulariza-
tion method is investigated by means of a convergence study.

Notation hints: Tensors are subsequently introduced. Symbolic notation is used, where
scalars are denoted italic A, first order tensors as

#»

A, second order tensors as bold sym-
bols A and fourth order tensor are highlighted calligraphically A. Single and double
contraction of tensors are denoted by ’·’ and ’:’, respectively.

2 PROPOSED MODEL

2.1 Stress-strain relation

Starting with an additive split of the rate of deformation tensor D into an elastic,
plastic and a transformation induced part

D = Del +Dpl +Dtr, (1)

we assume the following hypo-elastic relation between the Kirchhoff-stress tensor τ̂ and
the elastic part of the rate of deformation tensor:

(τ̂ )◦ = C : Del. (2)

In the previous and following equations, a hat (̂·) highlights an effective (undamaged)
value. The objective time derivative of the Kirchhoff-stress tensor is denoted by (·)◦,
where the Jaumann-rate is used in what follows. The fourth-order tensor of isotropic,
linear elastic stiffness is denoted by C. The relation between the Kirchhoff-stress tensor
τ̂ and the Cauchy-(true)-stress tensor σ̂ reads

τ̂ = det (F ) σ̂, (3)

with the deformation gradient F .

2.2 TRIP-effect: martensite evolution, kinematics and strain hardening

The evolution of strain induced martensite (volume fraction z) is based on the Olson-
Cohen-model (see [5])

ż = (1− z) βnfn−1
sb ḟsb, (4)

where ḟsb denotes the volume fraction of shear bands, which act as nucleation sites for
martensite. The probability of forming a martensite nucleus at crossing points of shear
bands is included in the parameter β, whereas n is a geometrical constant. The shear
band volume fraction is assumed to obey the evolution law

ḟsb = α (1− fsb) ε̇eq. (5)

2
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The entire martensite evolution is driven by the plastic deformation (equivalent plastic
strain εeq). Former studies propose a dependency of the shear band rate α and the
probability parameter β on temperature, strain rate and stress state (see e. g. [6]). We
focus on the stress state dependency only. The stress state of uni-axial tension and
compression loadings can be distinguished by the stress triaxiality h

h =
I1

3
√
3J2

(6)

and the Lode-parameter

cos (3φ) =
3
√
3

2

J3

J
3
2
2

, −1 ≤ cos (3φ) ≤ 1. (7)

The necessary invariants of the stress tensor τ̂ to calculate the former values are the first
invariant of the stress tensor I1 as well as the second and third invariant of the stress
deviator Ŝ, J2 and J3, respectively. At this stage of investigation, a primary influence of
the stress triaxiality h on martensite formation is considered. The ansatz for the triaxiality
dependent parameter α reads:

α (τ̂ ) = α0 + α1

(
2

π
arctan (hα2) + 1

)
. (8)

To ensure α ≥ 0, the restrictions α0 ≥ 0 and α1 ≥ −α0

2
apply. An analogous term is

used to define β (τ̂ ) with upcoming parameters β0, β1 and β2. Therewith, a triaxiality
influence occurs, but the values of α and β are limited for h → (−∞,+∞). An additional
term containing the Lode-parameter cos (3φ) can be added to delineate further loading
states (see [1]).

The martensite evolution leads to additional inelastic deformations on the macroscopic
scale (TRIP-strains). Besides deviatoric contributions, also a volume change can be de-
tected. The rate of deformation tensor related to phase transformation is introduced
as

Dtr = MN ż +
1

3
�vδż. (9)

This postulates, that the transformation strains are proportional to the martensite volume
fraction and that the deviatoric part has the direction of the yield normal N associated
with the conventional plastic flow. The unity tensor related to the volumetric part is
denoted as δ. The amount of shearing and volume change due to martensite evolution is
controlled by the parameters M and �v.

The martensite formed during deformation apparently affects the strain hardening be-
havior (i. e. typical sigmoidal hardening curves). The physical hardening mechanisms
resulting from dislocation-martensite interactions are illustrated elsewhere for the consid-
ered steel (see [7]). A phenomenological contribution to the isotropic hardening of the
material is applied

τm (z) = Z1 (exp (Z2z)− 1) , (10)

containing two parameters (Z1, Z2).

3
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2.3 Elasto-plasticity with asymmetric strain hardening

From multi-axial testing of the considered TRIP-steel, the von Mises yield criterion
was found to be appropriate to describe the initial yield stress (see [8]). Therefore, the
modeling is based on the yield function

y = τeq −R (r)− τm (z)− τ0 ≤ 0, (11)

in the framework of rate independent plasticity. Only an isotropic hardening is considered
with contributions due to martensite evolution τm (z) and dislocation based mechanisms
R (r). An asymmetry of the strain hardening between uni-axial tension and compression
can be caused by the martensite contribution. Due to the proposed martensite evolution
approach, more martensite is formed during tensile loading, i. e. the flow stress should be
higher than under compressive loading at comparable strains. But a higher flow stress is
experimentally observed during uni-axial compression (see Fig. 1). Therefore, the hard-
ening variable r is defined as follows: Firstly, an associated flow rule for the plastic rate
of deformation tensor is utilized

Dpl = Λ̇
∂y

∂τ̂
= Λ̇N (12)

N =
3

2τeq
Ŝ. (13)

One finds an expression for the equivalent plastic strain rate and the relation to the
Lagrangian multiplier Λ̇ in the well known manner:

ε̇eq =

√
2

3
Dpl : Dpl = Λ̇. (14)

The hardening variable is now introduced as

ṙ = (1−G)) ε̇eq ≥ 0, (15)

where G is assumed to be a function of the Lode-parameter cos (3φ):

G (cos (3φ)) =
B

2
(1 + cos (3φ)) , with 0 ≤ B,G < 1. (16)

Just the additional parameter B appears. The uni-axial compression test can be seen
as reference, because G vanishes. The strain hardening during uni-axial tension can be
decreased by finding an appropriate value of B < 1. The hardening rule is very flexible,
because it can be easily extended by dependencies on z or εeq. Considering an effect of
the Lode-parameter on strain hardening implies an orientation influence, which has to be
clarified in future investigations.

The hardening function is assembled by the case differentiation

R =

{
Hrq , r ≤ rc

Hrqc +R∞

(
1− exp

(
−H q rq−1

c

R∞
(r − rc)

))
, else.

(17)
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with the four parameters H, q, rc and R∞. This extends the typical power law for
hardening to incorporate a saturation after exceeding a critical value rc.

The elasto-plastic model for TRIP-steel is completed by the Kuhn-Tucker-conditions

Λ̇ ≥ 0, Λ̇ y = 0, y ≤ 0 (18)

and the consistency condition

ẏ = 0. (19)

The derived model equations can be numerically solved by standard methods (see [9]).
The finite strain formulation, which is based on an updated Lagrange-method combined
with an integration of the hypo-elastic equation, is directly provided by the FEM-software
(ABAQUS/standard version 6.14).

2.4 Damage model

Starting point of continuum damage mechanics is the effective stress concept leading
to

σ = (1−D) σ̂, (20)

where σ is the macroscopic stress, σ̂ is the effective stress acting on the undamaged
material and D is an isotropic damage variable with 0 ≤ D ≤ 1. The damage variable D
is typically considered as ratio of damaged area over net area, whereby also the meaning
of a porosity is possible.

Damage evolves until reaching a critical value of Dc � 1. We interpret this as the
beginning of a void coalescence mechanism leading rapidly to the failure of the material.
A phenomenological acceleration of damage is taken into account by introducing the
modified damage variable D∗:

D∗ =

{
D ,D < Dc

D + κ (Dc −D)2 , else.
(21)

The acceleration is driven by κ > 0. In order to realize a smooth transition to the total
failure state, a second modification is used after a critical value near failure D∗

t is reached.
An exponential type function

D∗ = D∗
max (1− exp [−D2 (D −D3)]) , D∗ > D∗

t (22)

is utilized, where the maximum damage value D∗
max and the transition D∗

t can be chosen
(choice: D∗

max = 0.9999, D∗
t = 0.8). The other parameters are determined by demanding

smooth differentiability at D∗ = D∗
t considering Eqn. (21) and (22):

D1 =
2Dcκ− 1 +

√
1 + 4κ (Dt −Dc)

2κ
(23)

D2 =
1 + 2κ (D1 −Dc)

D∗
max −Dt

(24)

D3 = D1 +
1

D2

ln

[
1− Dt

D∗
max

]
. (25)
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When damage at a material point attains a value D∗ = 1, a crack is assumed to be
initiated. For technical reasons, we declare the criterion D∗ ≥ 0.99 as initiation point.

Typically, failure of steels originates from nucleation, growth and coalescence of micro-
voids. Therefore, the Rice and Tracey model of void growth is taken into account (see
[10]). The damage (porosity) evolves as

Ḋ = (1−D) ε̇d, (26)

where the damage driving strain rate ε̇d is formulated to yield :

ε̇d =

{
D∗K1 exp

(
h
h1

)
ε̇dev , h < ht and D < Dc

D∗K1esmooth (h) ε̇dev , h ≥ ht and D < Dc.
(27)

Damage is then a function of stress triaxiality h. A scalar measure of deviatoric deforma-
tion ε̇dev is introduced, which combines plastic and TRIP-contributions. Its formulation is
discussed subsequently. K1 and h1 are adjustable parameters. To avoid numerical prob-
lems, the exponential term of the Rice and Tracey model is restricted by determining a
cut-off triaxiality ht. The function esmooth provides a finite value for h → ∞ and contains
one additional parameter hmax (see Appendix).

Results of cell model simulations on porous metals show, that a uni-axial straining
state occurs after exceeding the critical damage Dc (see e. g. [4]). Therefore, the damage
driving strain rate switches to

ε̇d =
3

2
ε̇dev, D ≥ Dc. (28)

We suggest an approximation of the rate of equivalent inelastic strain ε̇dev by the value
calculated from the deviatoric part Ddev of the whole rate of deformation tensor D as:

ε̇dev =

{√
2
3
Ddev : Ddev , Λ̇ > 0

0 , else.
(29)

As a result, after computing the effective stress response, damage can be evaluated sepa-
rately by integrating Eq. (26). Regarding all modifications, Eq. (20) is rewritten as

σ = (1−D∗) σ̂. (30)

2.5 Non-local damage model

An implicit gradient regularization method is used to obtain a non-local spatial average
of a damage related variable (see e. g. [11]). The deformation and stress dependent
damage driving strain rate ε̇d is chosen to be replaced by its non-local counterpart ˙̄εd in
the damage evolution law Eq. (26). This ensures, that a fully damaged state D∗ → D∗

max

can be achieved. The non-local variable is determined by solving the additional field
equation of Helmholz-type (∇2 - Laplacian,

#»∇ - Nabla-operator):

ε̄d − L2∇2ε̄d = εd. (31)

6
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The regularization involves an additional internal length parameter L. The boundary
conditions are chosen as

#»∇ε̄d · #»n = 0, (32)

according to [11] ( #»n - normal to current boundary).
At this point, some remarks on possible implementation strategies using the FE-code

ABAQUS/standard (version 6.14) should be given. The constitutive law is defined via
subroutine UMAT. The similarity between the field equation Eq. (31) and the stationary
heat equation can be used to avoid implementing a user defined finite element (subroutine
UEL). The temperature degree of freedom changes its meaning to the non-local variable
ε̄d. Firstly, a fully thermal-displacement-coupled simulation step with stationary heat
transfer has to be defined. Declaring a ’heat generation’ rpl in subroutine HETVAL as

rpl = −ε̄d + εd (33)

changes the heat equation into the desired Helmholtz-equation. The implementation re-
quires also additional material tangent entries, which can be defined in subroutines UMAT
and HETVAL. The internal length is provided by defining the ’conductivity’ L2. For the
considered 2D-plane strain-problems in section 3.3 we use quadratic shape functions to
approximate the displacements and linear shape functions for the non-local variable. A
reduced integration scheme is applied (ABAQUS element CPE8RT).

3 RESULTS AND DISCUSSION

Firstly, the results of fitting the TRIP-steel model to experimental data is discussed.
No damage is considered at this stage. The chemical composition of the considered TRIP-
steel is given in Tab. 1. The uni-axial tensile and compressive tests were conducted at a
low temperature (273.15 K) to generate a high amount of martensite during mechanical
loading; the experimental techniques can be found in [12]. For measuring the martensite
content, the setup described in [13] was used.

Secondly, the local damage model is fitted to cell model simulations of TRIP-steel with
micro-voids (porosity=1 %). Cell model simulations of porous metals are well known,
general information can be found in [14]. The simple case of an axi-symmetric unit
cell is used here. During loading, the stress triaxiality h is held constant. Macroscopic
stress-strain curves can be extracted. As material model for the metal matrix, the fitted
TRIP-steel model without damage is utilized.

Finally, a convergence study using the non-local damage model is presented. The con-
sidered 2D boundary value problem of a plate with a hole and some kinematic restrictions
are sketched in Fig. 2 (symmetry conditions are applied, plane strain state, displacement
controlled).

3.1 Fit to uni-axial experiments

As illustrated in Fig. 1, the stress-strain response as well as the martensite evolution
of uni-axial compression and tension tests are captured by the proposed model. Espe-

7
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Table 1: Chemical composition of the investigated 16Cr-7Mn-7Ni TRIP-steel (in mass-%)

Fe C Cr Mn Ni Al Si Mo Ti N

bal. 0.02 15.9 7.1 6.9 0.015 1.16 0.025 0.01 0.08

Figure 1: Fitting results of the model (sim.) to uni-axial tension (ten.) and compression (comp.) results
(exp.): true stress-strain-curves (lhs) and martensite evolution (rhs)

cially the asymmetric hardening is matched well. During parameter optimization, the
martensite evolution parameters can be fitted prior to the hardening parameters.

3.2 Fit to cell model simulation

Prior to the fitting procedure, a convergence study regarding the permissible strain
increment during loading was performed. After exceedingDc, a high sensitivity concerning
the strain increment was found. In all upcoming simulations, the possible crossing of Dc is
checked during computation at every integration point. The (absolute) biggest component
of the strain increment tensor must not exceed 0.001 for D ≥ Dc.

An initial damage ofD0 = 0.01 is applied during the calibration of the damage model to
the cell model results. The hardening and martensite evolution parameters are optimized
to fit the uni-axial cell model result (h = 1/3, see Tab. 2), where damage has a minor
influence. Afterwards, the damage parameters K1, h1, Dc and κ are calibrated to match
the stress-strain behavior of the cell model at higher stress triaxialities (see Tab. 2).
According to Fig. 2 (lhs), the qualitative behavior is reasonable. A good agreement is
found for h = 2, whereas a slight mismatch is visible for h = 1 and h = 3.

3.3 Numerical example and convergence study

For the convergence study concerning the spatial discretization, the boundary value
problem depicted in Fig. 2 (rhs) with the parameter set of Tab. 2 is considered. Five dis-
cretization variants are realized, where the ratio of a characteristic element length le over

8
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Figure 2: Fitting results of the local damage model to cell model results at three different triaxialities
h (equivalent stress - equivalent strain curves of model and cell simulations, lhs) and boundary value
problem of the convergence study (plate with hole, rhs)

Table 2: Model and material parameters found from cell model fit (E - Young’s modulus, ν - Poisson’s
ratio, τ0 - initial yield stress)

E [GPa] ν [-] τ0 [MPa] H [MPa] q [-] rc [-] R∞ [MPa] Z1 [MPa] Z2 [-]

192 0.24 264.216 2427.952 0.753 0.199 428.93 177.96 1.864

B [-] M [-] �v [-] α0 [-] α1 [-] α2 [-] β0 [-] β1 [-] β2 [-]

0.535 0.12 0.02 0.101 7.006 0.083 0.517 0.272 294.679

n [-] D0 [-] K1 [-] h1 [-] Dc [-] κ [-] ht [-] hmax [-] L [mm]

6.037 0.01 1.507 1.21 0.085 30 3 5 0.4

internal length L is systematically varied: le/L = 1/16...1. Quadrilateral finite elements
are utilized; the prescribed edge length is chosen as le. The simulation is interrupted,
if crack initiation is reached anywhere. Fig. 3 (lhs) shows the global response of the
structure for different meshes. A sharp load drop prior to crack growth can be observed.
No mesh size dependency exists, where the load drop would clearly occur at different
displacements.

The magnified view of the load drop highlights the convergent behavior. The curves for
le/L ≤ 1/4 seem to coincide. A quantitative error analysis is performed through defining
a relative error

∆U =
|Uci − Uci,le=1/16|

Uci,le=1/16

(34)

of the nominal displacement at crack initiation U = Uci with respect to the finest mesh.
Fig. 3 (rhs) reveals that a convergence exists, where the relative error for le/L = 1/4 is
already smaller than 0.1%. This confirms the recommendation to use le/L = 1/4, which
can be found in [11].

9
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Figure 3: Convergence study results: force-displacement response until crack initiation of different
discretization le/L (lhs) and relative error analysis of the displacement at crack initiation (rhs)

(Dc)
(D0)

D* [-]

le/L=1/4 le/L=1/8

Figure 4: Convergence study results: contour plot of damage D∗ at crack initiation point for two meshes
le/L = 1/4 (lhs) and le/L = 1/8 (rhs)

Remark: For the previous convergence study, the change of the damage driving force
ε̇d beyond Dc is neglected (see Eq. (28)). We found also mesh independent results for
activating this switching, but the convergence behavior was not as ’beautiful’ as for the
non-switching case.

The local convergence behavior is illustrated by a closer view to the damage distribution
at the point of crack initiation (Fig. 4). Two mesh sizes are compared: le/L = 1/4 and
le/L = 1/8. Firstly, the location of damage should be mentioned, which is not directly
near the hole, but rather at the right boundary, because higher triaxiality values occur

10
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at this position. Both meshing variants show a qualitatively and quantitatively similar
distribution of damage. It can be clearly seen, that the zone of massive damage (D∗ > 0.9)
is spread over some layers of elements, especially for the fine mesh le/L = 1/8. No damage
localization in single element layers for fine meshes is detected, which indicates the non-
local character of the regularized damage model.

4 CONCLUSIONS

A rather simple model to express the asymmetric behavior (strain hardening, mar-
tensite evolution) during monotonic, uni-axial tension and compression loading of TRIP-
steel is proposed. Experimental data can be fitted well.

A local damage model based on the effective stress concept is applied. Damage evo-
lution is modeled by a modified Rice and Tracey [10] description of void growth. Void
coalescence and the linked accelerated damage evolution up to crack initiation are tackled
by a phenomenological approach. Cell model predictions of damaged TRIP-steel can be
successfully fitted in terms of macroscopic stress-strain curves.

A non-local extension based on a regularization technique is incorporated. A conver-
gence study proves the non-local properties of the proposal.
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APPENDIX

The definition of esmooth in Eq. (27) should ensure a transition at triaxiality h = ht

which is smooth differentiable with respect to h. A saturation of the exponential term in
Eq. (27) is desired, which starts at h = ht and reaches its final value emax at the prescribed
triaxiality parameter hmax:

esmooth = emax

(
1− exp

(
ec

h1 (emax − ec)
(ht − h) + ln

(
(emax − ec)

emax

)))
,

emax = exp (hmax/h1) ,

ec = exp (ht/h1) .
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Technická 2896/2, 616 69 Brno, Czech Republic
e-mail: petruska@fme.vutbr.cz, web page: http://www.fme.vutbr.cz/

Key words: Rupture, Failure, Weakening, Coupled damage, Continuum Damage Me-
chanics

Abstract. The present paper deals with the modelling of ductile fracture which is the
result of severe plastic deformation under monotonic loading. It can be the result of
a crash or accident or introduced intentionally. There is a need of increasing the safety
in many fields of industrial sector or transportation. The aluminium alloy 2024-T351 is
widely used for studies of ductile fracture. The material was supplied as a cold-rolled
plate for this study and examined within a broad range of stress states. First of all,
the flow curve was determined using the standard tensile test of smooth cylindrical bar.
Then, the tensile tests of variously notched cylindrical bars were conducted to show the
pressure dependence. The tensile and torsion tests of notched tube were added in order to
document the dependency on the deviatoric stress state. Finally, the compression test of
smooth cylinder was executed. Then, deviatoric stress state dependent plasticity and the
original ductile fracture hyperbolic criterion were calibrated. The damage accumulation
nonlinearity was examined through loading–unloading experiments. The double damage
curve approach, inspired by the fatigue life prediction, was revisited and calibrated using
the semi-cyclic testing. Finally, the softening effect was studied aiming to couple the
damage with plasticity. The performance and prediction ability was verified after the
model was completely calibrated and implemented into the Abaqus finite element software.
Three different cases of tension were chosen for this comparative purpose. The tension
of notched cylindrical and tubular specimens and flat specimen. The ductile fracture
criterion coupled with plasticity should provide the slant fracture in the conditions of
plane strain due to localization. Nevertheless, it is shown that the proposed approach has
still some drawbacks in prediction of the crack propagation.

1 INTRODUCTION

The ductile fracture has been studied using different approaches and for various appli-
cations so far [1, 2, 3].
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One measure can be the ability to produce a similar mode of cracking [4] and the other
perceives the global performance [5, 6]. The ability to describe the plastic behaviour
remains one of the cornerstones when concerning the uncoupled ductile fracture criteria
[7, 8]. Notwithstanding how well the phenomenological criterion is calibrated, it is crucial
what history preceded the crack initiation [9]. Then, there is a transition in the form of
partially coupled criteria which brings the important advantage in more realistic crack
propagation [10]. Besides the ability to produce the slant fracture, the coupled ductile
fracture criteria provide a tool how to put the plasticity and damage together. Apart from
the criteria based on Gurson-type model [11], which incorporates the damage directly into
the plasticity, the plasticity and damage are computed along each other and influence one
another [12]. Then, various possibilities are opened for describing the material behaviour
which can be useful in vast area of applications [13, 14, 15].

The purpose of this paper is to design a set of reliable fracture tests and to develop
a universal ductile fracture criterion. Aluminium alloy 2024-T351 was chosen for those
studies as a suitable candidate [16]. It has been widely used in aerospace industry [17].
The plasticity is another feature of the whole model. It was considered as a non-quadratic
one to describe different behaviour at uniaxial tension and plane strain. It is suitable to
couple the plasticity with damage to make the approach advanced as much as possible.
This can be realized through weakening. The nonlinear damage accumulation is the last
important part of the approach. It was shown that it is not suitable to investigate it
through the step-wise testing [18], but rather using loading–unloading experiments [8].
The verification of results were conducted on three cases of tension. Tension of notched
cylindrical and tubular specimens, covered in calibration and describing the tensile axial
symmetry and plane strain tension, and additional test – tension of flat plate.

2 YIELD CRITERION

First of all, the tensile test of smooth cylindrical specimen was conducted. Then, the
flow curve was estimated (Fig. 1a). It is very useful to use the approach of Xue [19] who
introduced the flow curve of matrix. In our case, this curve (Fig. 1b) was obtained by
multiplying the flow stress by correction function (m = 1 during plasticity calibration)

m = 1 + ε̄p, (1)

where ε̄p is the equivalent plastic strain. It was revealed that the behaviour of studied
aluminium alloy cannot be described by quadratic von Mises plasticity well [20]. Instead,
the yield criterion proposed by Kroon and Faleskog [21] was adopted. Yield function is

Φ = σ̄ −mwσY k, (2)

where σ̄ is the equivalent von Mises stress, w is the weakening function (w = 1 during
plasticity calibration), σY is the yield stress, and k is the yield function correction as

k = 1− γω

(
1 + ω

1
a
0

ω
1
a + ω

1
a
0

)a

, (3)

where γ = 0.123, ω0 = 0.18 and a = 4 are calibrated material constants, so it is close to
Tresca yield criterion, and ω is the normalized Lode parameter [22].
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Figure 1: The flow curve: (a) conventional; (b) of matrix material

3 DAMAGE ACCUMULATION

The semi-cyclic testing was used to study the nonlinear damage accumulation. First,
the damage parameter can be estimated as [23]

D = 1− Ē

E
, (4)

where Ē is the actual degraded Young’s modulus and E is the virgin Young’s modulus.
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Figure 2: The semi-cyclic testing and fitted nonlinear damage accumulation

Then, the double damage curve approach proposed by Manson and Halford [24] for
fatigue was revisited. The damage parameter reads

D =

∫ ε̂D

0

q1
dε̄p

C + ε̄f
+

∫ ε̂D

0

q2(1− q1)

(
ε̄p

C + ε̄f

)
dε̄p

C + ε̄f
, (5)

where ε̂D is the equivalent plastic strain for a given loading path, q1, q2 and C are three
material constants and ε̄f is the fracture envelope.
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The two material constants were calibrated using the semi-cyclic experiments (Fig. 2)
as q1 = 0.54 and q2 = 4.

4 MATERIAL WEAKENING

The material weakening is realized through the weakening function mentioned earlier

w = 1−Dβ, (6)

where β is the weakening exponent. It was calibrated together with constant C to fit the
tensile test of smooth cylindrical specimen (Fig. 3) as β = 1.1 and C = 0.28.
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Figure 3: The force–displacement response for calibrated constants β and C

5 DUCTILE FRACTURE CRITERION

Table 1: Calibrated material constants for 2024-T351

G1 G2 G3 G4 G5 G6

−0.178 1.195 1.189 0.104 0.301 0.327

The hyperbolic ductile fracture criterion KHPS2 was proposed. It is based on KHPS
criterion [25]. It has the fracture envelope as

ε̄f =

[
1

2

(
G4

〈η + g〉
+

G5

〈η + g〉

)
− G6

〈η + g〉

]
ξ2 +

1

2

(
G4

〈η + g〉
+

G5

〈η + g〉

)
ξ +

G6

〈η + g〉
, (7)

whereG1, . . . , G6 are material constants given in Tab. 1, ξ is the normalized third invariant
of the deviatoric stress tensor, η is the stress triaxiality and g is the parabolic cut-off

g =

(
G3 +

G1 −G3

2
−G2

)
ξ2 +

G1 −G3

2
ξ +G2. (8)
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6 PREDICTION SIMULATIONS

There were chosen three different cases for examination of the performance and pre-
diction ability under tension.

The first is the tension of notched cylindrical specimen. The force–displacement re-
sponse is predicted slightly higher with also higher displacement at fracture (Fig. 4). The
proposed approach predicted the slant fracture in the final stage of cracking, similarly
as in the experiment (Fig. 4). Nevertheless, the classical cup and cone fracture was not
observed experimentally.

0 0.5 1 1.5 2
Displacement [mm]

0

10

20

30

40

F
or
ce

[k
N
]

Experiment
Simulation

Figure 4: The responses for notched cylindrical specimen and specimens from experiment and simulation
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Figure 5: The responses for notched tubular specimen and specimens from experiment and simulation

The second case is the tension of notched tubular specimen. The shape of force–
displacement curve is captured very well but the model still predicted higher displacement
at fracture (Fig. 5). The slant fracture was not predicted by the model as in the experiment
(Fig. 5).
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The last simulation is the tension of flat plate. The material behaviour at plane strain
or generalized shear was described well the by non-quadratic yield criterion. The material
often obeys lower ductility at this region in comparison to uniaxial tension, as tested at
previous case. The displacement at fracture is grossly over predicted. On the other hand,
the typical slant fracture was formed the same as experimentally observed (Fig. 6).
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Figure 6: The responses for flat plate specimen and specimens from experiment and simulation

The results suggest that the constant C should be lower, so it would prevent the late
cracking. On the other hand, it would deteriorate the force–displacement response of
smooth cylindrical specimen (Fig. 3), where the early cracking would occur.

7 CONCLUSIONS

The present paper dealt with ductile fracture. Proposed criterion KHPS2 was cal-
ibrated using tensile smooth and notched cylindrical specimens, tensile and torsional
notched tube specimens and upsetting cylinder. The damage was coupled with plasticity
to form the coupled model in the sense of continuum damage mechanics.

The model was verified under the tensile loading. The force–displacement curves were
described well in overall, but there were some drawbacks in over estimating the final
fracture. The remarkable difference was observed at plane strain tension. This discrepancy
could be attributed to the different stress state. It is expected that the normalized third
invariant of deviatoric stress tensor should be zero but it tends to approach unity [21, 26].
Nevertheless, this should also affect the flow behaviour which still seems to be described
well contrary to that.

The fracture surfaces were predicted in correspondence with experimental observation,
except for the tension of notched tubular specimen. This could by caused by a very small
thickness of the specimen wall.

The model should be examined further. It would be also useful to conduct more
extensive experimental program and test the aluminium alloy 2024-T351 under more
stress states.
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Abstract. Proposed paper deals with the application of plastic response with directional
distortional hardening (DDH) in uncoupled ductile fracture model and comparison of the
results with the same ductile fracture model based on isotropic J2 plasticity. The results
of simulations have proven not negligible role of model of plasticity and the response of
the model with DDH plasticity is closer to reality then the one of the model with isotropic
plasticity.

1 INTRODUCTION

Ductile fracture plays not negligible role in industry. For example safety evaluation of
vehicles in case of crash, design and optimization of forming processes, limit analysis of
steel structures, etc. may be based on computational models of ductile fracture. Ductile
fracture is understood as an integrity loss of bodies due to process of material damag-
ing with significant dissipation of strain energy in conditions of monotonic loading. In
finite element calculations ductile fracture is usually performed using constitutive models
based on progressive damage following plastic straining. Phenomenological material mod-
els describing ductile damage in continuum mechanics mostly act as extension of plastic
response models. However damage can be represented as directional, scalar damage pa-
rameter is introduced in most application. Damage increment is based on plastic strain
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increment. Plastic strain increment is usually scaled such a way, that at point of plas-
tic instability (necking) the integral value of damage reaches unity. The dependence of
scale factor on actual stress and/or strain state introduces the dependence of damage on
loading path. From the point of view of interpretation of real process inside material the
ductile damage material models anticipate the damage to occur on the basis of two differ-
ent mechanisms: 1) Initiation, growing and connecting of micro–cavities that dominates
in domains with tri-axial tensional stress. Load carrying cross section is reduced during
damage process and finally leads to failure. Based on representative volume with cav-
ity some micro mechanical continuum models were derived (Rice and Tracey, 1969, etc),
that proved exactly the dominant role of stress triaxiality for this damage mechanism
occurrence. Stress triaxiality is dimensionless parameter based on stress components that
expresses contribution of hydrostatic tension in actual stress state. However models based
purely on this damage concept exhibit unrealistic response in domains at which pressure
and/or shear stress are dominant. 2) Occurence of localized shear strain in plane of max-
imal shear stress that holds an angle 45◦ with first principal plane. Lode angle is another
dimensionless stress component parameter, that expresses contribution of shear stress in
actual stress state. Based on the interconnection between constitutive models of plastic
response and constitutive models of ductile damage two basic categories of ductile damage
constitutive models can be distinguished: Uncoupled ductile damage models and coupled
ductile damage models. Uncoupled models, simply said, separate plastic response and
ductile damage. Parameters of plasticity are not influenced by damage. Coupled models
modify plastic response in dependence on damage. Coupled models are generally more
complex and they are expected to be closer to reality. On the other hand their complexity
causes significant calibration costs in comparison to uncoupled models. Easier calibration
process is an essential advantage of uncoupled material models. The calibration of plastic
response and calibration of ductile damage can be separated. The calibration is distinctly
easier if the uncoupled material model is used.

Most used constitutive models of plastic response of metallic materials in engineering
computational mechanics are based on Von Mises plastic condition with either isotropic,
either kinematic hardening and associative plastic flow rule. In our previous work we
have found uncoupled models based on Von Mises plasticity with isotropic hardening
acceptable, except for the response of parts with higher stress concentration [1].

This paper deals with the application of model of plastic response with directional
distortional hardening (DDH), that allows to control both position and shape of plastic
surface in ductile fracture model described above and comparison of the results with
the same ductile fracture model based on Von Mises plasticity with isotropic hardening.
Calibration experiments using both smooth and notched round bars, small-punch test,
and NT tension-torsion specimens made of steel 08CH18N10T had been performed in the
past and referred in [1].

2 DUCTILE DAMAGE MODEL

Material models discussed in this paper are based on incremental model of plastic
response with Von Mises condition of plasticity and isotropic hardening (further VMI) or
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on incremental model of plastic response with directional distortional hardening (further
DDH), and phenomenological model of ductile damage according to Bai–Wierzbicki.

2.1 Plastic response models

Both plastic response models DDH and VMI are based on yield condition and flow
rule. Yield condition of DDH, resp. VMI is expressed as

fDDH = (S− α) : H : (S− α)− k2 = 0 , resp. fVMI = S : S− k2 = 0 · (1)

The deviatoric part S

S = σ + pI (2)

of stress tensor, σ is used in yield conditions as the independence of plastic flow onset on
hydrostatic pressure is generally accepted for metallic material. Hydrostatic stress, p, is
defined by

p = −1

3
tr (σ) · (3)

Geometric interpretation of yield condition is usually provided in the space of principal
deviatoric stresses (three–dimensional space at which the point [S1, S2, S3] represents the
deviatoric stress principal components S1, S2, and S3). It is in evidence, that VMI yield
condition represents the surface of sphere with center at origin of principal deviatoric
stress space and radius of k. DDH yield condition employs the deviatoric back–stress α
determining the location of yield surface, k determines the size of yield surface. Fourth
order tensor H represents the distortion of yield surface. Let’s note, that if H equal unity,
DDH becomes Von Mises with kinematic hardening. Associative flow rule in form

ε̇p = λ
∂f

∂σ
(4)

has been adopted in both DDH and VMI models. Detailed description of VMI plastic
response model is well known. In this work native implementation provided within Simu-
lia/Abaqus FE code has been used. Theoretical description of DDH can be found in [3].
The implementation according to [2] in form of so called ”alpha model” has been provided
by our colleagues as user subroutine under Simulia/Abaqus FE code.

2.2 Ductile damage model

Ductile damage model in this work follows the damage mechanics concept with cumu-
lative scalar damage parameter

ω =

∫ t

0

˙̄εpldt

ε̄f (η, ξ)
· (5)

Plastic strain intensity rate, ˙̄εpl, is defined as
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˙̄εpl =

√
2

3
ε̇pl : ε̇pl · (6)

Fracture locus ε̄f (η, ξ) expresses the dependence of equivalent plastic strain at the in-
stant of onset of fracture on stress state represented by dimensionless parameters–stress
triaxiality, η, resp. Lode parameter, ξ. These parameters are defined using second, J2,
resp. third, J3, invariant of deviatoric stress

J2 =
1

2
S : S =

1

2

(
S2
1 + S2

2 + S2
3

)
, resp. J3 = detS = S1S2S3 , (7)

and, Von Mises stress, q,

q =
√

3J2 · (8)

Then stress triaxiality, resp. Lode parameter is defined as

η = −p

q
, resp. ξ =

27

2

J3
q3

· (9)

If we kept constant both stress triaxiality, η0, and Lode parameter, ξ0, during whole
loading, then fracture occured at instant tcrit, when accumulated equivalent plastic strain,
ε̄pl equal ε̄f0 = ε̄f (η0, ξ0)

ε̄pl =

∫ tcrit

0

˙̄εpldt = ε̄f (η0, ξ0) , (10)

and critical damage, ωcrit, at fracture onset has to be, according to (5)

ωcrit =
1

ε̄f (η0, ξ0)

∫ tcrit

0

˙̄εpldt = 1 · (11)

Assuming the damage to be proportional, we utilize (5) to express the damage caused by
plastic straining during the loading history from beginning up to time t with both stress
triaxiality and Lode parameter varying. Fracture onset occurs when damage reaches
critical value

ω = ωcrit = 1 · (12)

Fracture locus suggested by Bai and Wierzbicki in [4] has form

ε̄f (η, ξ) =

[
1

2

(
D1e

−D2η +D5e
−D6η

)
−D3e

−D4η

]
ξ2 + (13)

+
1

2

(
D1e

−D2η −D5e
−D6η

)
ξ +D3e

−D4η.

Material parameters D1, D2, D3, D4, D5, and D6 have to be determined on the base
of experiments. This ductile damage model has been used to extend both VMI and
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DDH plastic response model. These extensions are further referred as VMI based Bai–
Wierzbicki ductile fracture model (VMIBW), resp. DDH based Bai–Wierzbicki ductile
fracture model (DDHBW).

Artificial degradation on the base of Hillerborg’s fracture energy is implemented in both
VMIBW and DDHBW in order to guarantee sufficient smoothness of fracture process
simulation. Instead of immediate removing the stress gradual loss of material stiffness in
term of Young modulus, E, driven by parameter of degradation D ∈ 〈0; 1〉, is employed
in material point of FE model since damage reached it’s critical value

E∗ = (1−D)E · (14)

3 CALIBRATION

As both VMIBW and DDHBW are uncoupled ductile damage models, the plastic
response has been calibrated separately using the same test performed on smooth round
bar. Further the calibration of fracture locus will be discussed. Tensile experiments with
both smooth and notched round bars using four different notch radii, tension-torsion
experiments using NT specimen with five different proportional loading paths, and small
punch test have been utilized to calibrate fracture loci for both VMIBW and DDHBW
models. Calibration experiments are briefly listed in table 3. Each row in the table

Table 1: Complete portfolio of experiments, that have been used to calibrate both VMIBW and
DDHBW.

Smooth, resp. notched round bars, tension
Label R d N ∆Lf Remark

[mm] [mm] [mm]
R0 ∞ 12 5 14 Smooth bar
R15 15 12 2 8.1 Notched bar
R7 7 12 2 6.6 Notched bar
R4 4 12 5 5.7 Notched bar

NT specimens, proportional tension–torsion
Label p cal. N ∆Lfor∆ϕf Remark

[mm] quantity [mm], or [1]
NT3 0.000000000 ∆ϕ 2 0.6637 Pure torsion
NT4 0.000152425 ∆ϕ 2 0.6744 Tension–torsion
NT5 0.000304851 ∆ϕ 2 0.5681 Tension–torsion
NT6 0.001278454 ∆L 2 0.8181 Tension–torsion
NT7 ∞ ∆L 2 0.6027 Pure tension

Small punch test
Label Dpunch t N ∆uf Remark

[mm] [mm] [mm]
SP 2.5 0.5 5 2.05

5
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represents single calibration case. N for all cases means the number of specimens that
had been tested within the case. For smooth/notched round bars R means the radius
of the notch, d is the diameter of bar cross-section at notch tip. For NT specimens p
describes the loading path as the ratio between the extension ∆L and torsion ∆ϕ

p =
∆L

∆ϕ
· (15)

Proportional loading had been performed, so p is kept constant during loading. For small
punch test Dpunch is the diameter of spherical punch, t is thickness of the penny–like
specimen. The calibration is based on critical extensions, critical torsions, or critical

Figure 1: Portfolio of calibration cases.

displacements. For smooth/notched round bars the extension has been measured using
extensometer (the fracture of all valid specimens has to occure within the base of ex-
tensometer). Critical extension ∆Lf has been determined as average value of extension
at fracture onset of all valid specimens. For NT specimens both the extension and the
relative torsion has been measured for each specimen. The calibration quantity has been
chosen as ∆L or as ∆ϕ with respect to dominating deformation. Then corresponding crit-
ical value ∆Lf or ∆ϕf has been determined as average value of calibration quantity at
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fracture onset of all valid specimens as well. For small punch test the punch displacement
∆u has been measured. Critical displacement ∆uf has been determined as average value
of punch displacements at fracture onset of all valid specimens. Corresponding tensile
forces and/or torques have been measured at the same time, so the experimental loading
curves can be used to evaluate results of calibration.

Calibration of fracture locus means to determine parameters D1, D2, D3, D4, D5, and
D6 of fracture locus (13) providing good approximation of fracture of single specimens.
This is usually performed as minimization of target function representing the deviation of
FE calculation results and corresponding experiments in average sense over all calibration
cases. In this work target function Fω defined in sense of deviations between critical
damage ωi estimation and it’s exact value ωcrit = 1 for ith calibration case, averaged over
all calibration cases

Fω = m

√√√√ 1

N

N∑
i=1

|1− ωi|m · (16)

ωi estimation is evaluated by integration up to critical extension, resp. critical torsion,
resp. critical displacement

ωi =

∫ ∆Lf,i

0

dε̄pl
ε̄f (η, ξ)

, (17)

where ∆Lf,i = ∆Lf,i, resp. ∆Lf,i = ∆ϕf,i, resp. ∆Lf,i = ∆uf,i. Let’s denote, that initial
values of D1, D2, D3, D4, D5, and D6 for minimization of target Fω have been determined
using more conservative approach based on averaging both stress triaxiality and Lode
parameter up to critical extension, resp. critical torsion, resp. critical displacement
Weighted average values of stress triaxiality for ith calibration case ηav,i is calculated
according to

ηav =
1

ε̄f,i

∫ ε̄f,i

0

ηi (ε̄pl) dε̄pl , (18)

lode parameter weighted average is expressed as

ξav =
1

ε̄f,i

∫ ε̄f,i

0

ξi (ε̄pl) dε̄pl · (19)

The point [ηav,i, ξav,i, ε̄f,i] can be determined by this approach for each individual cali-
bration case. Fracture locus should pass these points, so target function

Fav =
m

√√√√ 1

N

N∑
i=1

∣∣ε̄f,i − ε̄f
(
ηav,i, θ̄av,i

)∣∣m (20)

can be used. The main disadvantage of this approach is wide range of stress triaxiality
η and Lode parameter ξ for some specimen types resulting in non-negligible error due to
the averaging of these quantities. On figure 3 single calibration cases are located at stress
triaxiality–Lode angle space in sense of average values.
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4 RESULTS AND DISCUSSION

Finite element calculation of both VMI and DDH elastic plastic response of all cali-
bration cases have been done. Axisymmetry, resp. cyclic symmetry has been employed
in smooth/notched round bars and small punch test FE models, resp. NT FE models to
speed up the analyses. Then calibration of fracture loci have been performed. Calibrated
parameters are provided in table 4, fracture loci of both VMIBW and DDHBW are plot-
ted in figure reffig:Flocus Finite elements calculations of both VMIBW and DDHBW

Table 2: Fracture locus parameters for both VMIBW and DDHBW.

model D1 D2 D3 D4 D5 D6

VMIBW 1.14620935 0.92336854 0.52982388 1.3923699 1.84258408 0.62297372
DDHBW 1.24892547 0.77904199 0.6579249 1.4036429 1.61503802 0.7210034

Figure 2: Fracture locus for both VMIBW and DDHBW models

elastic plastic ductile fracture response of selected specimens smooth/notched round bar
(including R1, R2, that had not been used in calibration) have been done using calibrated
fracture loci. The comparison of loading curves ∆L − F is provided on figures 3, 4, and
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5. All these plot show, that DDHBW agreement with experimental data is better than
the VMIBW one.
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Figure 3: Comparison of experimental loading curves with computed using both VMIBW and DDHBW.
Specimens R0, R15.
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Figure 4: Comparison of experimental loading curves with computed using both VMIBW and DDHBW.
Specimens R7, R4.

5 CONCLUSIONS

- The results of performed simulations of ductile fracture have proven not negligible
role of model of plasticity on the results.

- The results of models with DDHBW elastic plastic ductile fracture model is closer
to reality then the results of the model with VMIBW elastic plastic ductile fracture
model calibrated with the same portfolio of specimens.
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Figure 5: Comparison of experimental loading curves with computed using both VMIBW and DDHBW.
Specimens R2, R1 had not been used in calibration.

- Using of DDHBW uncoupled ductile fracture model may be an alternative approach
to more expensive coupling damage with plasticity if improvement of prediction is
needed.

- Further, analyses of more cases, testing of alternative fracture locus formulation
with DDH is planed.
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15-20666S) is gratefully acknowledged.

REFERENCES
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Abstract. In the present paper a nonlocal plasticity model is described, intended to
reproduce the mechanical behaviour of stiff fine-grained soils, including the objective
simulation of strain localization; the phenomenon of accumulation of deformations in
narrow zones in the form of shear bands or fractures. A number of analyses have been
performed to assess the developed formulation. Relevant aspects have been addressed
such as the thickness of the shear band, its orientation, and the onset of localization in a
boundary value problem (BVP). Results provide useful insigths into relevant aspects of
the numerical simulation of strain localization.

1 INTRODUCTION

In conventional geotechnical engineering situations stiff fine-grained materials show a
quasi-brittle behaviour under deviatoric loading [1]. The resulting strain field is generally
non homogeneous and deformations tend to localize into thin zones of intense shearing in
the form of fractures or slip surfaces. This phenomenon is known as strain localization,
observed also in other geomaterials like concrete, rocks or dense sands. The numerical
simulation of such phenomenon under the framework of continuum mechanics involves
a number of difficulties, as standard formulations tend to deliver non-objective results
due to the loss of ellipticity of the governing equation at the onset of localization. This
non-objectivity is recognized by a strong dependency of results with the employed mesh; a
vanishing energy dissipation and localization into a zone of vanishing volume are obtained
by reducing the size of elements. Enriched continuum formulations must be employed,
providing the material with an internal length scale, not present in the standard formula-
tion, which tend to prevent the common pathologies arising from the simulation of strain
localization.

In this contribution, a nonlocal plasticity model is described, capable of simulating
strain localization objectively, without resulting in mesh-dependent results. The model
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is intended for the simulation of stiff fine-grained soils. A number of analyses have been
performed to assess the developed formulation for the simulation of localized deformation
patterns. Relevant aspects have been addressed, such as the thickness of the shear band,
its orientation, and the onset of localization in a BVP.

2 MODEL FORMULATION

2.1 Local model

The local model refers to the employed standard elasto-plastic constitutive law, without
the enrichment provided by the nonlocal approach. It is based on the simple conceptual
scheme depicted in Fig. 1, for the strength of stiff clays under shearing, where the following
characteristic pattern is modelled: after reaching the peak, a first rapid reduction of
strength is identified, associated with the degradation and breakage of interparticle bonds;
then, a more gentle strength reduction is observed, associated with the realignment of clay
particles tending towards the residual state, where no further strength reduction occurs.
Experimental evidence supporting this conceptual scheme is summarized in [1], as well as
a comprehensive review on the hydromechanical behaviour of these materials.

Peak

Post-rupture

Residual

Particle
re-orientation

Displacement

 

'

c'p

Peak

Fissure post-rupture

Residual

Polishing /
orientation

p'

f'

r'

Strain

Figure 1: Conceptual scheme for the strength of stiff plastic clays [2]

Inside the yield surface, the response is assumed linear elastic. The employed yield cri-
terion is defined by a hyperbolic approximation of the Mohr-Coulomb envelope, expressed
as,

F = − (c∗ + p tanφ∗) +

√
J2
f(θ)

+ (c∗ + pt tanφ∗)2 (1)

where c∗ is the apparent cohesion, φ∗ is the apparent friction angle, pt is the isotropic
tensile strength, p is the mean stress, J2 is the second invariant of the deviatoric stress
tensor, θ is the Lode’s angle, and f(θ) is a function defining the shape in the octahedral
plane. Eq. (1) describes a curved envelope at low mean stresses, with a limited tensile
strength, as generally occurs in stiff clayey materials. For high mean stresses, the criterion
tends to converge to a linear Mohr-Coulomb envelope, with φ = φ∗ and c = c∗.

Isotropic non-linear hardening/softening was considered in such a way that the main
characteristics of the conceptual scheme for the strength of stiff clays (Fig. 1) were incor-
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porated. Hardening/softening is driven by the evolution of the strength parameters with
plastic strains, characterized by a scalar state variable defined as,

εpeq = (εp : εp)
1/2 (2)

where εp is the plastic strain tensor. Strength parameters vary in a piecewise manner as
shown in Fig. 2.

Figure 2: Hardening/softening rules

A non-associated flow rule is adopted. Rather than deriving a specific function for the
plastic potential, the flow rule us directly obtained in the following way,

∂G

∂σ
= ω

∂F

∂p

∂p

∂σ
+

∂F

∂J2

∂J2
∂σ

+
∂F

∂θ

∂θ

∂σ
(3)

whereG is the plastic potential and ω is a constant that controls the volumetric component
of plastic deformations.

Other important features exhibited by these materials are not included here, such as
stiffness and strength anisotropy, consolidation processes (i.e. hydromechanical coupling),
creep, or yielding under volumetric loading. The main purpose of the present work is the
objective simulation of localization under deviatoric loading, and therefore the incorpo-
ration of these features within the present approach will be addressed in future work.

2.2 Nonlocal extension

A nonlocal model is one where the behaviour at a material point (or at a Gauss point
in a finite element simulation) depends not only on its state, but also on the state of
neighbouring points within a certain region. This is accomplished by replacing a given
variable by its nonlocal counterpart. If f(x) is some local field within a body of volume
V , the nonlocal field can be expressed as,

f̄(x) =

∫

V

w(x, ξ)f(ξ)dξ (4)

where w(x, ξ) is a weight function controlling the importance of neighbouring points as
a function of its position (ξ), relative to the position of the actual point (x). Typically,
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only the distance between them is considered, and a Gaussian function is employed as
the weighting function, where the width of the bell-shaped curve implicitly introduces a
length scale to the continuum formulation.

Different nonlocal models are obtained depending on which variable (or variables) is
considered nonlocal (see [3] for a compenhensive review). Here, we applied the approach
given by [4], for the enrichment of the local model described in Section 2.1. The variable
assumed nonlocal is the state variable controlling softening (Eq. 2), but using the alter-
native weight function depicted in Fig. 3. Its main characteristic is that the influence of
the actual point is removed, and the highest weight is located at a distance of 0.707ls,
where ls controls the width of the symmetrical curves, acting as the internal length scale.
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Figure 3: Representation of the weight function from [4]

In the implementation of this approach, the nonlocal state variable is computed only
for points in the softening regime, and considering neighbouring points at distances lower
than 2ls [4].

3 STRAIN LOCALIZATION ANALYSES

A number of two-dimensional analyses were performed to assess the developed con-
stitutive model for the simulation of localized deformation patters, corresponding to a
drained biaxial plane strain test under displacement control. The specimen is 6 cm width
and 10 cm height and fixed horizontal displacement were considered at the top and bot-
tom ends, in order to develop a non-homogeneous stress/strain field and favour the onset
of localization.

Fig. 4a shows the contours of shear strain (εs = (ε1 − ε3)/2) of three analyses with
different meshes and ls = 1.0 cm. Because of the rough boundary conditions, stresses
concentrate at the four corners of the model, allowing the simultaneous formation of two
X-shaped shear bands. In the three analyses, the same localization pattern and the same
width of shear bands were obtained regardless the number of elements. In addition, an
almost unique force-displacement curve was obtained (Fig. 4b), demonstrating the ability
of the approach to deliver objective results.
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Figure 4: (a) Contours of shear strain and (b) force-displacement curves for different meshes

The effect of ls on the configuration of shear bands is shown in Fig. 5a. As ls is
decreased, the interaction zone (considered neighbouring Gauss points) is also decreased,
and plastic deformations tend to localize in a narrower zone. The width of the numerical
shear bands is roughly equal to ls, as already obtained by [4]. However, a thinner shear
band renders a lower energy dissipation, and therefore a more brittle response (Fig. 5b).
In the simulation of a given material, the constitutive softening rate can be adjusted to
match the desired global force-displacement response for a given ls; a technique known as
softening scaling [4].
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Figure 5: (a) Contours of shear strain and (b) force-displacement curves for different length scale
parameters

The onset of localization was identified by the evolution of the second derivative of
the shear strain with respect to time, averaged from all Gauss points (ε̄

′′
s ), i.e. some sort

of global shear strain acceleration. Fig. 6a shows the evolution of this variable during
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one of the analysis. A distinct jump is clearly identified, suggested here as the onset of
localization of the BVP. This point does not necessarily occurs at the global peak strength,
and in this case occurs slightly before it. Its actual location seems to be controlled by
the amount of points entering to the softening regime before the peak strength, which in
turn is mainly the result of the considered boundary conditions.

Regarding the orientation of shear bands, this problem has been historically bounded
by two limits: the upper bound given by Coulomb’s theory (θC = 45◦ + φ/2), and the
lower bound given by Roscoe’s solution [5] (θR = 45◦ + ψ/2) (φ and ψ are the mobilized
friction and dilation angles). The theoretical orientation given by these solutions has
been computed in one of the analyses, at a point within the shear band, and the results
have been compared to the actual inclination obtained from the simulation (Fig. 6b).
Coulomb’s orientation seems to overestimate the obtained shear band inclination, which
appears to coincide with Roscoe’s solution at the onset of localization.
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Figure 6: (a) Onset of localization and (b) theoretical and obtained shear band orientations

Since the amount of dilation at the onset of localization seems to control the orientation
of the shear band, a given BVP should render a different orientation if the flow rule (Eq. 3)
of the constitutive law is modified. The latter is shown in Fig. 7, where the same analysis
was performed using different values of ω, controlling the amount of volumetric plastic
strains (vertical displacements were normalized with the corresponding value at the onset
of localization). As ω is reduced, a smaller ψ is attained at the onset of localization,
rendering a gentler inclination of shear bands. Nevertheless, the obtained orientations
can again be explained in terms of Roscoe’s solution at the onset of localization.

4 CONCLUSIONS

A nonlocal plasticity model has been described, aimed to reproduce the strength char-
acteristics of stiff fine-grained soils, including the objective simulation of strain localiza-
tion. The selected results presented here, provide useful insights into relevant aspects
of the numerical simulation of strain localization, and demonstrate the capability of the
approach to simulate localized deformation patterns.
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Abstract. Intensive hydraulic fracturing is a procedure employed for low permeability
reservoir stimulation. This technique consists of generating a sequence of regularly spaced
parallel fractures (multi-stage fracturing). The generation of a fracture involves the mod-
ification of the local stress state, and therefore, in the case of multi-stage fracturing, the
propagation of a certain fracture can be affected by the injection sequence, as it has been
observed with microseismicity monitoring [1]. This paper describes a study of this tech-
nique by means of the Finite Element Method with zero-thickness interface elements for
the geo-mechanical modelling of discontinuities [2]. The technique consists in inserting in-
terface elements in between standard elements to allow jumps in the displacement solution
fields. For the mechanical problem, their kinematic constitutive variables are relative dis-
placements, and the corresponding static variables are stress tractions. The relationship
between variables is controlled via a fracture-based constitutive law with elasto-plastic
structure [3]. Concerning the hydraulic problem, the interface formulation includes both
the longitudinal flow (with a longitudinal conductivity parameter strongly dependent on
the fracture aperture), as well as and the transversal flow across the element [4]. Previous
work by the authors focused on the validation of the method, the analysis a single fracture
plane problem [5, 6]. In this case the method is extended to allow free propagation of
fractures in any direction, by means of inserting interface elements between all continuum
elements. The results presented in this paper analyse the effect of material properties, in
particular fracture characterization, in the propagation and the effect of different major to
minor principal horizontal stress ratio, on the trajectory and interaction of the fractures.
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1 INTRODUCTION

Advanced modelling of reservoir geo-mechanics involves the numerical representation of
geological discontinuities. In the approach described in this paper, zero-thickness interface
elements of the Goodman type [2] are considered for this purpose. Those elements can also
be used for representing the fluid flow and the coupled hydro-mechanical problem [7]. The
technique consists in inserting interface elements in between standard elements to allow
jumps in the solution fields. For the mechanical problem, their kinematic constitutive
(strain-type) variables are relative displacements, and the corresponding static (stress-
type) variables are stress tractions. The relationship between variables is controlled via a
fracture-based constitutive law with elasto-plastic structure [3]. Concerning the hydraulic
problem, the interface formulation includes both the longitudinal flow (with a longitudinal
conductivity parameter strongly dependent on the fracture aperture, cubic law), as well
as and the transversal flow across the element (and an associated localized pressure drop,
with the corresponding transversal conductivity parameter).

The study presented in this paper is an extension of recent work presented by the
authors [4, 5, 6] which was verified first by comparison to existing analytical and numerical
solutions for the propagation of a single hydraulic fracture [8].

2 HYDROMECHANICAL FORMULATION FOR ZERO-THICKNESS IN-
TERFACE ELEMENTS

Present work follows the definition of zero-thickness interface element originally pro-
posed in [9]. The main characteristic of this type of element is that one of its dimensions
has collapsed. Therefore the integration is reduced in one order, line integration for 2D
and surface integration for 3D. The mid-plane surface is defined via isoparametric in-
terpolation on the basis of the coordinates of the mid-points, or points at mid-distance
between each pair of nodes. This interpolation is based on a set of local coordinates ξ, η
for the mid-plane surface in 3D, or ξ for the mid-plane line in 2D.

Nodal unknowns are transformed into mid-plane variables which represent variations
(jumps or drops) of field variables. Mid-plane variables are expressed in terms of the local
orthogonal coordinates system, presented in section 2.1. Then, the HM formulation is
shown in section 2.2.

2.1 Zero-thickness variables

The nodal variables in a hydro-mechanical problem include the nodal displacements
(ue) and the nodal fluid pressures (pf

e). The nodal (absolute) displacements are trans-
formed into normal (rn) and shear (rl1 , rl2) relative displacements, which have the mean-
ing of displacements jumps across the discontinuity. The other variable, fluid pressure, is
transformed into two components, the average pressure (p̄fJ ) and the pressure drop (p̌fJ ),
across the discontinuity. A description of these variables and their conjugates is provided
in the following paragraphs.

The relative displacement at a mid-plane point (ξ, η) of the discontinuity is denoted

2
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as:
r =

(
rn rl1 rl2

)T
(1)

where rn is the normal component and the rl(∗) are the tangential components. These

relative displacements and the corresponding stress variables are depicted in Fig. 1.
The relation between relative displacements and nodal displacements is given by the

the following expressions:
r = R Nu

J TTTu ue = BJ ue (2)

where R is the rotation matrix that transforms vector components into local orthogonal
axes, Nu

J is matrix of nodal shape functions evaluated at integration position (ξ, η), and
TTTu is the ”transformation” matrix, which generates the difference between bottom and
top face of interface element.

Then, the BJ matrix is defined in analogy to the classical FEM continuum elements.

BJ = R Nu
J TTTu (3)

The matrix of nodal shape functions is defined in Eq. (4), where m is the number of
nodes at midplane (which is half of the number of nodes of the interface element n) and
d represents the number of mechanical degrees of freedom per node. The operator ”⊗”
indicates the Kronecker product.

Nu
J =

(
N1 N2 · · · Nm

)
⊗ Id (4)

The mechanical transformation matrix for the mechanical problem is defined as:

TTTu =
(
− Im Im

)
⊗ Id (5)

The conjugate variables to the relative displacements are the stress tractions at the
discontinuity mid-plane (σJ ), which, for a specific point (ξ, η) of that surface, may be
expressed as:

σJ =
(
σn τl1 τl2

)T
(6)

where σn is the normal stress and τl1 and τl2 are the tangential components.
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Figure 1: Relative displacements of zero-thickness interface element.
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The average fluid pressure (p̄fJ ) at a given point (ξ, η) of the discontinuity is obtained
as the average between bottom and top fluid pressures and it can be expressed as:

p̄fJ = Np
J

T TTTp
L p

f
e (7)

Np
J =

(
N1 N2 · · · Nm

)
(8)

TTTp
L =

1

2

(
Im Im

)
(9)

The fluid pressure drop at the same point is given by the difference between top and
bottom fluid pressures at element nodes:

p̌fJ
∣∣
ξ
= Np

J

T TTTp
T pf

e (10)

TTTp
T =

(
− Im Im

)
(11)

2.2 Finite element method formulation

This section describes the weak form of the equilibrium/continuity used for the im-
plementation of zero-thickness interface elements. This equations are obtained from the
application of Virtual work Principle. and the details can be found in [7]. The notation
follows the terminology used in [10]:

∫

Ωj

BJ

T σ
′

J dΩj + QJ p
f
e = fuJ (12)

HJ p
f
e + SJ

∂ pf
e

∂t
+ QJ

T
∂ ue

∂t
= fpJ (13)

4
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in which QJ is the coupling matrix, HJ the diffusion matrix, SJ the storage matrix, and
fuJ , f

p
J are the initial force and flow vector, with expressions:

QJ = TTTuT

(∫

ΩJ

Nu
J

T RT αJ mJ N
p
J dΩJ

)
TTTp

L (14)

HJ = Hp
JT

+ Hp
JL

= (15)

= TTTp
T

T

(∫

ΩJ

Np
J

T Ǩt N
p
J dΩJ

)
TTTp

T

+TTTp
L

T

(∫

ΩJ

(
∂ Np

J

∂xJ

)T
(−T f

l )

γf

∂ Np
J

∂xJ

dΩJ

)
TTTp

L

SJ = TTTp
L

T

(∫

ΩJ

Np
J

T 1

MJ

Np
J dΩJ

)
TTTp

L (16)

fuJ = TTTuT

∫

Γ

Nu
J

T σ
′

0 dΓ (17)

fpJ = TTTp
L

T

∫

Ωj

(
∂ Np

J

∂xJ

)T
(−T f

l )

γf

∂z

∂xJ

dΩj

+TTTp
L

T

∫

Γf
q

Np
J

T Q̃′f dΓ (18)

where αJ is the Biot’s coefficient, mJ = (1 0 0)T , Ǩt the transversal conductivity, T
f
l the

longitudinal transmissivity, γf the specific fluid weight, MJ the Biot’s modulus and Q̃′f

the discharge per unit width.

3 STUDY OF FIVE-STAGE HF IN 2D

The study presented in this section is the analysis of multiple interacting hydraulic
fractures using an academic example of 5 fracture jobs. The purpose of this study is to
show the influence of previous hydraulic fractures on a subsequent fracture.

As said before, the interaction between different fracture jobs is due to the modification
of local effective stress field. This variation is caused by the redistribution of stresses due
to the fracture propagation and to the variation of fluid pressure after pumping.

The principal factors involved in this modelling are:

• The material properties of the rock (mechanical and fluid properties)

• The production design (spacing between jobs, volume of fluid injected, rate of in-
jection, sequence of jobs, etc.).

• The initial stress state (vertical, horizontal maximum and minimum.)

5
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Table 1: Material properties of continuum.

Parameter Value Units

E Young’s modulus 14400 MPa
ν Poisson’s ratio 0.2 -
K Hydraulic conductivity 1× 10−15 ms−1

Ks Solid compressibility 36000 MPa
α Biot coef. 1.0 -

3.1 Model description

3.1.1 Geometry

A simplified configuration of five fracture jobs in a horizontal perforation is considered
(see Fig. 2). In the current model the domain considered for the numerical analysis is
composed of two subdomains (see Fig. 3):

• A fractured subdomain, which includes the zone in which the fractures can propagate
(Fig. 3b), is discretized with a relatively dense FE mesh in which a network of
interfaces is pre-inserted in between most continuum elements (Fig. 3c), with the
purpose of allowing for sufficient freedom in the propagation of the fractures without
predefined initial directions.

• A continuum subdomain, which corresponds to the surrounding domain farer from
the fractures themselves, and consists of a layer or continuum elements without
interfaces (Fig. 3a). This second subdomain is included in order to ensure the correct
application of the boundary conditions (in situ stress and initial fluid pressure).

In this model the injection points are distributed along the x-axis (horizontal well) with
fixed spacing of 5m. Finally, as a first (2D) approach, the analysis is performed assum-
ing plane strain conditions. Note that in order to avoid perturbations due to boundary
conditions, the external boundary is placed around 200m away from the interest area.
In the fractured subdomain (Fig. 3b) zero-thickness interface elements are introduced
between each pair of continuum elements. To ensure compatibility between the two sub-
domains, elastic interface elements are introduced all along the perimeter between the
(outer) continuous and the (inner) fracture subdomains.

3.1.2 Material properties

The material properties used in the simulations are given below. For the continuum
elements, an elastic isotropic material is assumed. Regarding the hydraulic behaviour, a
practically impervious material is selected. All parameters are displayed in Table 1.

For the mechanical behaviour of the interface elements, normal and shear stiffness are
assigned high values. These parameters may be understood as penalty coefficients with
high values in order to avoid excessive unrealistic elastic deformations at the interfaces.

6
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Figure 2: Scheme of 5 fracture job test.

Therefore, in practice the resulting deformation of the fractures can be assumed to rep-
resent almost exclusively the inelastic behaviour, that is, crack opening and shear slip.

The constitutive model used for the fractures is the elastoplastic constitutive formu-
lation with fracture energy-based evolution laws described in detail in [3]. Low values of
strength (tensile strength and cohesion) are selected in order to simulate existing fractures
with very low or practically null cohesion [8]. The hydraulic behaviour of the interface is
controlled by the so-called cubic law. The summary of interface parameters is shown in
Table 2.

3.1.3 Boundary conditions

The boundary conditions are applied in a sequence of six steps (see Fig. 4):

Step 1: Stress initialization. In this step, a distributed load is applied over the external
boundary: 1.0MPa is imposed in the y-direction (σH). For the x-axis three cases
are considered: 0.5MPa, 0.7MPa and 0.9MPa (values of σh). The difference of
principal stresses ensures that the preferential fracture direction is the y-direction
(see Fig. 4, first row).

Steps 2-6: Single fracture jobs. A flow rate of Q = 0.001m3/s is injected at the injection
point during 25 s. This step is repeated starting from job 1 and finishing at job 5
(see Fig. 4, second row)

7
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Figure 3: Model geometry for 5 fracture job test; a) full domain; b) fractured subdomain
with detail of injection points position; and c) detail of network of interface elements
inserted between continuum element. All dimensions are in meters.

3.2 Numerical Results and discussion

As already said, the objective of this study case was to learn about the interaction
between subsequent fracturing jobs. The interaction is caused by the modification of the
effective stress field during fracture propagation. For this purpose, several computations
were performed focusing the interest on the effect of the in situ stress anisotropy. In
particular, three cases with different ratio between maximum (σH) and minimum (σh)
horizontal stress were run. All calculations assume the same maximum compression ap-
plied along the y-axis (on top and bottom limits of the domain), and different levels of
minimum compression applied over the x-axis: a high anisotropic case 0.5σH , a medium
anisotropy case 0.7σH and a low anisotropy case 0.9σH .

Figure 5 shows the evolution of fluid pressure at the injection points (crack mouths)
along the entire simulation for the low anisotropy case. It is observed that the peak
pressure for each injection is higher than the previous one, due to the increment of stress
confinement after the previous fracture job. Therefore, the pressure necessary for opening
the fracture increases due to the interaction of jobs, that is, the sequential scheme of
injections causes a slow but gradual increase of the subsequent injection pressures.

Figure 6 shows the fluid pressure distribution at the end of fith fracture job, for the

8
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Table 2: Material properties of interfaces.

Parameter Value Units

Kn Normal stiffness 1× 10−6 MPam−1

Kt1 and Kt2 Tangentials stiffness 1× 10−6 MPam−1

χ0 Tensile strength 0.05 MPa
tan(φ) Friction angle 0.2 (11.3◦)
c0 Cohesion 0.5 MPa
GI

f Energy mode I 0.001 MPam
GIIa

f Energy mode IIa 0.01 MPam
Tl0 Ini. Long. transmi. 0.0 m2/s
Kp

t Trans. conduc. 1.0 s−1

σH

σh

p = 0

p = 0p = 0

p = 0

p = 0p = 0

1

3
4

5

Q = 0.0001 m3/s

2
t1

t2

t3

t4

t5

Mechanical conditions Hydraulic conditions

Sequential injection

x

y

x

y

x

y

x

y

Figure 4: Boundary conditions for mechanical (left column) and flow (right column), for
each of all the steps of the analysis (rows) in the two injection sequences considered.
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Figure 5: Crack Mouth Pressure evolution after 5 fracture jobs. Case σh/σH = 0.9

various σh/σH ratios scenarios. For a given in situ stress ratio, a slight interaction between
fractures may seem to start appearing already from the second injection, although a clear
interaction is not observed until the fifth injection for the high anisotropy case and until
the third injection for the low anisotropy case, when the fracture clearly deviates from
the initial vertical trajectory.

It is possible that these results may be slightly affected by the mesh layout, although
after various tentative calculations these effects seem not to be very significant.

The results demonstrate that fracture interaction is clearly more pronounced as the
difference between principal stresses is lower. For instance, the third injection in the case
with ratio 0.9 shows a deviation of the last fractures which is not detected for ratios 0.7
and 0.5 until the fifth job and with much lower intensity.

4 CONCLUDING REMARKS

A methodology for 2D analysis of multi-stage hydraulic fracture is presented through
the use of zero-thickness interface elements with full HM coupling. In this study an aca-
demic example of five fracture jobs in 2D is analysed in order to investigate the interaction
between diffents jobs as observed in the field. Among all the variables involved in the
interaction between fracture jobs, this paper has focused on the effect of different in situ
stress states in terms of maximum-to-minimum horizontal stress ratio. The results pre-
sented in this paper show a clear interaction between different jobs, with more pronounced
effects when the two horizontal stresses tend to be similar.
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(a) σh/σH = 0.5

(b) σh/σH = 0.7

(c) σh/σH = 0.9

Figure 6: Effect of stress anisotropy on fracture interaction for different stress ratios: a)
σh/σH = 0.5, b) σh/σH = 0.7 and c) σh/σH = 0.9. Fluid pressure distribution at time
125s.
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Abstract. The essential aspects of a diffusion-reaction model in development for the 
degradation process of oil-well cement exposed to carbonated brine are presented in this 
paper. The formulation consists of two main diffusion/reaction field equations for the 
concentrations of aqueous calcium and carbon species in the hardened cement paste pore 
solution, complemented by a number of chemical kinetics and chemical equilibrium 
equations. The volume fraction distribution of the solid constituents of the hardened cement 
paste and the reaction products evolve with the progress of the reaction, determining the 
diffusivity properties of the material. A sensitivity analysis of some parameters of the model 
is presented to illustrate the capabilities to reproduce realistically some aspects of the 
degradation process.  

1 INTRODUCTION 
Geological storage of carbon dioxide (CO2) is considered a promising solution to the 

global warming arising from anthropogenic CO2 emissions, by capturing CO2 from industrial 
and energy-related sources, transporting it usually by pipelines and injecting it into suitable 
deep rock formations [1]. Among other options, the storage of CO2 in depleted oil and gas 
reservoirs is distinguished as one of the most favourable options; first, because the oil and gas 
that originally accumulated in traps did not escape, in some cases for many millions of years, 
demonstrating the integrity and safety of the storage site, and second, because these structures 
are well known and significant infrastructures are already in place at those sites. However a 
major source of concern arises when the security of exhausted oil fields is assessed for CO2
storage: the presence of abandoned wells that perforate the caprock of the reservoir and which 
may potentially constitute CO2 leakage pathways [2]. In particular, attention needs to be paid 
to the chemical stability of the cementations of those wells in the case they are exposed to 
carbonic acid formed by CO2 injections. Since in most cases the construction and sealing of 
existing wells were not conceived taking into account future CO2 storage, they were executed 
using ordinary Portland cement, which is chemically unstable in acid environments [3-8]. In 
this context, it becomes essential for practitioners the availability of accurate numerical 
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2

models in order to assess the long term performance of the cementation of abandoned wells in 
case of being exposed to new, acidic, environment due to CO2 injections. 

In this paper, a chemical model under development for simulating cement paste 
degradation when exposed to acidic solutions [9] is summaries together with some examples 
of applications. In this model the emphasis has been made on capturing the most significant 
chemical mechanisms that control the kinetics of the cement degradation, while keeping the 
formulation as simple as possible. In order to illustrate the capability of the model to 
reproduce realistically some aspects of the degradation process, the model was used to 
simulate experimental results found in the literature. Additionally, a sensitivity analysis of 
some model parameters is presented. 

2 THE MODEL 

2.1 Reaction mechanism considered 
The proposed reaction mechanism is schematically summarized in Fig.1, which represents 

the interfacial zone between the hardened cement paste (HCP) and carbonated brine in the 
reservoir. The HCP is considered to be composed by four volumetric fractions: portlandite, 
calcium silicate hydrates (C-S-H), inert cement hydration products, namely aluminate and 
sulfate compounds, and capillary pores. The HCP pores are assumed to be fully saturated with 
water with concentrations of alkalis (sodium and potassium) and chlorides resultant from the 
cement hydration and from the exchange with the surrounding medium. These conditions, as 
well as the system pressure and temperature, are assumed to remain constant at all times 
during the reaction. For the sake of simplicity, C-S-H is assumed to have a fixed 
stoichiometry of C1.7SH3.2 (in cement chemistry notation). Then, it is decomposed in two 
parts, on one hand portlandite and, on the other, low calcium C-S-H, i.e. C1.7SH3.2=0.7CH + 
CSH2.5. For all purposes, the portlandite in the C-S-H is treated as the rest of portlandite in the 
HCP. 

Figure 1: Scheme of the proposed degradation mechanism.

When CO2 is dissolved in brine, carbonic acid (H2CO3) is formed, which is subsequently 
dissociated into HCO3

- and CO3
2-. This process is summarized in two Reactions (Eqs. (1) and 

(2)), where the intermediate formation of H2CO3 is omitted. The concentration gradient of 
carbon species causes a diffusion process from the brine towards the HCP, which is followed 
by a decrease of the pH of the pore solution in the HCP. As pH lowers, the portlandite in 
contact with the pore solution (zone II, Fig.1) becomes unstable dissolving into Ca2+ (Eq. (3), 
towards right). While there is portlandite in contact with the pore solution, the pH will remain 
high, and the predominant species of aqueous carbon will be CO3

2-, which in turn will react 
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with Ca2+ resulting from portlandite dissolution forming calcite (CaCO3) (zone III, Fig.1), as it 
is indicated in Eq. (4), towards left. If carbon species continue entering, the portlandite will be 
eventually exhausted. Consequently, the pH will decrease dissolving the calcium present in 
the CSH2.5 (Eq. (5), towards right), and slowing down but not stopping the formation of 
calcite (zone IV, Fig.1). Additional ingress of carbon species will induce further reduction of 
the pH, driving calcite dissolution (Eq. (4), towards right), and continuing with the dissolution 
of the remaining calcium in the CSH2.5, leaving only amorphous silicate hydrates, which are 
assumed to be stable in contact with the carbonated brine (zone V, Fig.1). At this stage, HCP 
is completely degraded with practically no mechanical strength and with high permeability. 

In this processes the evolution of the solid volumetric fractions will determine important 
variations of the microstructure of the cement paste. In particular, the porosity of the degraded 
zone II is much higher than that of the unaltered cement paste. In contrast, the precipitation of 
calcite will reduce the porosity, in some cases, below the original value. CO () +  HO ↔  HCO + H  (1) HCO  ↔  CO +  H (2) Ca(OH) () ↔  Ca +  2OH (3) 

CaCO ()  ↔  Ca +  CO (4) 

[Ca(OH)][(SiO)(HO).] ↔  Ca + 2OH + (SiO)(HO). () (5) 

HO ↔  OH + H (6) 

2.2 Formulation   
Assuming that the diffusion of aqueous species in the pore solution obeys Fick’s diffusion 

law, averaging it in the saturated porous medium and posing the corresponding mass balance 
equation, the following diffusion-reaction equations for the continuum porous medium are 
obtained 

() = () + () = () +  (7) 

where the superscripts ca and tc indicate calcium and total carbon, respectively; φ is the total 
porosity; cβ [mol/m3] is the concentration of aqueous β-species in the pore solution; Dβ [m2/s] 
is the effective diffusivity of aqueous β-species in the porous medium (assumed isotropic) and 
qβ [mol/(m3·s)] is the rate of production/consumption of β-species per unit volume of porous 
medium, which in turn is a function of the concentration of aqueous calcium and total carbon, 
i.e. qβ= qβ (cca, cct). Finally,  = [/  / ]. The variable ctc represents the summation of
the molar concentrations of the different carbonic species in pore solution, i.e. ctc=cc0+cc1+cc2, 
where the superscript c0 stands for CO2(aq), c1 for HCO3

- and c2 for CO3
2-.

Expressions of the production rate of calcium and total carbon are given in Eqs. (8) as 
functions of the net rate of production of solid species resultant from Reactions (3), (4) and 
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(5), where Γ α [mol/(m3·s)] is the reaction rate of solid α-species per unit volume of pore 
solution and superscripts CH, C̅ and CSH stands for portlandite, calcite and CSH2.5.  = − + ̅ +     = −̅ (8)

The calculation of the sink/source terms qβ according to Eqs. (8) requires establishing the 
kinetic laws for Reactions (3), (4) and (5) in order to obtain the corresponding Γ α. To do so, it 
is assumed that the driving force of the dissolution/precipitation reaction of reactive solid α-
species is (ψ α -1), where ψ α is the dimensionless saturation index of the pore solution with 
respect to the solid α-species. The saturation indexes are calculated in terms of the activity of 
the aqueous β-species intervening in the formation of the solid species. Activity and 
concentrations are related by means of dimensionless factors γ β (activity coefficients), which 
are calculated using the well-known Davis Equation with the modification on the second term 
proposed by Samson and Lemaire [10]. In order to determine the concentration of secondary 
species, additional calculations need to be performed considering the equilibrium equations of 
the dissociation Reactions (1), (2) and (6), as well as, the electric charge neutrality of the pore 
solution. In these calculations, the concentration of other species present in the pore solution 
(such as alkalis or chlorides) but not intervening in Reactions (1) to (6) may be considered. 

If ψ α > 1 the solution is oversaturated with respect to α-species, consequently, the reaction 
progresses in the precipitation direction. If  ψ α < 1, the solution is under-saturated and solid 
dissolution occurs. If  ψ α = 1, the solid and the solution are in thermodynamically 
equilibrium. The resulting kinetic law is formulated for a generic solid α-species in Eq.(9), 
where  and  [mol/(m3·s)] are kinetic constants to be fitted and Nα [mol/m3] is the 
concentration of solid α-species. 

 =      ( − 1)      ≥ 1                          ( − 1)     < 1 ;   > 0 0                         < 1 ;   = 0    (9) 

The mass balance equation of solid α-species is given by  () =  (10) 

where  is the volume of pore solution and  [m3] is the total volume of porous medium.  
The total volume balance equation is given in Eq. (11), where ω α [m3/mol] is the apparent 

molar volume of solid α-species, and [m3] is the capillary porosity, i.e. the part of 
material volume that is not occupied by the solid phases and which is assumed to be filled 
with free water. Additionally, the total volume of pore solution includes also gel water present 
in gel-like solids such as C-S-H. 
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 =  +    (11)

The effective diffusivity of the β-species in water-saturated HCP (Dβ) is calculated by 
means of the analytical formula proposed by Oh and Jang [11] given in Eqs.(12), where 
[m2/s] is the diffusivity of the β-species in bulk water. This equation uses four constant 
dimensionless parameters which characterize the microstructure of the HCP, namely the 
capillary porosity (), the percolation threshold (), the normalized diffusivity of the solid 
phase (  ) and the percolation exponent (). In order to introduce the effect of C-S-H 
dissolution in the reduction of the tortuosity of the pore structure, instead of considering n as 
constant, an additional expression is introduced (Eq. (13)), where ni and nf are the percolation 
exponents for unaltered and for completely decalcified HCP, respectively, and  is the 
volume of CSH2.5 in the unaltered HCP. 

 =  
 +   + 1 −   ⁄




(12a) 

 =  12  ⁄ +   1 −  1 −  ⁄  − 1 −  (12b) 

() =  −  −  1 − ()  (13) 

2.3 Numerical implementation 
The above-described formulation has been implemented in the Finite Element code 

DRACFLOW, in-house developed by the group of Mechanics of Materials at UPC 
(MECMAT/UPC). This code has been previously used to model a number of durability 
problems in concrete such as drying shrinkage [12], external sulfate attack [13], Alkali-Silica 
Reaction [14] and high temperatures [15]. 

3 MODELLING RESULTS 

The proposed diffusion-reaction model has been used for simulating one of the laboratory 
experiments performed by Duguid and Scherer [7] of well cement degradation due to 
exposure to carbonated brine. Additionally, a sensitivity study of the results to variations of 
the kinetic constants and to the way of calculating the effective diffusivity of the porous 
material has been performed. 
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3.1 The experiment 
In their experiment, Duguid and Scherer [7] placed cylindrical cement paste samples (7.5 

mm in diameter and 200 mm length, w/c ratio of 0.38) in a reactor with CO2 saturated brine 
(0.5M NaCl) at 50 ºC. The samples were cured in 0.5 M NaCl brine at 50 ºC for 12 months. 
The carbonated brine had pH of 3.7 at 20 ºC and was continuously renovated in order to keep 
the boundary conditions as constant as possible. The evolution of the degradation front was 
followed by cutting small samples from the cement paste cylinder in the reactor at different 
times throughout the experiment. On these samples, visual measurements of depth of advance 
of different degradation fronts were performed. 

3.2 Model geometry and parameters 
The cylindrical sample has been simulated as a 1D axisymmetric problem, i.e. only radial 

diffusion in the sample is considered. The sample radius of 3.75 mm was discretized with 50 
equal size linear finite elements. All simulations were performed for a total time of 720 hours 
(30 days) discretized in increments of 0.2 hours. The total carbon concentration in the 
carbonated brine surrounding the cement sample was estimated by means of additional 
calculations, as 46 mmol/L, while the concentration of calcium in the brine was assumed to be 
zero. Given the extended period of curing, the initial concentrations of alkalis (sodium) and 
chlorides were assumed homogeneous in the sample and equal to that of the brine, i.e. cr= ccl=
500 mmol/L. The initial calcium concentration in pore solution is given by the equilibrium 
concentration of portlandite in contact with 0.5 M NaCl brine at 50 ºC, resulting in 20.95 
mmol/L. 

The initial concentration of the solid compounds was estimated based on the work of 
Brouwers [16-17] leading to the following volume fractions: CSH2.5= 0.212, CH= 0.214, Inert 
cement paste= 0.220 and Capillary pores= 0.353. The total porosity (considering gel water) 
resulted in 0.48. 

The saturation product constants considered for Reactions (3), (4) and (5) are =
3.236E-06, ̅= 2.007E-09 and = 3.236E-09, for activities in mol/L. The equilibrium 
constants considered for Reaction (1), (2) and (6) are = 5.171E-07, = 6.748E-11, and  = 5.352E-14, also for activities in mol/L. 

The remaining parameters (kinetic constants and diffusivity parameters) are used in the 
sensitivity analysis and, therefore, are indicated below for each simulated case. 

3.3 Results 

3.3.1 Reference case 

In order to quantify the rate of progress of the degradation process, Duguid and Scherer [7] 
visually identified in samples taken from the cement cylinders, rings with different coloration, 
which were associated with different stages in the degradation process. In particular, a white 
ring developed in between the interior of the specimen and the practically completely 
decalcified outer corona. This white layer has been attributed to the presence of calcite. Then,
in order to compare the measurements by Duguid and Scherer with our simulation results, the 
whitish color is related to a certain threshold content of calcite (0.22 m3/m3). 
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In Fig. 2, left, calcite profiles at different exposure times are plotted together. It can be 
appreciated how the precipitated calcite formed a relatively narrow layer that “moves” 
towards the interior of the sample. In the same plot, it is also indicated the adopted threshold 
content of calcite above which the material becomes whitish. From this plot the depths of the 
inner and outer sides of the whitish layer for each exposure time are obtained and plotted 
together with the experimental results obtained by Duguid and Scherer in Fig. 2, right. Note 
that the penetration rates of both the inner and the outer sides of the white layer are well 
reproduced by the model. 

The kinetic constants used in this simulation were: ̅=5.00E-02, ̅=5.00E+02, = 
1.00E+02, and = 2.00E+01, in all cases expressed in mol/(m3·s). The parameters used for 
the calculation of the effective diffusivity with Eqs. (12) and (13) were: = 2.7, =0.1, = 
0.18,   =1.00E-04, =3.201E-09 m2/s, and =1.327E-09 m2/s.

Figure 2: Left, radial profile of calcite volume fraction for different exposure times. Right, experimental and 
simulated reaction depth versus time. Circles and diamonds indicate the inner and the outer limits of the white 
layer of the degradation front, respectively. Empty symbols indicate experimental results by Duguid and Scherer 
[7], while solid symbols indicate simulation results.

3.3.2 Sensitivity analysis 

In order to assess the influence of some parameters and modelling assumptions in the 
simulation results presented in previous Section 3.3.1, additional simulations were performed. 
In the first analysis, presented in Fig. 3, effective diffusivity was calculated in three different 
manners: (a) constant througout the simulation; (b) evolving as a function of capillary 
porosity using Eqs. (12) proposed by Oh and Jang; (c) using the formula proposed by Oh and 
Jang plus an evolution law, Eq. (13) for the percolation exponent. Note that (c) is the 
Reference case. 
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Figure 3: Experimental and simulated reaction depth versus time. The simulation results corresponds to three 
different maners of considering the effective diffusivity: (a) constant througout the simulation; (b) evolving as a 
function of capillary porosity using the formula proposed by Oh and Jang [11]; (c) using the formula proposed 
by Oh and Jang [11] plus an evolution law for the percolation exponent. 

The rate of advancement of the reaction fronts obtained with constant diffusivity, case (a), 
markedly decreases with the penetration depth and clearly diverging from the experimental 
results. This can be explained by the growing distance to the boundary of the specimen from 
where the CO2 is coming. This effect is not as marked in the experimental curves, indicating 
that it was somehow compensated by other mechanism. One possibility is that the increment 
of diffusivity due to the degradation of material compensated the greater distance to the 
boundary.  In order to introduce this effect, a first intent was made using the formula proposed 
by Oh and Jang (case (b) in Fig. 3). As a result, the penetration rate of the outer front 
increases significantly, but the curve of the inner front remains practically unchanged. It 
seems that the increment of diffusivity given by the Oh and Jang formula in the degraded 
material was not high enough to fit the experimental results. Then, a second attempt was made 
introducing Eq. (13) with the intention of magnifying the effect of cement degradation on the 
effective diffusivity, resulting in the much better fitting of the curves of case (c). 

In a second sensitivity analysis, the influence of the kinetic constants on the results 
obtained from the Reference case was assessed. To do so, eight additional simulations were 
performed. In each case, only the value of one kinetic constant was varied with respect to the 
one used in the Reference case. In Fig. 4, reaction depth-time curves obtained from these 
additional simulations are plotted together with the experimental curves and with the curves 
from the Reference case. The values of the corresponding modified kinetics constants are 
indicated in the legend of the plots. 
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Figure 4: Experimental and simulated reaction depth versus time for the sensivity study of kinetics constants.

In the upper left plot of Fig. 4, the effect of modifying the kinetic constant of calcite 
formation ̅ has been represented. When ̅ is reduced, the volume of calcite formed in 
the first 10 days stays below the threshold value. Afterwards, the amount of calcite surpasses 
the adopted threshold, showing that the rate of advancement of the degradation front has not 
been reduced with respect to the Reference case, but slightly increased. On the other hand, 
increasing ̅ leads to practically the same curves as the Reference case. These results 
indicate that ̅ determines the peak value of the calcite radial profile, and may have also 
some influence on the advancement rate of the degradation fronts. 
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 In the upper right plot of Fig. 4, the effect of modifying the kinetic constant of calcite 
dissolution ̅ has been represented. As expected, only the position of the outer degradation 
front, corresponding to the dissolution of the calcite layer, is affected by ̅. When ̅ is 
reduced, the dissolution of calcite is delayed and, consequently, the width of the white layer is 
increased. Inversely, when ̅ is increased, the width of the white layer is reduced. 

In the bottom left plot of Fig. 4, the effect of modifying the kinetic constant of portlandite 
dissolution  has been represented. As it occurs when  is reduced the volume of calcite 
formed in the first 10 days stays below the threshold value. These results indicate that 
determines the peak value of the calcite radial profile but not the advancement of the 
degradation fronts. 

In the bottom right plot of Fig. 4, the effect of modifying the kinetic constant of CSH2.5

dissolution  has been represented. When  is increased both the inner and the outer 
advancement rates are increased. Inversely, when  is decreased both the inner and the 
outer advancement rates are decreased. This effect is more important for the inner degradation 
front than for the outer one and, hence, the width of the white layer increases with increasing . The significant influence of  in the advancement of the degradation fronts is 
attributed to the role played by the volume fraction of CSH2.5 in the calculation of effective 
diffusivity (see Eqs. (12) and (13)). 

4 CONCLUDING REMARKS 

• A general description of quantitative diffusion-reaction model for the simulation of 
cement paste degradation due to the exposure to carbonated brine has been presented.  

• The proposed model seems capable of reproducing the rate of advancement of the 
degradation fronts. 

• In order to fit experimental results, it was essential to introduce the effect of the 
material decalcification in the evolution of the effective diffusivity of the porous 
medium. 

• A sensitivity analysis indicate that the kinetic constants mainly determine the width of 
the degradation front, with minor effect on the advancement rate, except for the 
dissolution kinetic constant of CSH2.5 due to its relationship with the manner in which 
the effective diffusivity is calculated. 

• More details of the work presented in this paper can be found in [9]. 
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Abstract.  
The in-situ stress field in rock masses is a key aspect when a numerical analysis of a rock 

mass is carried out in any area of geo-engineering, such as civil, mining, or Oil & Gas. A 
method for the numerical generation of the in-situ stress state in the FE context, based on Airy 
stress functions was previously introduced. It involves two steps: 1) an estimate of the stress 
state at each Gauss point is generated, and 2) global equilibrium is verified and re-balancing 
nodal forces are applied as needed. In this paper, new developments towards improving the 
accuracy of the stress proposal are discussed. A real application example has been used to 
illustrate the results achieved with the new implementation. 
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1 INTRODUCTION 

Geological materials are inevitably subject to an in situ stress field which is crucial for the 
evaluation of the geomechanical response of the rock mass in a variety of fields of 
Engineering [1,2]. However, in-situ measurement procedures are complex and expensive, and 
their accuracy strongly depends of every type of situation. Additionally, although in-situ 
measurements are certainly essential, stress fields are also subject to some constraints due to 
physical laws such as equilibrium and limit behaviour of material laws. For this reason, it is 
nowadays accepted that a sound procedure to reconstruct an accurate picture of the in-situ 
stress field requires the combination of measurements with numerical calculations [3].  

Ideally, the in-situ stress state could be obtained by modelling the complete geological 
history of the rock mass. However, the realistic analysis of that history would be in general 
too complex, or the geological history may not be known exactly. This is why the strategy is 
changed to simply trying to obtain the “current picture” of the stress state in the rock mass, 
using simplified procedures.  

In previous papers [4,5], the authors have discussed the equations to be satisfied by the 
initial stress field, and have proposed a two-step method to generate in-situ stress states which 
was based on Airy functions and the Finite Element method. In the first step, a first estimate 
of the stress state or “guess” at each Gauss point is proposed using vertical stresses due to 
gravity and horizontal due to the so-called horizontal to vertical stress ratio (𝐾𝐾𝐾𝐾), and in a 
second step global equilibrium is verified and re-balancing nodal forces are applied as needed.  

In this paper, further developments accomplished in this procedure are described, which 
include a non-linear based redistribution of unbalanced nodal forces and a parametric 
description of the geometry of the subdomains of interest. As the result of these new 
developments, the method is now more suitable for more complex geometries and situations, 
and also these changes are crucial for the extension of the method to 3D problems. The 
procedure described is illustrated with an example of application to a real reservoir field. 

2  GENERATION OF THE INITIAL STRESS PROPOSAL 𝝈𝝈𝝈𝝈𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 BASED ON 
STRESS FUNCTIONS 

This method is based on the use of the so-called stress functions 𝛷𝛷𝛷𝛷 𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧 , from which the 
components of the stress tensor are derived as follows: 

𝜎𝜎𝜎𝜎!" = 𝐹𝐹𝐹𝐹!" 𝛷𝛷𝛷𝛷 ,                                                               (1)                                                             

where 𝐹𝐹𝐹𝐹!" is a differential operator and 𝛷𝛷𝛷𝛷 is a scalar function of x, y and z. In the particular 
case of two-dimensional analysis, the expression reduces to: 

 σ!! =
!!!
!!!

+ σ!!!                                                          (2) 
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σ!! =
!!!
!!!

− γz+ σ!!!(6)   

 σ!" =
!!!
!!!!

+ σ!"! .     

and 𝛷𝛷𝛷𝛷(𝑥𝑥𝑥𝑥, 𝑧𝑧𝑧𝑧) is known as the Airy stress function [6-7]. In our particular case, a third degree 
polynomial expression with constant coefficients is used as stress function: 

𝛷𝛷𝛷𝛷 𝑥𝑥𝑥𝑥, 𝑧𝑧𝑧𝑧 = !!
!
𝑥𝑥𝑥𝑥! + !!

!
𝑥𝑥𝑥𝑥!𝑧𝑧𝑧𝑧 + !!

!
𝑥𝑥𝑥𝑥𝑧𝑧𝑧𝑧! + !!

!
𝑧𝑧𝑧𝑧!.                                    (3) 

which leads to linear expressions of stress components in terms of the geometrical coordinates 
(𝑥𝑥𝑥𝑥, 𝑧𝑧𝑧𝑧) and the coefficients 𝑎𝑎𝑎𝑎!, which need to be determined via minimization procedure.  

In order to determine the unknown coefficients, the entire domain is decomposed into 
vertical or sub-vertical strips, that are in turn subdivided into trapezoidal subdomains (Fig. 1-
Left).  

 
 

 
 

 
 

 
 

 
 

 
 

The coordinates (𝑥𝑥𝑥𝑥, 𝑧𝑧𝑧𝑧) of each subdomain may be expressed via interpolation of the nodal 
coordinates of the subdomain through linear interpolation functions 𝑁𝑁𝑁𝑁!, i.e. 
𝑥𝑥𝑥𝑥 = 𝑁𝑁𝑁𝑁!(𝑟𝑟𝑟𝑟, 𝑠𝑠𝑠𝑠)𝑥𝑥𝑥𝑥!!

!!!  and 𝑧𝑧𝑧𝑧 = 𝑁𝑁𝑁𝑁!(𝑟𝑟𝑟𝑟, 𝑠𝑠𝑠𝑠)𝑧𝑧𝑧𝑧!!
!!! . This leads to the stress components in the 

subdomain in terms of the natural coordinates of the subdomain (𝑟𝑟𝑟𝑟, 𝑠𝑠𝑠𝑠) as follows: 

𝜎𝜎𝜎𝜎!! = 𝑎𝑎𝑎𝑎! 𝑁𝑁𝑁𝑁!(𝑟𝑟𝑟𝑟, 𝑠𝑠𝑠𝑠)𝑥𝑥𝑥𝑥!

!

!!!

+ 𝑎𝑎𝑎𝑎! 𝑁𝑁𝑁𝑁! 𝑟𝑟𝑟𝑟, 𝑠𝑠𝑠𝑠 𝑧𝑧𝑧𝑧!

!

!!!

+ 𝜎𝜎𝜎𝜎!!!                                                          (4)	

Figure 1 – (Left) Geometric definition of a linear prismatic subdomain and boundaries in the 
coordinates (𝒙𝒙𝒙𝒙, 𝒛𝒛𝒛𝒛). (Right) The boundary conditions: 𝜎𝜎𝜎𝜎!(!"#!) 𝜏𝜏𝜏𝜏 ̅(!) and 𝜎𝜎𝜎𝜎!!! in parametrized (𝑟𝑟𝑟𝑟, 𝑠𝑠𝑠𝑠) 

subdomain. 
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𝜎𝜎𝜎𝜎!! = 𝑎𝑎𝑎𝑎! 𝑁𝑁𝑁𝑁!(𝑟𝑟𝑟𝑟, 𝑠𝑠𝑠𝑠)𝑥𝑥𝑥𝑥!

!

!!!

+ 𝑎𝑎𝑎𝑎! − 𝛾𝛾𝛾𝛾 𝑁𝑁𝑁𝑁! 𝑟𝑟𝑟𝑟, 𝑠𝑠𝑠𝑠 𝑧𝑧𝑧𝑧!

!

!!!

+ 𝜎𝜎𝜎𝜎!!! 	

𝜎𝜎𝜎𝜎!" = −𝑎𝑎𝑎𝑎! 𝑁𝑁𝑁𝑁!(𝑟𝑟𝑟𝑟, 𝑠𝑠𝑠𝑠)𝑥𝑥𝑥𝑥!

!

!!!

− 𝑎𝑎𝑎𝑎! 𝑁𝑁𝑁𝑁! 𝑟𝑟𝑟𝑟, 𝑠𝑠𝑠𝑠 𝑧𝑧𝑧𝑧!

!

!!!

+ 𝜎𝜎𝜎𝜎!"! . 

where the initial stress values 𝜎𝜎𝜎𝜎!!!,𝜎𝜎𝜎𝜎!!! ,𝜎𝜎𝜎𝜎!"! can be considered as additional subdomain 
parameters (𝑎𝑎𝑎𝑎! , 𝑖𝑖𝑖𝑖 = 5,6,7) to be included in the minimization procedure. 

The subdomains on each vertical strip are considered sequentially from top to bottom. 
Each subdomain is limited on the top and bottom by edges corresponding to 𝑠𝑠𝑠𝑠 = +1 and 𝑠𝑠𝑠𝑠 =
−1 repsectively. Also, left and right edges are given by 𝑟𝑟𝑟𝑟 = −1 and r= +1. These edges are 
plane but not necessarily horizontal, and are subject to the following boundary conditions: 1) 
The components of traction vector 𝜎𝜎𝜎𝜎(!"#$)  on the top edge (𝑠𝑠𝑠𝑠 = +1) is prescribed as a 
linear function of x and z. 2) Vertical stress gradient 𝜎𝜎𝜎𝜎!!  on entire surface is also prescribed 
as a linear function of x and z. 3) The shear intensity 𝜏𝜏𝜏𝜏 !  on the bottom edge (𝑠𝑠𝑠𝑠 = −1) is 
linked to the amount of normal stress on the same edge. 4) Horizontal stress (𝜎𝜎𝜎𝜎!!) on entire 
domain and is related to vertical stress 𝜎𝜎𝜎𝜎!! via 𝐾𝐾𝐾𝐾. 

According to the boundary conditions imposed on the top and bottom edges and the entire 
surface of the subdomain (Fig. 1-Right), an objective function 𝐺𝐺𝐺𝐺 𝑎𝑎𝑎𝑎!  is considered for the 
subdomain that integrates the square difference between:  1) the traction vector components 
and its prescribed values,  2) the shear stresses and its prescribed values,  3) the horizontal 
stress component and 𝐾𝐾𝐾𝐾 times the prescribed vertical stress values, and 4) the vertical stress 
components and its prescribed values. Considering the derivatives of the objective function 
with respect to the coefficients 𝑎𝑎𝑎𝑎𝒊𝒊𝒊𝒊, then the stress state that best fits the boundary conditions is 
defined by the parameters (𝑎𝑎𝑎𝑎!) that minimize the objective function: 

∂G
𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎!

𝑎𝑎𝑎𝑎! =
∂
𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎!

𝜎𝜎𝜎𝜎 !"#$ − 𝜎𝜎𝜎𝜎 !"#$ !
!

!!!

!!

!!
J(!!!!)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 +                                                 (5) 

+
∂
𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎!

𝜏𝜏𝜏𝜏 ! − 𝜏𝜏𝜏𝜏 ! !!!

!!
J(!!!!)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 

+
∂
𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎!

𝜎𝜎𝜎𝜎!! − 𝐾𝐾𝐾𝐾𝜎𝜎𝜎𝜎!! !𝐽𝐽𝐽𝐽(!,!)
!!

!!

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 

+  
∂
𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎!

𝜎𝜎𝜎𝜎!! − 𝜎𝜎𝜎𝜎!! !𝐽𝐽𝐽𝐽(!,!)
!!

!!

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 

wherein 𝐽𝐽𝐽𝐽(∙) is the determinant of the Jacobian of the coordinates transformation (global to 
natural) at the corresponding boundary and 𝑛𝑛𝑛𝑛 is the number of components of traction vector. 
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𝜎𝜎𝜎𝜎 !"#$ , 𝜏𝜏𝜏𝜏 !  are the traction vector and shear stress of the proposed distribution on the top 
and bottom edges of the subdomain with the corresponding prescribed values 𝜎𝜎𝜎𝜎 !"#$  and 
𝜏𝜏𝜏𝜏 ! . 𝜎𝜎𝜎𝜎!! and 𝜎𝜎𝜎𝜎!! are the corresponding stress components evaluated on entire surface and  
 𝜎𝜎𝜎𝜎!! is the vertical stress prescribed nodal value.  

3 APPLICATION TO A REAL RESERVOIR CROSS-SECTION 

The example of application of the procedure described consists of the real geological 2D 
cross-section shown in Fig. 2-top. 

         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 2 - (Top) Geomechanical model. (Bottom) Finite Element Mesh of the cross-
section. The thick vertical line indicates location of a wellbore. 
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The geometry of the geological formation is very adequate for 2D analysis since all the 
cross-sections parallel to the one considered have a very similar geometry. Furthermore, the 
cross-section considered has the advantage of the availability of field measurements from a 
wellbore. The following data is available: Young's modulus (E), Poisson's ratio (𝜈𝜈𝜈𝜈), rock 
density (𝜌𝜌𝜌𝜌), fluid pore pressure (Pf), and horizontal-to-vertical stress ratio (K). Table 1 shows 
these parameters for each layer of the domain (top to bottom). 

In order to apply the procedure based on Airy stress functions, the domain is subdivided in 
a total of 22 vertical stripes, and each of these layers is in turn subdivided into a number of 
trapezoids by intersection with the 18 geological layers, as also shown in Fig.2-top. Once the 
geometrical model is established, a FE mesh is generated as depicted in Fig. 2-bottom, with a 
total of 2899 quadratic elements (2816 quadrangles and 83 triangles), and 8822 nodes. 

As previously mentioned, a nonlinear behaviour has been assumed for the rock mass. The 
use of this type of constitutive behaviour allows the redistribution of excessive and usually 
unrealistic stress values that typically appear near surface in valleys or other geometries when 
a pure elastic analysis is carried out. In particular, a simplified elastic perfectly-plastic 
constitutive law with a hyperbolic Drucker-Prager [8] yield criterion is assumed as follows: 

𝐹𝐹𝐹𝐹 = 𝐽𝐽𝐽𝐽! − tan𝜑𝜑𝜑𝜑! 𝑝𝑝𝑝𝑝! +
𝑐𝑐𝑐𝑐!

tan𝜑𝜑𝜑𝜑!
− 𝑡𝑡𝑡𝑡!

! ,                                                                               (6)	

where 𝑝𝑝𝑝𝑝 is the first invariant of the stress tensor, 𝐽𝐽𝐽𝐽! is the second invariant of the deviatoric 
tensor, 𝜑𝜑𝜑𝜑! is the friction angle, 𝑐𝑐𝑐𝑐! is the cohesion and 𝑡𝑡𝑡𝑡!! is the tensile strength. Also associated 
plasticity (𝐹𝐹𝐹𝐹 =  𝑄𝑄𝑄𝑄) has been considered in the present example, as shown in Fig. 3. Values of 
𝑐𝑐𝑐𝑐!  =  100kPa, 𝜑𝜑𝜑𝜑! = 30º and 𝑡𝑡𝑡𝑡!

! = 50kPa, which are standard in the literature of Rock 
Mechanics have been used to characterize the non-linear response of the rock mass.  

Figure 3 - A simplified elastic perfectly-plastic constitutive law with a hyperbolic 
Drucker-Prager [8]. 
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Table 1: Values of different parameters used in each layer in the geometry model 

Layer Young (GPa) Specific weight  Poisson K 
1 13.79 24.13 0.224 2.14 
2 27.23 25.21 0.23 1.93 
3 22.75 25.11 0.227 1.27 
4 19.99 24.33 0.22 1.06 
5 31.03 25.51 0.235 1.14 
6 44.82 25.90 0.235 1.31 
7 37.92 24.82 0.24 1.16 
8 46.88 25.41 0.25 1.27 
9 17.24 24.13 0.233 1.09 

10 42.75 25.02 0.25 1.14 
11 49.64 25.80 0.253 1.17 
12 46.88 25.80 0.22 1.20 
13 39.99 25.02 0.244 1.15 
14 43.78 25.11 0.245 1.19 
15 37.92 25.21 0.24 1.21 
16 51.71 25.90 0.25 1.19 
17 31.03 25.21 0.245 1.24 
18 42.75 25.02 0.25 1.14 

 
The elastic rock properties assigned to each geomechanical unit are listed in Table 1. The 

results obtained, are presented in Fig. 4 in terms of both total and effective vertical and 
horizontal stress profiles along the wellbore.  

In Fig. 4, dotted-dashed lines represent the stress profiles resulting from the stress proposal 
based on the Airy functions (step 1 of the procedure). Solid lines represent the equilibrated 
stress profiles, obtained after the application of the unbalanced nodal forces (step 2). As it can 
be observed in the figure, the equilibrated stress states exhibit a better agreement with the 
previous available data along the well (dashed line). Overall, this agreement with available 
data is remarkable in both horizontal and vertical stress components and the general trend and 
also local effects are captured. However, vertical stress profile shows a better fit in the upper 
3500 m, which is the main area of interest since it corresponds to the reservoir and the 
overburden.  

Since all calculations have been carried out in terms of total stresses, the profiles in terms 
of effective stresses have been obtained via a post-processing using the available fluid 
pressure along the wellbore, as shown in Fig.4-bottom. 
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Figure 4 – Comparison of initial stress obtained using two-step procedure with available data:  (Top-Left) total 
horizontal; (Top-Right) total vertical stress; (Bottom-Left); effective horizontal stress; and (Bottom-Right) 

effective vertical stress. In bottom diagrams dotted line is the available fluid pressure Pf along the wellbore. In 
all diagrams: continuous line is final initial stress calculated after two-step procedure, dashed line is available 

data, and dotted-dashed line is intermediate stress obtained in step1 of the procedure. 
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5 CONCLUDING REMARKS  

In the present paper, further developments of the stress initialization technique in 
geological media described previously in [4-5] have been described. This procedure, based on 
Airy stress functions, constitutes a step forward with respect the simplest procedure of the 
fictitious Poission’s ratio, widely used in engineering practice. The mentioned improvements 
include: (1) an isoparametric representation of the subdomains that allow more general 
geometries, (2) more realistic stress conditions over the subdomain and its boundaries, and (3) 
the use of non-linear laws in the re-equilibration step, in order to redistribute unrealistically 
high deviatoric stress that may appear in the stress proposal at specific areas near the surface. 

The described procedure has been applied to the stress initialization of a real reservoir 
cross-section where wellbore measurements were available. The same example was also used 
in the previous papers, and the results obtained with the new improvements show a better fit 
of both the stress proposal and the equilibrated stress states. 
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Abstract. In the south of the city of Morelia, Mexico, there is a geological normal fault 
denominated "La Paloma". It has a height of 180 m and has limited the growth of the city. To 
improve the connectivity of the city, an urban road is building and it includes the digging of a 
tunnel that goes through this fault.  Due to the presence of an ancient landslide in the exit 
tunnel, it is imperative to verify the stability of a slope in this zone. The geological structures 
founded “in situ” make complex the stability analyses, but the used of more realistic 
representation helps to understand the mechanism of failure. The data collected in 
geotechnical explorations helped to construct several models for slope stability analysis. 
Rocks and soils were identified in the interest area. In this way, an elastoplastic Finite 
Element Analysis (FEA) was carried out to verify the slope stability, considering a strength 
reduction by a safety factor. Stability was revised in static and seismic conditions. The rock 
structure is represented by using the Modified Hoek and Brown constitutive model and 
patterns of the joints with a Mohr-Coulomb constitutive model. The fragments of rock were 
emulated with joint patterns according to the geologic structure. The slope stability results 
show a stable slope considering static and pseudo-static FEA analysis. The failure mechanism 
could be appreciated with the slope stability analysis realized.  

 
 
1 INTRODUCTION 

Behavior of rock mass depends greatly on its origin, discontinuities and of the compressive 
strength of intact rock. The interaction between discontinuities and the intact rock in the mass, 
define the stability when the natural equilibrium is disturbed. If a modeling of the rock is 
closer to the reality, a proper stress-strain analysis can be done and it will be possible to 
understand the most probable failure mechanism [1].  

Elasto-plastic Finite Element Analysis (FEA) is a powerful tool for slope stability analysis 
for soils and rocks. For rock mass, it is necessary to use joint patterns to have an adequate 
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representation of real rock configurations. With both components, it is possible to study the 
slope failure mechanisms and the joint movements that can conduct to the generation of 
cracks for delimiting the mass of rock that can slide. 

In this work, a study of the application of joint or discrete fracture networks to slope 
stability analysis, in a real case in the zone of an ancient landslide is presented. The zone is 
located in a populated area into the Morelia city, together with the construction of a tunnel in 
the zone such it is necessary to verify the stability of the site. With geotechnical information, 
a stratigraphy with joint patterns is proposed for advanced stability analysis. It was possible to 
verify the stability and the movement possibilities for the study area. 

2 GEOPHISICAL AND GEOTHECNICAL EXPLORATIONS  
Indirect methods were the basis for the geotechnical exploration. 15 Vertical Electrical 

Sounding (VES) with a depth of 250 m in the zone of the tunnel exit portal made by UNAM 
in 2012 [2] were used to perform the direct exploration.  The indirect results show a zone of 
soil and zone of rock with different qualities. There are low resistivities values in the front of 
the tunnel and high resistivities in the back of the tunnel, this is an evidence of the location of 
the “La Paloma Fault” (Figure 1).  

Two initial boreholes drilling, with a depth of 40 m, were programmed in the back of 
tunnel and one Standard Penetration Test (SPT) for soil in the front. The Figure 1 shows the 
localization of two boreholes. Figure 2 shows the two-borehole logs: the first one (s-1) in the 
upper part after vegetal layer, there is a stratum of a high plasticity clay mixed with andesite 
with a mean depth of 10 m, from this depth there is an alternation of andesitic and breccia 
rock of different thicknesses. The results in the second borehole are the same but with 
different thicknesses. The rock recovery was between 100 and 25% and the Rock Quality 
Designation (RQD) between 94 and 0%. It is clear in the stratigraphy that there are zones with 
rock blocks and zones with broken rock.  

 
A geotechnical profile built with the studies mentioned about and information collected in 

situ is shown in Figure 1. There are four layers: andesite with clay, andesite, breccia and clay. 
Andesite with clay layer is the product of the weathering of the talus deposit. Andesite has 
different qualities, in the lowest part of the borehole has RQD of 14.6 and in the upper zone 
94%. Breccia has less quality than the andesite and it could be more altered during the 
drilling. Different RQDs help to select the size of rock blocks for modeling. The transition 
zone between rock and clay helps to locate “La Paloma Fault”. The blue line is at the joint 
pattern limit of the landslide chosen for the proposed numerical model, which was selected in 
function of the UNAM studies. In accordance with the stratigraphy and observations in field, 
there is no clay layer that limits the slip of the rock mass in its natural state.   
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Figure 1: Ancient landslide stratigraphy  

 
 

    
  
Figure 2: Log of the test boring for boreholes s-1 and s-2. 

  

3 NUMERICAL MODELING 
The geometric pattern of discontinuities was defined by the several discontinuities 
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detected, their orientation, length and the distance between them. Furthermore, physical 
properties in discontinuities affect the mechanical behavior of the mass as friction, 
compressive strength, weathering, and filling. In the mass of slipped rock, the fragments are 
smaller and fragmentation is related to geologic origin of rock.  

The rock with discontinuities is modeled with finite elements and joint patterns. The 
mechanical properties of joints are functions of the physical properties mentioned above. 
Finite element program RS2 of Rocsience© has the capabilities of performing numerical 
elastoplastic modeling with joint patterns. Shear Strength Reduction (SSR) technique is 
applied for performing rock slope stability analysis with Mohr-Coulomb and Hoek y Brown 
failure criteria.  

A volcanic breccia is modeled with a Voronoi joint pattern (Figure 3a). In addition, the 
andesite has the tendency to be flat and therefore a cross jointed breaking pattern is adopted 
(Figure 3b). The size of the fragments was approximated according to the core recovery and 
field observations. The orientation of the rock fragments of andesite is erratic in situ, but for 
the analysis an unfavorable orientation in the movement direction was adopted. Finally, lower 
left stratum clay was considered continuous. Figure 4 shows the final joint pattern supposed 
for the slopes stability analysis of the ancient landslide.  

 

a) Voronoi joint patterns for the 
breccia 

 

b) Cross jointed pattern for the 
andesite 

 
Figure 3. Joint patterns employed for the modelling. 
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Figure 4. Discretization in RS2® of the domain showing the joint patterns 

 

3.1  Mechanical properties of the rock and soil 
Generalized Hoek and Brown Failure criterion [3] for intact rock was used and for the 

joints Mohr-Coulomb criteria. Hoek and Brown modified a nonlinear failure criterion of 
brittle intact rock for rock mass. The criterion has factors that reduce mechanical properties of 
the mass considering the characteristics of the joints in rock mass.  Equation (1) defines 
failure criterion: 

 

𝜎𝜎1′ = 𝜎𝜎3′ + 𝜎𝜎𝑐𝑐𝑐𝑐 (𝑚𝑚𝑐𝑐
𝜎𝜎3′
𝜎𝜎𝑐𝑐𝑐𝑐

+ 𝑠𝑠)
𝑎𝑎
 

(1) 

 
Where: 
 𝑚𝑚𝑏𝑏 = 𝑚𝑚𝑐𝑐 𝑒𝑒𝑒𝑒𝑒𝑒 (

𝐺𝐺𝐺𝐺𝐺𝐺−100
28−14𝐷𝐷), is a reduced value of the intact rock mi, s and a are constants 

of the rock mass and are defined by: 
 

𝑠𝑠 = 𝑚𝑚𝑐𝑐 𝑒𝑒𝑒𝑒𝑒𝑒 (
𝐺𝐺𝐺𝐺𝐺𝐺−100
9−3𝐷𝐷 ) and 

𝑎𝑎 = 1
2 + 1

6 (𝑒𝑒
−𝐺𝐺𝐺𝐺𝐺𝐺/15 − 𝑒𝑒−20/3) 

 
The Geological Strength Index (GSI) relates the geological field observations with the 

failure envelope, it can be estimated by graph presented by Hoek [3]. D is a parameter related 
to the degree of disturbance to which rock mass has been subjected to blast damage and stress 
relaxation. Table 1 present the parameters used for stability analysis of the mass rock.  
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Table 1. Parameters of the constitutive models of the mass rock. 

 
Material 

m σci 
(MPa) 

GSI mi ERM 
(MPa) 

Disturbance 
factor. (kN/m3) 

Rock 
with clay 

22 67 55 19 26,800 0 

Andesite  25 170 75 25 68,000 0 

Breccia-
Andesite 

23 110 70 19 55,000 0 

 
There are two important parameters that control the behavior of intact rock, the 

compressive strength, and GSI. In the case of the rocks found, andesite is the strongest one 
and rock with clay the weakest, due to the weathering to which it has been subjected. The GSI 
parameter represents a geologic structure of the intact rock and surface conditions, andesite 
has a good surface features, but the rock with clay has a fair surface condition.   

Shear strength envelope for clay was estimated with an undisturbed sample obtained just 
above the rock with clay stratum. A consolidated undrained direct shear test has been carried 
out. The cohesion was of 29 kPa and the friction angle of 13.6º. Elastic parameters E= 15,000 
kPa and Poisson ratio of 0.4 are derived also from the laboratory tests.  

The crossing discontinuities are the weakest zones of the rock mass and determine its 
behavior, each material has independent properties. Roughness controls the shear strength of 
the discontinuities. The Barton and Choubey [4] criterium is used for the estimation of the 
rock joints strength. Joint Roughness Coefficient (JRC) and other parameters were measured 
directly from rock core samples of andesite and breccia. RS2® cannot perform the shear 
strength reduction stability analysis with Barton and Choubey criterium, so Mohr-Coulomb 
envelope was fitted for the range of normal stresses used. Joint stiffness (normal, kn, and 
shear, ks) depends on the infilling material. In the rock with clay case depends on the clay; in 
the case of the intact rock depends on the andesite and breccia surface roughness and strength. 
Table 2 shows the properties used for the analysis presented in this work. 

 
 

Table 2. Parameters of the rock and clay joints 

Material Mohr-
Coulomb 

kn 
(kPa/m) 

ks  

c 
(kPa) 

°) (kPa/m)  

Clay (CU) 29 17 150,000 55,000  

Andesite 
Joint  

200 57 5,440,350 2,014,940  

Breccia-
Andesite 

Joint 

175 53 3,186,990 1,225,770  
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4 ANALYSIS AND RESULTS  
Two cases are considered for the analysis: a static and pseudo-static seismic. The second 

case due to Morelia city is in a seismic zone, and all the designs are revised under this 
condition.  

SSR technique, in the case or Mohr-Coulomb failure criterion, consists of decreasing the 
values of c and  original parameters by a safety factor.  The result is an increase of the plastic 
deformations that complicates the numerical convergence. When convergence is not achieved, 
the safety factor is found [5]. 

In the case of Modified Hoek and Brown failure criterium, a safety factor divides the 
equation of the shear failure criterion, to obtain a reduced failure envelope, red. Thereafter, a 
new set of parameters is calculated by modified the reduced envelope to fit the Hoek and 
Brown criterion. Finally, an elasto-plastic conventional finite element analysis is carried out 
to check the convergence [6]. The reported safety factor is the minimum value that causes the 
convergence failure.  

Results for the static case are presented in Figure 5, the critical strength reduction factor or 
safety factor is 2.29. The figure shows the total displacements in meters against Shear 
Strength Reduction. For the critical safety factor, the largest displacements are in red and the 
minor ones in blue. It can be deduced that the mechanism of failure is a block with a 
displacement produced by the low strength of left lower clay. Midzone of the slope moves to 
the left and a crack is formed at the middle of the slope. The upper part of the movement is 
reduced but it generates cracks.  

 

 
Figure 5. Displacement kinematics for the critical safety factor of the static analysis. 

Figure 6 shows the strength reduction factor against the maximum displacement. Red 
triangles are values that failed to converge, and green ones do converge. Furthermore, the 
figure shows a very significant change of slope where the displacements are incremented 
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rapidly. In the zone of the change the critical safety factor can be found. Therefore, this 
increase of the displacements gives rise to the failure mechanism under the modelized 
conditions.  

 

 
Figure 6. Shear strength reduction versus displacement. 

Morelia is located on the central portion of the Mexican volcanic belt. The interaction 
between the tectonic plates of Rivera, Cocos and North America generates a great number of 
earthquakes in the region. The displacement between the Cocos and North America plates 
produces superficial earthquakes, between 15 and 20 km of depth, as in the earthquake of 
1985 with magnitude of 8.1 in the coasts of Michoacán, Mexico. An interaction between 
Cocos and Rivera plates produces earthquakes within the continent, which are less frequent. 
Cruz in 2015 [7] made a deterministic study to get the seismic coefficient for the design of 
works of the urban road in the south of Morelia.  From the study, it was concluded that the 
seismic coefficient for pseudo-static slope stability analysis is of 0.145.  

For the same previous analysis, a horizontal force proportional was added to the mass and 
the SSR slope analysis was performed, the results are shown in Figure 7. As consequence, the 
factor of safety was reduced to 1.24 but it still greater than 1.0. Maximum deformation is 
incremented from 0.12 to 0.4 meters, so the cracks are more open especially in the middle 
zone. In general, the mechanism of failure is the same already presented. Increased 
deformation causes the safety factor to decrease, this is reflected on non-convergence of the 
calculus. Figure 8 shows a graph of the shear strength reduction against maximum 
displacement. As in the previous analysis, there is a change of slope in the critical strength 
reduction factor.  

A concern of the inhabitants of the zone is the magnitude of the landslide that could be 
presented. The factor of safety is greater than one so there is not risk of failure. It could exist a 
risk if the lower clay is removed without an adequate reinforcement. In that case mass of rock 
could move downward and generate a cracking in the upper zone. It means that rock blocks 
can stand on their own with certain angles. A physical corroboration of this state was located 
aside the study zone, were a cut of 20 m height and 70 with degrees was excavated for a 
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construction of a house and is in stable conditions.  
 
 
 

 
 
Figure 7. Kinematics displacement of the Pseudo-static analysis obtained from the SSR stability analysis. 

 

 
Figure 8. Shear strength reduction versus displacement for pseudo-static analysis. 
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5 CONCLUSIONS 
The use of the finite elements with networks of joints helps to perform a stability analysis 

of slopes in rock masses more accurately. It is necessary to have field information of the 
fracturing patterns of the rock, for making a suitable approximation by constructing a 
dominium with joint networks. With this, it is possible to capture and understand the failure 
mechanism of rock mass in slope stability analysis in a realistic way. The strength reduction 
technique within a framework of elasto-plasticity allows to magnify the deformations and 
failure mechanism emerges in a natural way. 

In the case of stability analysis of “La Paloma”, antique landslide, it was possible to verify 
the stability conditions. Factors of safety of 2.3 and 1.24 were derived from static and seismic 
stability analysis. Two joint patterns were adopted to represent the rock block as observed in 
the field. Giving to the options available in the RS2®, the Voronoi pattern was selected for 
breccia and cross jointed for the andesite. This representation is simplified and shows the 
most unfavorable conditions for stability of the mass rock. For a more accurately 
representation, more information is needed and can be directly obtained from the tunnel 
excavation. 

More research is required in the use of joint patterns for the analysis of slopes stability. 
The success depends on adequate pattern representation, geological conditions are complex in 
this case. Another issue is the constitutive models used for the content between rock, in this 
work it is used Mohr-Coulomb criterion, but there are some others like Barton and Choubey 
[4] that can be incorporated in the stress reduction analysis.  
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Abstract. The superior ductility of rare-earth magnesium alloys over conventional 
magnesium sheets makes them promising candidates for light-weight structural alloys. 
However, these alloys possess severe evolving anisotropy and tension-compression 
asymmetry as a result of activation of different deformation mechanisms (slip or twinning) 
that is extremely challenging to model numerically. In this study, the constitutive plastic 
behaviour of a rare-earth magnesium alloy sheet, ZEK100 (O-temper), was considered at 
room temperature, under quasi-static conditions. A CPB06 yield criterion for hcp materials 
was employed along with a non-associated flow rule where the yield function and plastic 
potential were calibrated at different plastic deformation levels to account for evolving 
anisotropy in proportional loading. The constitutive model was implemented as a user 
material subroutine (UMAT) into the commercial finite element package, LS-DYNA, along 
with an interpolation technique to consider the evolving anisotropy of the material. Finally, 
predictions of the model were compared with the experimental results in terms of flow 
stresses and plastic flow directions under various proportional loading conditions and along 
different test directions. It was shown that the predictions of the model were in good 
agreement with experimental data. 

 
 
1 INTRODUCTION 

Most commercial alloys used in sheet metal forming and vehicle crashworthiness 
applications exhibit some degree of orientation-dependent plastic response, and depending on 
the severity of plastic anisotropy, isotropic yield functions might not be suitable candidates 
for modelling the behaviour of the materials. To overcome this issue, a large number of 
anisotropic yield functions have been proposed in the literature with the largest contributions 
from the Barlat family of yield criteria [1,2] in which linear transformations are applied on the 
stress tensor to account for anisotropy. However, these models were intended for bcc and fcc 
cubic materials with slip-dominated deformation mechanisms while magnesium alloys have 

656



A. Abedini, C. Butcher and M.J. Worswick 

 2 

an hcp crystal structure. In hcp materials, plastic deformations occur by slip and twinning 
mechanisms and due to the direction sensitivity of twining mechanisms, strong tension-
compression asymmetry is observed in yield loci [3]. In order to account for anisotropy and 
strength differential effects, Cazacu et al. [4] proposed a new yield function (known as the 
CPB06 yield criterion) based on the linear transformation approach. Later, Plunkett et al. [5] 
showed that the predictions of the CPB06 yield function can be improved if more than one 
linear transformation is applied on the stress tensor. 

Due to texture evolutions during plastic deformation, the shape of the yield surface of 
magnesium alloys does not remain constant, thus, isotropic hardening models cannot capture 
the material behaviour accurately. To consider evolving anisotropy, Plunkett et al. [5] 
proposed a piece-wise linear interpolation of the CPB06 yield functions calibrated at different 
levels of plastic deformation. A similar approach was also adopted by Ghaffari Tari et al. [6] 
for AZ31B magnesium. These models were based on assumption of the associated flow rule 
(AFR) in which the yield function is also the plastic potential for calculating the plastic strain 
increments (normality rule). The classical work of Bishop and Hill [7] demonstrated that the 
AFR holds for metals based on a crystal plasticity model. However, in the last decades, the 
assumption of the AFR has been challenged by the non-associated flow rule (non-AFR) in 
which the plastic potential is independent from the yield function [8,9]. Considering materials 
with severe anisotropy such as magnesium alloys, the non-AFR provides more degrees of 
flexibility for calibrating yield stresses and r-values. Furthermore, models with the non-AFR 
enable the possibility that plastic potential and yield functions evolve independently, a feature 
that is not possible in models based on the AFR. These characteristics make the non-AFR 
attractive for materials such as ZEK100 with strong evolving anisotropic behaviour. 

The objectives of the present work are to investigate and model the anisotropic plastic 
response of a rare-earth magnesium alloy sheet (ZEK100-O) under quasi-static conditions. To 
this end, the non-AFR is employed by calibrating yield function and plastic potential at 
different plastic deformation levels using the CPB06 formulation with two linear stress 
transformations. The model was implemented into the commercial finite element package, 
LS-DYNA, along with an interpolation technique to consider the evolving anisotropy of the 
material. The finite element model comprises a single 3-D element that is subjected to various 
stress states in different test orientations with respect to the rolling direction. The outcomes of 
each single-element simulations in terms of flow stresses and r-values are compared to the 
experimental results of Abedini et al. [3] to assess the predictive capabilities of the model. 

 

2 MATERIAL AND EXPERIMENTAL RESULTS 
A rare-earth magnesium alloy ZEK100-O rolled sheet with a nominal thickness of 1.55 

mm was used in the present study. An extensive experimental investigation into the 
anisotropy of this same lot of material was performed by Abedini et al. [3] and this test data 
will be utilized in the present paper to develop the constitutive model. Experimental tests in 
[3] were performed at room temperature, under a quasi-static strain rate of 0.001 s-1. 
Constitutive plastic behaviour of the material is shown in Figure 1 in terms of stress response 
and r-values, and it can be seen that the material exhibits significant anisotropy that evolves 
with deformation. Furthermore, it is apparent from Figure 1(a-c) that ZEK100-O exhibits a 
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tension-compression asymmetric response which is due to the twinning mechanisms that are 
more dominant under compression mode [10]. Moreover, the behaviour of the material under 
shear state (Figure 1e) shows anisotropic trends. It is recently shown in [3,11] that in addition 
to the asymmetric response in the first and third quadrants of yield loci (tensile and 
compressive regions), twinning mechanisms activated under shear deformation leads to an 
additional asymmetry in the second and fourth quadrants for magnesium alloys. The 
experimental results shown in Figure 1 show the challenging nature of ZEK100-O in terms of 
modelling and characterization and highlight the need for accurate constitutive plasticity 
models that are able to capture the evolving anisotropy of the material. 

 

3 PLASTICITY MODEL 
In order to consider the anisotropic and asymmetric response of ZEK100-O, the CPB06 

phenomenological yield criterion proposed by Cazacu et al. [4] was adopted in the present 
study. In analogy to Plunkett et al. [5], two stress transformations were performed to increase 
the flexibility of the model (denoted as CPB06ex2). The yield function, Φ, is defined as: 

 
aaaaaa kkkkkk )()()()()()( 332211332211    (1) 

 
where k and kʹ are material parameters that account for strength differential effects, and a is 
the exponent of the yield function. Also Σ1-3 and Σʹ1-3 are the principal values of the 
transformed stress deviators Σij and Σʹij written as: 

 

klijklij SC :    and   
klijklij SC :                                      (2,3) 

 
where Skl and Cijkl are the deviatoric stress tensor and the fourth-order transformation tensor, 
respectively. The non-associated flow rule was employed in the present study with the same 
functional form as Eq. (1) to define the plastic potential, Ψ, to which the plastic strain 
components are normal and their magnitudes are governed by: 
 

kl

p

ij dd





                                                                  (4) 

 
where p

ijd  is the incremental plastic strain tensor, and dλ is the plastic multiplier. The values 
of coefficients of the transformation tensors and strength differential parameters can be 
determined from an optimization approach to minimize the errors between the experimental 
data and the values predicted by the yield function and plastic potential. In the present study, 
the genetic algorithm (GA) which is a global optimizer available in Matlab® was used to 
calculate these parameters. 

As shown in Figure 1, ZEK100-O exhibits an evolving anisotropic behaviour and 
therefore, the yield function and plastic potential should be calibrated at different plastic work 
levels, wp. To capture the evolution, a piece-wise linear interpolation technique can be used: 
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21 )](1[)(  pp ww     and   
21 )](1[)(  pp ww           (5,6) 

 
in which Φ1 (Ψ1) and Φ2 (Ψ2) are the yield function (plastic potential) at the deformation 
levels associated with the plastic works of p

nw  and p

nw 1  , respectively, and ξ(wp) is calculated 
by: 
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n

p wwwww                                                    (7) 
 
In terms of the hardening behaviour of the material, a Hockett-Sherby function (Eq. 8) was 

calibrated to the uniaxial tensile data in the RD (reference direction) up to maximum strain 
limited by the onset of necking: 

 
)])(91.1exp(1[60.12659.205 46.0p                                  (8) 

 
where   is the flow stress and εp is the equivalent plastic strain. 

The constitutive model described above was implemented as a user material subroutine 
(UMAT) into the explicit commercial finite element software package, LS-DYNA, using a 
standard return-mapping algorithm (convex cutting algorithm in Ortiz and Simo [11]). The 
reader is referred to [8] for the proof of the uniqueness of the stress and strain states as well as 
the proof of the stability in the non-AFR. 

 

4 RESULTS AND DISCUSSION 
To capture the evolving anisotropy of ZEK100-O, nine different plastic work levels for a 

plastic work range of 2.24 MPa to 22.46 MPa (associated with 1% to 9% equivalent plastic 
strains in uniaxial tension along the RD) were selected and their corresponding experimental 
data were used to calibrate yield functions and plastic potentials. Due to brevity, only three 
levels of plastic deformations (plastic work levels of 2.24 MPa, 14.61 MPa, and 22.46 MPa 
with anisotropy coefficients presented in Tables 1 and 2) were chosen and their associated 
yield functions and plastic potentials are shown in Figure 2. It can be seen from Figure 2 that 
the CPB06ex2 yield function and plastic potential fit the measured data with good accuracy. 
For the smallest plastic work level of 2.24 MPa which is close to the initial yielding of the 
material, it can be seen from Figure 2(a) that the material has a clear tension-compression 
asymmetry with the tension region having larger yield stresses than the compression region. 
The tension-compression asymmetry of yield loci reduces with deformation due to the high 
hardening rate in compression offsetting its initially lower yield strength with respect to 
tension as shown in Figure 2(b) for the plastic work level of 14.61 MPa. At a plastic work 
level of 22.46 MPa (Figure 2c) the yield stresses in compression have grown larger than in 
tension which is opposite to that observed for the material at the onset of yielding. 

In order to further evaluate the accuracy of the model, a single 3-D brick element under 
different loading conditions was used to simulate the stress-strain curves and evolution of r-
values of the material. Figure 1 compares the predictions of the model with experimental 
results where it can be seen that the model with the non-AFR is capable of capturing the 
experimental trends with good accuracy. It should be noted that the FE stress data may exhibit 
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piece-wide discontinuities due to the inherent nature of the piece-wise linear interpolation 
approach. This issue may be resolved by better numerical fits (i.e. yield functions and plastic 
potentials with higher flexibility) and increasing the number of calibration levels. Further 
validations of the model by full-scale FE simulations of structural experiments will be 
considered in future work. 

 
 

 
Figure 1: Constitutive plastic behaviour of ZEK100-O in quasi-static conditions. (a-c) show the uniaxial tensile 
response of the material (d) shows the r-value evolutions, and (e) shows the shear response. All the figures are 

plotted with respect to the plastic work. 

Table 1: Coefficients of the CPB06ex2 yield function. 

wp 

(MPa) 
C11 C12 C13 C22 C23 C33 C66 k Cʹ11 Cʹ12 Cʹ13 Cʹ22 Cʹ23 Cʹ33 Cʹ66 kʹ a 

2.24 1.00 1.16 -1.34 -0.73 1.25 -1.34 -2.43 -0.03 1.00 2.67 -0.64 0.66 -0.34 -1.78 1.79 0.21 8.0 

14.61 1.00 0.91 -2.06 3.70 -1.05 -2.93 2.80 -0.01 1.00 -2.20 -1.70 -0.11 2.32 -0.04 3.61 -0.02 8.0 

22.46 1.00 1.92 1.92 3.11 0.67 -0.41 1.61 -0.13 1.00 -1.20 0.51 -0.20 1.01 -0.76 1.97 0.01 8.0 

 

Table 2: Coefficients of the CPB06ex2 plastic potential.  

wp 

(MPa) 
C11 C12 C13 C22 C23 C33 C66 k Cʹ11 Cʹ12 Cʹ13 Cʹ22 Cʹ23 Cʹ33 Cʹ66 kʹ a 

2.24 1.00 -1.02 -0.70 --1.14 -1.02 1.68 2.36 0.0 1.00 -0.97 2.05 0.85 1.89 2.06 2.35 0.0 8.0 

14.61 1.00 1.53 1.35 0.72 0.27 1.32 0.32 0.0 1.00 2.49 0.93 1.02 0.92 2.48 1.82 0.0 8.0 

22.46 1.00 -0.33 1.57 -1.57 0.76 -0.50 3.01 0.0 1.00 -0.47 -1.87 -1.80 0.97 -0.53 3.05 0.0 8.0 
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Figure 2: Yield function and plastic potential of ZEK100-O depicted at three different plastic work levels of (a) 

2.24 MPa, (b) 14.61 MPa, and (c) 22.46 MPa. Red symbols show the experimental data. The lines normal to 
plastic potentials show the direction of plastic flow. 

 

5 CONCLUSIONS 
The room temperature constitutive plastic behaviour of a rare-earth magnesium alloy sheet, 

ZEK100-O, was studied under different stress states. It was demonstrated that the material 
exhibits severe plastic anisotropy that evolves with deformation. It was shown that adopting 
the non-AFR along with an evolving CPB06 formulation with two linear stress 
transformations resulted in good agreements between FE predictions and experimental data. 
The strategy adopted to consider evolution was piece-wise linear interpolations between yield 
functions and plastic potentials that were calibrated at different plastic work levels. 
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Abstract. This paper investigates the use of numerical simulations to describe solid state 
diffusion of a sintering stage during a Powder Hot Embossing (PHE) process for micro-fluidic 
components. Finite element analysis based on a thermo-elasto-viscoplastic model was 
established to describe the densification process of a PHE stainless steel porous component 
during sintering. The corresponding parameters such as the bulk viscosity, shearing viscosity 
and sintering stress are identified from dilatometer experimental data. The numerical analyses, 
which were performed on a 3D micro-structured component, allowed comparison between the 
numerical predictions and experimental results of during a sintering stage. This comparison 
demonstrates that the FE simulation results are in better agreement with the experimental 
results at high temperatures. 

 
 
1 INTRODUCTION 

The metal hot embossing (MHE) process has become a viable, low cost process for 
producing parts with complex shapes in short series. MHE combines the shaping efficiency of 
polymer hot embossing with the capability of powder metallurgy [1-3], which offers many 
unique advantages in the production of near neat shape micro-structured components. This 
process is an actually a multi-step process divided into compounding, hot embossing, 
debinding and sintering components [4-6]. The goal of mixing steps is to form the feedstock 
for hot embossing by mixing the metallic powders with thermoplastic binders. The binders 
used in hot embossing are commonly used polymer mixtures, such as polypropylene, a 
synthetic or natural wax and stearic acid. The resulting mixture is called a feedstock, which is 
then embossed in a mould to achieve the required shapes. Afterwards, the binder is removed 
during thermal debinding, and the powder is sintered, yielding the full density necessary to 

663



 2 

give the required mechanical properties and geometric size; at the same time, a certain amount 
of shrinkage occurs (see Fig. 1). 

 
Figure 1: Illustration of the hot embossing process to create micro-devices.  

In the MHE process, the metallic components undergo contraction and deformation, 
leading to challenges in terms of determining the initial structure design of the die mould 
cavities, the initial size and the processing parameters. Traditionally, in this stage, trials and 
error methods or empirical formulas have always been applied to control the part shape and 
dimensional accuracy; however, this has resulted in a high experimental cost and limited 
control precision. For these reasons,, performing a finite element simulation can be an 
effective alternative to predict part deformation and estimate anisotropic shrinkages in micro-
structured components arising from the MHE process. The first sintering model was 
developed at the grain scale with only one diffusion mechanism [7]. Then, models improved 
by coupling several mechanisms and by modifying the geometry of the systems. In addition, 
the problem can also be solved analytically for simple geometries with a thermo-elastic model 
[8]. Then, finite element analysis (FEA) is can be used as an effective tool when considering 
samples with complex geometries and complex boundary conditions [9], or to account for 
other phenomena such as gravitational effects or a thermal gradient, which induce constrained 
sintering [10]. The objective of the present work is to predict of anisotropic shrinkages and 
estimated the dimensional changes of micro-structured components during the sintering step 
with the FE method. The goal of these simulations is to also provide information regarding 
the evolution of density variations. In this paper, the material and process sintering parameters 
are identified from dilatometer experimental datas. The model and the identified material 
parameters are implemented in a finite element solver to perform the numerical simulation of 
the sintering step associated to with MHE. Sintering experiments were performed in a batch 
furnace to verify the numerical model and simulations on 316L stainless steel. 

 

2 CONSTITUTIVE EQUATIONS FOR THE SINTERING PROCESS 
Compared with conventional trial and error methods, numerical simulations of sintering 

using finite element methods can be more effective by minimizing the effects of tooling and 
processing parameters [11]. The proposed model is based on the assumption that a porous 
material follows a linear-viscous behavior and behaves according to the continuum theory of 
sintering [12]. This model is a phenomenological model based on continuum mechanics and 
uses thermo-elasto-visco-plastic formulations, which are related by the following eq. [13]: 

664



 3 

(1)                           
32

    
.......

I
KG

devITC
p

sm

p
evpthe





 

where εe, εth and εvp are the elastic, thermal and viscoplastic strains rates, respectively, Ce 
is the elastic compliance matrix, ΔT is the incremental temperature rate, I is the second order 
identify tensor, α is the thermal expansion coefficient was determined experimentally using a 
dilatometer, σm = tr(σ)/3 is the trace of the stress tensor, G and K are the shear and bulk 
viscosity moduli, respectively, and σs is the sintering stress. The variables G, K and σs are 
material parameters that still need to be determined. The elastic-viscous analogy is used to 
define the shear and bulk viscosity moduli for sintering materials [14]: 

(2)                                                                  
)21(3

  ; 
)1(2 p

p
p

p 









 pp KG

 
where ηp and νp are the uniaxial viscosity and viscous Poisson's ratio of a porous material, 
respectively. Song et al. (2006) derived the following relationship to define the uniaxial 
viscosity ηp through bending tests in a dilatometer [15]: 
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where δ is the deflection rate at the centre of the specimen, ρa is the apparent density, g is 
gravity, P is the external load, and Ls, b and h are the distance between the two supporting 
rods and the width and thickness of the specimen [16]. Bordia [16] and Scherer [17] related a 
phenomenological expression to calculate Poisson's ratio of the sintered material as follows: 
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where ρ is the relative density and λ is the uniaxial shrinkage, which is defined as: 
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where L0 and L are the length of the specimens before and after sintering, respectively. The 
following equation is used to determine the sintering stress [18]: 

 
(6)                                                                                                                          s

cBd  
where B and C are material parameters identified from dilatometry experiments.  

 
Using these proposed constitutive equations, the related material parameters can be 

determined. The identification algorithm was designed to properly identify of the material 
parameters B and C used in the sintering stress model to optimise the numerical simulations. 
The following equation was proposed to calculate the stress during the sintering stage [18]: 

(7)                                                                                                
3Ldt

dL
K

T s
 



 
The proper strategy consists of identifying parameters B and C which determine the 

numerical shrinkage curve according to Eq. (8), in Matlab®. Therefore, the minimisation 
algorithm is used to, as best as possible, fit the simulations to the experimental curves by 
adjusting the physical parameters [18]: 
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where λe is the experimental uniaxial shrinkage obtained from the dilatometry tests, λm is 

the numerical uniaxial shrinkage, F(x) is the mean residual squares of the tolerance, with i = 
1,…, n indicating the different sintering temperatures, and x is the set of material parameters 
that need to be identified. 

3 MATERIALS AND EXPERIMENTAL METHODS  

3.1 Materials 
The powders used to develop the feedstock dedicated to the MHE process are fine 316L 

stainless steel powders that exhibit excellent mechanical and corrosion properties, as well as 
biocompatibility. In the present analysis, the stainless steel powders (Osprey® Sandvik, UK) 
used exhibits a particle size distribution as follows: d10=1.8 μm, d50=3.5 μm and d90=5.0 
μm (see Fig. 2a).  

Figure 2: (a) Particle size distribution and (b) SEM micrograph of the 316L stainless steel powder.

Table 1: Characteristics of the 316L stainless steel powders. 

Powder size and density
Powder Particle 

shape
D10 (μm) D50 (μm) D90 (μm) Density

[g/cm3]
Tap density

[g/cm3]
Inox 316L Spherical 1.8 3.4 5.0 7.90 4.50

The binder system used in this study consisted of paraffin wax (PW), polypropylene (PP) 
and stearic acid (SA), and the highest melting temperature of the binder system measured on a 
Setaram differential scanning calorimeter (DSC 92) is 160 °C. The composition of the binder, 
which corresponds to the ratio of PP/PW/SA, is given as the relative fractions 40/55/5. The 
characteristics of the different binder systems and the raw powders are presented in Tables 1 
and 2. Experiments related to the mixing of binders and feedstocks were performed using a 
twin-screw Brabender® Plastograph EC mixer with a pair of rotor blades. The same 
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processing conditions were used for each mixture, including a mixing temperature of 180 °C, 
a mixing time of 30 min and a mixing rotation speed of 30 rpm. 

Table 2: Characteristics of the different binder components.
Binders Density [g/cm3] Melting temperature [°C]
Stearic acid (SA) 0.89 70
Paraffin wax (PW) 0.91 60
Polypropylene (PP) 0.90 160

4 FINITE ELEMENT MODELLING OF THE SINTERING PROCESS  

4.1 Boundary and initial conditions 
A micro-fluidic geometry with the dimension of 70x30x5 mm3 with and micrometric 

grounds on the order of 100 μm, is shown in Fig. 3a. The element type and mesh are defined 
for the geometries as shown in Fig. 3b. We have used anisotropic meshes with the correct 
mesh concentration that consist of a fine mesh for the micro-fluidic patterns and a coarse 
mesh for the body of the piece. The anisotropic mesh of micro-fluidic component is composed 
of 141874 nodes and 92328 C3D8R elements and the densification support used is composed 
of 1896 nodes and 1170 R3D4 elements. The plate support is assumed to be a rigid body 
during the simulation, and the micro-fluidic replicas follow thermo-elasto-viscoplastic 
behaviour.  

Figure 3: (a) Geometry of micro-fluidic specimens. Dimensions of samples under sintered condition, (b) FE 
meshes of the micro-fluidic component and the plate support prior to the simultaneous sintering stages. 

Based on previous studies, different densification kinetics were retained and corresponds to 
heating rates of 5 °C/min, 10 °C/min and 15 °C/min to a maximum sintering temperature of 
1360 °C. In addition, the «Pressure/Over-closure» contact was selected for the components. 
For free sintering, Coulomb’s frictional law was also used in the simulation [19]. The 
experiments to determine the frictional coefficient have not yet been performed. However, 
several values, which range from 0.1 to 0.8, were chosen as the friction coefficient in the 
numerical simulations. The results of the simulation with the friction coefficient equal to 0.5 
are the closes to the experimental results. The density distributions obtained in the hot 
embossing stage are regarded as the initial conditions of the sintering process with 
inhomogeneous green density conditions. 
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Table 4: Changes in the relative density due to sintering at three nodes in the FEM model of the micro-fluidic 
specimen (see Fig. 6).

Node 
number

Initial relative 
density

Final relative 
density

10250 0.612 0.969
29130 0.618 0.975
41223 0.624 0.976

4.2 Numerical results and discussion  
In the powder hot embossing process, segregation occurs between the powders and binders 
due to their different values of inertia. This induces inhomogeneous density distributions in 
the green parts. This initial in-homogeneity affects the final dimensions and mechanical 
properties of the sintered components. The initial and final distribution of relative density 
after the embossing and sintering stages, respectively obtained by simulation, have been 
shown in Figure 4. Fig. 4a displays the relative density distribution contour after hot 
embossing, with its lowest value of 61.20% in the central area and highest value of 62.4% at 
the outside of the micro-fluidic component. The relative density gap was broadened by ~2% 
during the hot embossing process, and narrowed after sintering. This finding is observed 
primarily due to the considerable compression effects of the rubber mould cavities as well as 
the non-homogeneous loading conditions in terms of the complicated structure.  
 

Fig. 4. Final distribution of the relative density in micro-fluidic specimens of 316L stainless steel 
powders, obtained after the (a) hot embossing process and (b) sintering stage at 1360 °C (solid 

loading: 60%, heating rate: 15 °C/min, hold time: 120 min). 
 
The influence of the heating rates on the density of the sintered parts is shown in Fig. 5. After 
the sintering stage, the relative densities are generally homogeneous for most of the 
simulations, in which the variations have been well controlled within 2%. In addition, the 
numerical data clearly indicate that the sintering temperature has a significant effect on the 
sintered density. It was also found that the heating rate only has a significant effect on the 
sintered density at 1250 °C, which increase the average sintered density from 7.11 g/cm3 to 
7.27 g/cm3. It can be observed that the final density distribution is still essentially uniform and 
more homogeneous when the heating rate is equal to 15 °C/min. Generally, all of the sintering 
variables have a significant effect on the sintered density. The numerical data show that the 
sintering temperature has the highest influence on the sintered density (64%), followed by the 
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heating rate (8%), solid loading (4%) and two-factor and three-factor interactions. Other 
sintering variables, not taken into account in our simulations, also have a significant effect on 
the sintered density such as the sintering atmosphere and sintering time. 

Figure 5: Final relative density of the sintered micro-fluidic components after sintering at 1250°C with a heating 
rate equal to: (a) 5°C/min, (b) 10°C/min and (c) 15°C/min (solid loading: 60%, hold time: 120 min). 

 
In addition to the relative densities, the shrinkages were also simulated for these micro-fluidic 
components embossed with different conditions. The heating rate is one of the most important 
process parameters of sintering processes. It has been observed that the maximum shrinkage 
rate depends on the heating rates; however, the peaks of the maximum shrinkage rate located 
in a narrow temperature range. In fact, this narrow range spans merely from 1250 °C to 1360 
°C. It is obvious that rapid sintering is favourable for densification; however, fast sintering 
can induce a crack in the sintered body due to the high thermal or stress gradients. In addition, 
the final shrinkage decreases with increasing solid loading (see Fig. 6). It can be clearly 
observed that the shrinkage value was stable and homogeneous, due to the symmetrical 
geometry. In addition, the shrinkage values increases with increasing heating rate, where it 
was observed that the shrinkage value was more stable and homogeneous at 15 °C/min.  

Figure 6: Numerical final shrinkage of the sintered micro-fluidic components after sintering at 1360°C using 
different solid loading conditions of (a) 60%, (b) 62% and (c) 64% (heating rate: 15°C/min, hold time: 120min).  

5 EXPERIMENTAL RESULTS AND DISCUSSION  
The microfluidic samples with the PP-based binder have been obtained using hot 

embossing process, then were subjected to thermal debinding at 500 °C for 1 h and were 
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subsequently sintered in a high-vacuum furnace at 1360 °C for 2 h. The sintered samples were 
free of physical defects (see Fig. 7).   

 

 
Figure 7: Photographs of the micro-fluidic replicas after the: (a) embossing (b) debinding and (c) sintering steps, 

which were produced using 316L stainless steel feedstock (with a solid loading of 64%). 

The shrinkage values were measured using an Alicona Infinite Focus confocal microscope 
at twenty chosen points, as shown in Fig. 8. The dimensional changes in the length and width 
of the micro-structures show similar trends. The shrinkage in the thickness direction is greater 
than that in the other directions. This same phenomenon has been encountered by other 
researchers, such as Loh et al. (1996). 

 
Figure 8: (a) Positions of twenty points chosen to measure the shrinkages of the sintered part (b) shrinkages of 
the sintered part in different directions, which was measured by an Alicona microscope at the twenty chosen 

points (solid loading: 60%, heating rate: 15°C/min, sintering temperature: 1360°C).  

The dimensions of the micro-fluidic samples are given in Table 5. The relative densities 
were also determined by the Archimedes water immersion method, and porosity was 
evaluated using an image analyser device. The theoretical density of stainless steel powder is 
7.90 g.cm−3. The sintering temperature had a significant effect on the densification, i.e., the 
density increased significantly with increasing temperature, as summarized in Fig. 9. The 
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influence of sintering temperature on the densification of 316L stainless steel is more 
pronounced; a significant densification was observed when the stainless steel tool became 
mushy at 1300 °C. The maximum density was obtained when sintering was performed at 
1360 °C, which was 98.2% of the theoretical values. The heating rate also has a strong effect 
on the final density. The porosity is lower and the grains become finer as the heating rate 
increases. 

 

 
Figure 9: Effect of sintering temperature on the sintered density (dwell time 120min, 15°C/min).  

Table 5: Dimensions of the elastomeric mould and micro-sized structures of the micro-fluidic samples. 
Micro-sized structure / 316L stainless steel 1360°C - 15°C/min 

  60% 62% 64% 
Φ 2 1.72±0.01 1.76±0.01 1.78±0.01 
a 5 4.31±0.01 4.41±0.01 4.49±0.01 
b 14 12.11±0.01 12.40±0.01 12.53±0.01 
c 14 12.15±0.01 12.33±0.01 12.54±0.01 
d 4 3.45±0.01 3.53±0.01 3.56±0.01 
e 14 12.16±0.01 12.39±0.01 12.55±0.01 

 

6 EXPERIMENTAL VALIDATION  
The relative density of the micro-fluidic specimens obtained from the numerical 

simulations is compared with the experimental values, as shown in Fig. 10. The relative 
densities are in perfect agreement with the experimental densities, particularly for the 
sintering cycles with relatively low heating rates. A comparison between the experimental and 
the simulation results of the shrinkage in three directions (length, width and height) is also 
shown in Fig. 11. During the sintering stage, the simulated dimensions were in good 
agreement with the experimental values, with a relative error of less than 3% in both 
directions. In addition, both the simulated and experimental shrinkages in the height direction 
were higher than those in the other two directions, which is primarily due to gravity along the 
height direction. During the sintering process, the relative errors between the simulated and 
experimental results in the height direction were found to be greater than 5%. This result is 
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primarily due to the structural anisotropy of the parts processed. This same phenomenon has 
been encountered by other researchers, such as Loh et al. (1996). 

 
 

 
Figure 20: Comparison between the experimental and simulated results of the relative density.  

 
Figure 31: Comparison between the experimental and simulated results of shrinkage in three directions.  

7 CONCLUSIONS  
A numerical simulation based on a finite element analysis was performed in order to

investigate the shrinkage variations and relative density evolutions during a powder hot 
embossing process. The simulation results are in good agreement with the experimental data, 
which proves the validity of the physical model and the reliability of the identification and 
numerical method. The following conclusions can be made: 
 
 The sintering experiments using a dilatometer demonstrate that the sintering parts in 

316L stainless steel have the threshold temperatures in the range of 1050 to 1080 °C. In 
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addition, the rapid sintering is favourable for densification. The maximum shrinkage of 
316L stainless steel powders is 14%, at a heating rate of 15 °C/min. 
 

 It can also be observed that the sintering process makes the final density of the sintered 
bodies essentially uniform, whereas in-homogeneity of the initial density primarily 
affects uneven shrinkage of the sintered body. In fact, the micro-fluidic components 
exhibit very small shrinkage after the hot embossing and debinding stages. However, the 
components exhibit inhomogeneous shrinkage after sintering, which ranges from 11.5% 
to 14%. 
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Abstract. Recently, earthquakes frequently occur in Japan. It is desired to promote seismic 
isolation technology of building. It has been found that newly designed composite material 
filled with low rigidity material to high rigidity material has significant energy absorbing 
capacity. However, it must have higher energy absorption capacity in order to respond to a 
large scale earthquake. Therefore, we have proposed an energy absorbing device with a 
double layer circular tube as a cell. In previous work, it has been shown that hysteresis occurs 
and absorbs the energy by friction that is generated between the outer layer and the inner layer. 
It is effective when inside shape of inner layer is defined as floral pattern. In this study, we 
considered to form the inner layer circular tube by forward and backward extrusion and to 
assemble with the outer layer circular tube at the same time. After forming, it is necessary to 
generate hysteresis around the entire circumference of the circular tube. Ideally, the inner 
layer circular tube is tightened to the outer layer circular tube. In this research, it was aimed to 
know the contact state between the outer layer and the inner layer after forming. Therefore, 
the influence of the presence or absence of the outer layer circular tube on formability was 
investigated. As a result, there was a tendency for large elastic strain to remain at the contact 
portion between the circular tubes when the outer layer circular tube was set. This means that 
the outer layer circular tube hinders elastic recovery of the inner layer circular tube. Therefore, 
it was confirmed that the inner layer circular tube was tightened by the outer layer circular 
tube. The same result was obtained when the inner shape of the inner layer circular tube was a 
flower pattern.  

 
 
1 INTRODUCTION 

Recently, earthquakes frequently occur in Japan. It is desired to promote seismic isolation 
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technology of building. It has been found that newly designed composite material filled with 
low rigidity material to high rigidity material has significant energy absorbing capacity[1]. 
However, it must have higher energy absorption capacity in order to respond to a large scale 
earthquake. Therefore, we have proposed an energy absorbing device with a double layer 
circular tube as a cell[2]. In previous work, it has been shown that hysteresis occurs and 
absorbs the energy by friction that is generated between the outer layer and the inner layer[3]. 
It is effective when inside shape of inner layer is defined as floral pattern. In this study, we 
considered to form the inner layer circular tube by forward and backward extrusion and to 
assemble with the outer layer circular tube at the same time. After forming, it is necessary to 
generate hysteresis around the entire circumference of the circular tube. Ideally, the inner 
layer circular tube is tightened to the outer layer circular tube. In this research, it was aimed to 
know the contact state between the outer layer and the inner layer after forming. Therefore, 
the influence of the presence or absence of the outer layer circular tube on formability was 
investigated. 
 

2 ANALAYSIS CONDITIONS 
In this study, as a method of forming a double layer circular tube, an outer layer circular 

tube of carbon steel was placed in a die, a cylindrical blank of aluminum was placed inside 
the outer layer circular tube, and the inner layer circular tube was formed by cold forging. We 
thought of we can assemble the inner layer circula tube and the outer layer circular tube at the 
same time as forming the inner layer. About the model shown in Figure 1, the formability of 
the double layer circular tube by forward and backward extrusion was investigated. Figure 1
shows the analytical model in the presence and absence of an outer layer circular tube. Figure 
2A shows the model in which an outer layer circular tube exists. Figure 2B shows the model 
without an outer layer circular tube. In addition, a case where the inner surface shape of the 
inner layer circular tube as shown in Figure 3 is circular and a case where the inner surface 
shape of the inner layer circular tube is a flower shape as shown in Figure 4 were analyzed, 
and we studied the case that the punch speed is 10 [mm/s], 30 [mm/s] and 50 [mm/s]. For the 
circular tube, as shown in Table 1, an outer layer circular tube having an outer diameter of φ
28.6 [mm/s] and an inner diameter of φ26.2 [mm/s] and a cylindrical blank (inner layer 
circular tube) of φ26.2 [mm/s] were used. We used A1100(JIS H 4100) for the inner layer 
circular tube and STKM11A(JIS G 3445) for the outer layer circular tube. Since it is 
impossible to punch through to the end, the stroke was set so that the wall thickness of 2 
[mm] remains after forming. 
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Figure 1: Model of double layer circular tube 

 
 

 
                               (A) There is an outer layer circular tube       (B) There is no outer layer circular tube 

 
Figure 2: Differences in analysis conditions (Axisymmetric model) 
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Figure 3: Inner shape of inner layer circular tube 

 
Table 1: Dimension and material of circular tube 

 Outside diameter 
[mm] 

Inside diameter 
[mm] 

Length [mm] Material 

Cylindrical blank
（floral pattern） 

φ26.2  11.5 
（13.0） 

A1100 
(JIS H 4100) 

Outer layer 
circular tube 

φ28.6 φ26.2 34 STKM11A 
(JIS G 3445) 

 
 

3 RESULTS AND DISCUSSION 
Figures 4 and 5 show the results of analysis of the equivalent elastic strain after the 

punching and die removal at the end, with the Forward and backward extrusion at the punch 
speed of 10 [mm/s]. Figure 4 shows the results when the inner shape of the inner layer 
circular tube is circular, Figure 5 shows the result when the inner shape of the inner layer 
circular tube is a floral pattern. Figure 4(a) and Figure 5(c) show the results when the outer 
layer circular tube is present, and (b) and (d) are the results without the outer layer circular 
tube. Comparing Figure 4 (a) and (b), (a) has equivalent elastic strain in the position where 
the inner layer circular tube and the outer layer circular tube are in contact. On the other hand, 
in the case of (b), there are many parts where the equivalent elastic strain is close to zero. 
From this, it can be seen that in Figure 4 (a) the outer layer circular tube impedes elastic 
recovery of the inner layer circular tube, so that the outer layer circular tube is tightening the 
inner layer circular tube. Next, when comparing the case of the floral pattern shown in Figure 
5, there are some differences in the strain distribution, but in the case of Figure 5(c) elastic 
strain remains at the contact part between the circular tubes, the same result as in the case of a 
round was obtained. 

 

Ⅰ(round) Ⅱ(floral pattern) 
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Figure 4: Difference in equivalent elastic strain due to the presence or absence of outer layer circular tube 

(Round) 
  

 
Figure 5: Difference in equivalent elastic strain due to the presence or absence of outer layer circular tube 

(floral pattern) 
 
Also, as a result of examining the influence of the punch speed on the formability of the 

two layer circular tube, the results shown in Figure 6 and Figure 7 below were obtained. 
Figure 6 and Figure 7 are the analysis results of the equivalent elastic strain for punch speeds 
of 10 [mm/s] and 50 [mm/s]. Figure 6 shows the result of the inner surface shape of the inner 
layer circular tube being circular, and Figure 7 shows the result of the inner shape of the inner 
layer circular tube being a floral pattern. Figure 6 (a) and Figure 7 (c) show the results of the 
punch speed of 10 [mm/s]. Figure 6 (b) and Figure 7 (d) show the results of the punch speed 

(a) There is an outer layer 
circular tube 

(b) There is no outer layer 
circular tube 

(c) There is an outer layer 
circular tube 

(d) There is no outer layer 
circular tube 
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of 50 [mm/s]. From Figure 6 and Figure 7 it can be seen that there are parts where equivalent 
elastic strain remains at the contact part between the inner layer circular tube and the outer 
layer circular tube respectively. As a result of comparing the equivalent elastic strain, the 
range of equivalent elastic strain corresponding to the outer circumference of the inner layer 
circular tube is wider in Figure 6 with higher punch speed. For this reason, I think that fast 
punching speed is good with regard to tightening. The same result was obtained for Figure 7 
which is the case of the floral pattern.  

 

 
Figure 6: Difference in equivalent elastic strain due to punch speed (Round) 

 

 
Figure 7: Difference in equivalent elastic strain due to punch speed (floral pattern) 

 

(a) Punch speed 10 mm/s (b) Punch speed 50 mm/s 

(c) Punch speed 10 mm/s (d) Punch speed 50 mm/s 
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4 CONCLUSION 
As a result of comparing the differences in the corresponding elastic strain due to the 

presence or absence of the outer layer circular tube, the value of the corresponding elastic 
strain at the contact portion between the outer layer and the inner layer was almost zero when 
there was no outer layer circular tube. On the other hand, when there was an outer layer 
circular tube, the result that the equivalent elastic strain easily remained in the contact part 
between the circular tubes was obtained. Therefore, it can be seen that the outer layer circular 
tube is tightening the inner layer circular tube. Those with high punch speeds make it easier 
for equivalent elastic strain to remain corresponding to the outer periphery of the inner layer 
circular tube. In terms of tightening, it is better for the punch speed to be faster. A similar 
tendency was also observed when the inner shape of the inner layer circular tube was a floral 
pattern. 
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Abstract. SPR (Self-piercing riveting) is a cold forming process that is used to fasten together 
two or more sheets of different materials mechanically with a rivet. Also SPR emulates the 
results and quality of spot welding without many of the risks, such as toxic fumes, sparks and 
noise. Thus circumstanced, this technique is widely used on the various filed especially within 
automobile industry. SPR, in particular, is excellent for lightweight manufacturing and for 
precise working while dramatically reducing cost and production time. The process 
deformation depends on the sheet size, shape of die, material flow, stiffness, etc. Also 
material deformation in both of rivet and workpiece sheets is tremendous large, for instance 
thinning, necking, shear and penetration. Therefore it is very hard to analyze this forming 
process with FEM which uses normal stress element formulation due to the collapse. On the 
other hand, Abaqus/Explicit has superb analysis methods, for example ALE, CEL and SPH[1]. 
This paper investigates several Abaqus/Explicit modeling techniques for simulating and 
optimizing SPR process. In addition, the effectiveness of these analysis methods was 
discussed and compared for evaluating SPR process forming in order to achieve an optimal 
die, material properties and suitability of deformations. 
 
1 INTRODUCTION 

For a long time, several joining technologies have been developed for automotive 
manufacturers to perform weight and cost reduction goals. Among these, SPR is identified 
with an effective and possible method for uniting some dissimilar panels, for instance 
aluminum parts and steel parts. SPR is essentially a cold forming operation. A semi-tubular 
rivet is engaged into two or more sheets of material that are supported on a die and a holder. 
The rivet pierces the upper sheet and is flared into the bottom sheet, thus mechanical forming 
interlocks between the two sheets as shown in Figure 1[2]. Also SPR emulates the results and 
quality of spot welding without many of the risks, such as toxic fumes, sparks and noise. Thus 
circumstanced, this technique is widely used on the various fields especially within 
automobile industry. SPR, in particular, is superb for lightweight manufacturing and for 
precise working while dramatically reducing cost and production time. The process 
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deformation depends on the sheet size, shape of die, material flow, stiffness, etc. Also 
material deformation in both of rivet and workpiece sheets is tremendous large, for instance 
thinning, distortion, shear and penetration. Since it is important for the automotive design 
engineers to understand the mechanical behavior of different SPR joints, furthermore, to 
incorporate these joint properties in the early design stage using computer aided engineering 
and design tools. 

 
Figure 1: Cross section for experimental SPR forming of 1.4mm SPFC440 (upper sheet) and 1.5mm Aluminum 

(lower sheet)  

2 MODEL DESCRITION 
A target axisymmetric section in this research is shown in Figure 2(a). This model consists 

of six parts of which shapes are conventional design of SPR. Two deformable sheets were put 
between a rigid holder and a die. Lower sheet was assumed as an aluminum material, and 
upper sheet was SPFC (Steel Plate Formability Cold). In this paper, we examined three 
dissimilar flow materials of SPFC for upper sheet. The later three digits of SPFC in the Figure 
2(b) mean a minimum tensile strength. Figure 2(b) shows all flow stress curves of all 
materials, SPFC980 has the largest tensile strength, while aluminum is the most ductile metal. 
Rivet which was assumed to be a Boron material was placed on the upper sheet and thrusted 
below by a punch. ALE model was analyzed on this axisymmetric condition, while CEL and 
SPH were analyzed with 3D models based on this axisymmetric cross section and material 
condition. Following sections explain each modeling. 
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Upper sheet : SPFC

Lower sheet : Aluminum

rivet

Holder

Die

t1=1.4

t2=1.5

d=
5.

0
r=3.77

punch

z

r
 

(a)                                                                                       (b) 
Figure 2: (a) Axisymmetric section; (b) Material flow 

2.1 Modeling of ALE 
Figure 3(a) shows an axisymmetric ALE model. The element type used in deformable parts 

such as a rivet and two sheets was CAX4R, while the element type of RAX2 was used in rigid 
body such as die, holder and punch. Both mesh size of upper and lower sheets was 0.2mm at 
cross section. The mesh size of rivet was also the same manner. CONTACT PAIR conditions 
were applied to each contact surface. The velocity of punch was 5mm/s in the minus Y global 
direction, also one second was taken at the total phenomenon time. ADAPTIVE MESH 
criteria were applied on the parts of upper and lower sheet, since it was expected that the 
element of both sheet suffered large shear deformation. 

2.2 Modeling of CEL 
The modeling of CEL is shown in Figure 3(b). CEL function has to be analyzed only three-

dimensional field, therefore this model was comprised of wedge shape of ten degrees. The 
domain necessary for analysis was occupied in Euler elements EC3D8R with enough space as 
shown in white mesh. Also discrete field was set for upper sheet with green space by using 
the volume fraction tool in Abaqus/CAE. In this study, Euler mesh size was adopted 0.1mm at 
cross section. While two parts of rivet and lower sheet were performed with normal stress 
element C3D8R of which mesh size at cross section was 0.2mm. Punch speed and 
phenomenon time were as same as ALE model. To keep wedge shape, local cylindrical hoop 
boundary condition was applied on the lateral faces on the model. 

2.3 Modeling of SPH 
The last model in this study was SPH method. This model was also made in wedge style as 

same as CEL model. Figure 3(c) shows the dummy SPH model which was made with normal 
solid element C3D8 within the upper sheet space. After it was output as for Abaqus input file, 
PC3D elements were rewritten by manual operation with an element number same as a node 
number constituting C3D8. Figure 3(d) shows essential PC3D elements which were located 
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on the nodal position of constructed dummy solid elements. By using this method, we could 
handle proper hoop boundary condition at PC3D elements to hold wedge shape. Of course, 
Abaqus has the methodology that can convert from Lagrangian finite elements to SPH 
particles. But this conversion technique was not easy to manage appropriate local boundary 
conditions on the elements on the symmetric face, because SPH is only available with 
GENERAL CONTACT and the large number of PC3D elements was unnecessary generated. 

 
(a)                                                                       (b) 

 
(c)                                                                                  (d) 
 

Figure 3: (a) ALE Modeling; (b) CEL Modeling; (c) dummy SPH Model; (d) Essential SPH Modeling 

3 RESULTS 

3.1 Results 
Figure 4 shows the force-displacement responses of the punch for all analyses. The legend 

is analysis method plus the number of hardness of SPFC. The results of CEL were the largest 
in three methods among all SPFC materials, while the results of ALE were the smallest. 

All deformation plots are shown in Figure 5 to 7. Figures of left column show the contour 
plots of Mises stress, the other right column figures show the result of Equivalent plastic 
strain. As the hardness of upper sheet became higher, the axial distortion of the rivet grew 
large and the rivet was not flared naturally as shown in Figure 7. While the rivet was flared in 
two sheets and this deformation caused interlock in case of SPFC440 as of Figure 5 (g) (h). 
These analysis results were not too far from the truth. In addition, deformation figures 
indicated that PC3D elements on the symmetry boundary area held the fixed condition of the 
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hoop direction by our modeling method.  
Although ALE revealed clear deformation shape of each sheets due to adaptive meshing 

function, it could not analyze completely in all SPFC specimens because of the element 
distortion at the center area on aluminum lower sheet (see Figure (a) (b)). And it could not be 
seen the separation of upper sheet in ALE method.  

Similarly, CEL could not express a separation state as shown in Figure (c), and it took 
tremendous CPU time as shown in Table 1 in the next section 3.2. Furthermore, the lower 
sheet suffered severe distortion without adaptive meshing. 

 
Figure 4: Punch force versus displacement 

3.2 Analysis Time 
Table 1 shows the analysis time (wallclock time [hh:mm] in the Abaqus log file) with 

parallel processing under Windows 7 64 bit operating system and a computer having two Intel 
Xeon E5-2620 (2.10GHz processor six cores). All jobs were analyzed under 12 cores parallel 
processing with Abaqus version 6.14-5. 

Note that all analyses in ALE were not executed completely, and CEL for SPFC980 also 
ended at 58% of the total phenomenon time. 

Table 1: Analysis time 

Material for 
upper sheet 

Wall clock time [hh:mm] 
ALE CEL SPH 

SPFC440 00:04 12:24 00:17 
SPFC580 00:04 12:38 00:17 
SPFC980 00:04   8:06 00:15 
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(a) Mises stress (ALE)                                                  (b) Plastic strain (ALE) 

 
(c) Mises stress (CEL)                                                  (d) Plastic strain (CEL) 

 
(e) Mises average (CEL)                                                (f) Plastic strain average (CEL) 

 
(g) Mises stress (SPH)                                                  (h) Plastic strain (SPH) 

Figure 5: Results of SPFC440 
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(a) Mises stress (ALE)                                                  (b) Plastic strain (ALE) 

  
(c) Mises stress (CEL)                                                  (d) Plastic strain (CEL) 

  
(e) Mises average (CEL)                                                (f) Plastic strain average (CEL) 

 
(g) Mises stress (SPH)                                                  (h) Plastic strain (SPH) 

Figure 6: Results of SPFC590 
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(a) Mises stress (ALE)                                                  (b) Plastic strain (ALE) 

  
(c) Mises stress (CEL)                                                  (d) Plastic strain (CEL) 

  
(e) Mises average (CEL)                                                (f) Plastic strain average (CEL) 

 
(g) Mises stress (SPH)                                                  (h) Plastic strain (SPH) 

Figure 7: Results of SPFC980 

4 DISCUSSION 
The focus of our research was to develop the analysis methodology to simulate the SPR 

forming process. To accomplish our objective we investigated the use of Abaqus/Explicit 
techniques which avoid the problem of large distortion of element and allow us to enter a new 
regime. This investigation provided the following important findings. 
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4.1 ALE 
Nodes were relocated to proper position in accordance with deformation in ALE analysis 

by virtue of adaptive meshing. Since ALE cannot treat damage material, we were not able to 
see the rivet penetration to upper sheet. But this method is effective even in axisymmetric 
dimension and is easy to use with low cost.  Thus we are able to achieve brief result for SPR 
process with various materials, die shapes and speeds. In another word, this method is 
effective to acquire optimal shape design with like Tosca structure. 

4.2 CEL 
Figure 8 indicated that each analysis method for each SPFC materials showed the same 

tendency of punch force. However the final forces of CEL were much larger than those of 
SPH. For instance, the total force of CEL440 was 71.9kN, while SPH440 was 54.1kN. This 
difference might cause from residual material around the top of rivet in CEL methods.  

It was able to find the piercing of rivet in mild SPFC 440 or 590, also the analyses were 
completely done except hard material SPFC980. On the other hand, this method required 
enormous CPU time. 

4.2 SPH 
The rivet could penetrate the upper sheet as shown in Figure 9 (g) (h) for material of 

SPFC440. This SPH deformation was quite similar to Figure 1 which was a condition almost 
same as our numerical experiment. This similarity showed that our methodology was 
appropriate. But our testing condition showed a tendency of no penetration at lower sheet, 
because we neglected the damage on the lower sheet in this study. If we assume the state of 
the both sheets rupture, it is necessary to take different technique. Now we cannot use SPH 
and ALE together, therefore the hybrid method is expected. 

SPH method provides insight into the forming mechanism of SPR; moreover the analysis 
wall time was much less than CEL methods. However it required special care to define the 
PC3D element for the sake of structure, position and density. For this reason, we developed 
the way of constructing PC3D elements from nodes composing normal hex diagonal solid 
elements. We found that our SPH modeling was effective for symmetric condition and we 
were able to manage particle behavior on the wedge faces for axisymmetric structure such as 
SPR with few CPU time. 

5 CONCLUSION 
In conclusion, we examined three methods of Abaqus/Explicit for SPR forming simulation. 

To acquire the appropriate deformation especially for penetration, we found that SPH method 
was remarkable way for SPR forming. However, we did not compare analysis and experiment 
results, therefore we need moreover study including comparison with experiment. As a future 
work, we have to compare analysis and experimental results. For this purpose, we are trying 
to do experiment for various shapes and materials, and we will present comparative study in 
the near future. 
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Abstract. Deep drawn sheet metal parts are increasingly designed to the feasibility limit, thus 
achieving a robust process is often challenging. The fluctuation of process and material 
properties often leads to robustness problems. Especially skid impact lines can cause visible 
changes of the surface fine structure even after painting. Numerical simulations are used to 
detect critical regions and the influences on the skid impact lines. To enhance the agreement 
with the real process conditions, the measured material data and the force distribution are taken 
into account. The simulation metamodel contains the virtual knowledge of a particular forming 
process, which is determined based on a series of finite element simulations with variable input 
parameters. Based on these metamodels, innovative process windows can be displayed to 
determine the influences on the critical regions and on skid impact lines. By measuring the 
draw-in of the part, sensor positions can be identified. Each sensor observes the accordant 
quality criterion and is hence able to quantify potential splits, insufficient stretching, wrinkles 
or skid impact lines. Furthermore the virtual draw-in sensors and quality criteria are particularly 
useful for the assessment of the process observation of a subsequent process control. 

 
 

1 INTRODUCTION 
The fluctuation of process and material properties, as well as changing environmental 

conditions and the increasingly tighter tolerance requirements, often lead to robustness 
problems during series production [1][2]. The factors influencing robustness are not measured 
systematically, thus online action is limited to a manual intervention on a trial-and-error basis. 
The major disadvantages are the quality of the outcome is strongly correlated to the experience 
of the staff and eventual corrections are costly. Furthermore additional circumstances, such as 
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the reduction of the material thickness, complex geometries with sharp radii and the flexible 
choice of the press, limit the process stability even further. 

The goal of the project is to inspect the critical regions at an early stage regarding robustness 
problems and to propose improvement measures based on the metamodels. By the use of 
accurate material models based on experiments, the implementation of digitized tool geometries 
and the consideration of the press construction, the significance and illustration accuracy of the 
simulation can be increased. 

With the AutoForm version R7 it is possible to compute skid impact lines [3]. Another aim 
is to identify the influences on the simulatively determined quality criterion and to find a 
strategy how to avoid skid impact lines without cost-intensive rework and without using die 
inlets only by changing the press settings. 

2 PROCESS DESCRIPTION 
The front mudguard by Daimler shows critical behaviour in production, e.g. splits, 

insufficient stretch respectively hardening through minimal thinning and skid impact lines. 
Especially variations of the material properties through different batches of blanks have a large 
impact on the quality of the part. In particular the influence on skid impact lines is very 
pronounced. Therefore the simulation accuracy is enhanced through a variety of different 
arrangements. 

2.1 Material model 
The part is made out of aluminium AA6014 from Novelis (AC170). To approximate the 

material behaviour various experiments are used in a material model. The tensile experiments 
are used to capture the characteristic flow behaviour in rolling direction. With additional tensile 
experiments in 0°, 45° and 90° to rolling direction, the anisotropy coefficient, yield stress, 
tensile strength and equivalent strain are measured. 

 

Figure 1: Flow curves of tensile and bulge experiments 

This figure above shows the biaxial flow curve (grey). To enhance the prediction of the flow 
behaviour the biaxial stress state is transformed into a uniaxial stress state, by means of the 
principle of equivalent work [4]. The flow curve is then fitted with a combined S-H approach 
(Swift and Hockett-Sherby) [3]. The yield locus is fitted with the BBC model for the measured 
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data at room temperature. The M-value of the yield locus is assumed to be 8 because of the 
face-centered cubic crystal structure. The measured values of the anisotropy and of the stress 
ratios are listed in table 1. The ratio between the biaxial and uniaxial stress state is evaluated at 
4% of logarithmic strain because of the measurement uncertainty at the beginning of the bulge 
test. 

 
Table 1: Measured anisotropy and stress ratios for yield locus 

Anisotropy Values Stresses Values 
r0 0.714 σ0 113.8 MPa 
r45 0.498 σ45 112.7 MPa 
r90 0.711 σ90 111.9 MPa 
rb 1 σb 118.4 MPa 

 
The Forming Limit Curve (FLC) in Figure 2 (c) is measured by doing Nakajima experiments 

at room temperature. The evaluation method is based on the strain rate evolution by Volk and 
Hora (Volk 2011b) [5]. For each geometry at least three experiments are evaluated and then 
averaged. Finally the resulting points of the seven different types of specimen are connected 
with each other. The resulting line represents the limitation of the forming process because 
localized necking may occur. 

 

Figure 2: Experimental and fitted flow curve (a), yield locus (b) and FLC (c) 

2.2 Tool geometries 
After the design of the die addendum and the drawbeads in the method plan, the tool 

geometries are milled. Afterwards the geometries have to be processed by hand in tool tryout. 
Especially the drawbead geometries respectively the restraining forces of the drawbeads are 
adapted to avoid splits, wrinkles, sink marks or skid impact lines. Thereby, in case of a split the 
drawbeads are smoothed locally to increase the draw-in. Furthermore originally designed radii 
in the punch and in the die are harmonised. Typically the tryout is done in many loops. After 
each loop the influences of the made adjustments on the part quality are checked in the tryout 
press. These quite intense modifications of the tool geometries lead to very different simulation 
results [8]. Hence, the tools are digitised when tools are ready for serial pressing. The 
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digitalization is made with a GOM ATOS measurement system. The finalized and re-meshed 
geometries have a tolerance of maximum 10 microns. 

2.3 Press construction 
In AutoForm the common simulation setting is to use an initial pressure which is distributed 

homogenously. In reality the mechanical, single-acting press can be controlled over six die 
cushion forces, which transmit forces via cushion quills to the binder. Consequently they allow 
an inhomogeneous force distribution around the binder. Thus, the transmission of the binder 
force is adjusted in simulation in consideration of the positions of the cushion quills. This 
measure allows in simulation to redistribute the acting forces inhomogeneously on the binder 
surface by moving the force application point, in order to better map the set values on serial 
press [8]. 

In Figure 3 the positions of the six different die cushions is displayed. 

 

Figure 3: Positions of hydraulic die cushions 

The press settings of the six die cushion forces are listed in table 2. 
 

Table 2: Die cushion forces of press 

Die cushion nr. Force [kN] 
1 / 3 / 5 470 
2 / 4 / 6 450 

 
In simulation the die cushion forces of the die cushions 1, 3 and 5 are reduced because of 

symmetry to the position of die cushion 3. The same goes for the upper die cushion row to 
position 4. In simulation this simplification does not influence the simulation result because in 
AutoForm the tools are assumed to be rigid [3]. 

Hence, with these two cushion forces it is possible to change the total binder force and the 
force distribution. The force distribution is computed as a force delta between the lower and the 
upper die cushion rows (see figure 3). The relation is expressed in equation (1). 

ΔF = (F1+F3+F5) – (F2+F4+F6) (1) 
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3 VARIATIONAL SIMULATION 
Deep drawing processes are influenced by many different parameters, such as material 

properties, tool temperature and thus lubrication behaviour. In case the process becomes 
unstable, the press settings are adjusted. Thereby typical measures are to change the total binder 
force or the force distribution. Some press operators also change the lubrication amount. In 
order to model the behaviour of the part when any material or process parameters change, 
variant simulations are computed. 

The range of variation of each parameter has to be defined carefully. The range should 
correspond to the fluctuations during serial pressing. If the range is too large, the simulation 
results are unrealistic, thus the metamodels will be distorted. If the range is too small, the 
metamodel does not map the entire range of fluctuations. 

The defined fluctuation range should be varied around a suitable operating point [8], [7]. 
Therefore a part is removed during serial production after the first deep drawing operation and 
then compared with the simulation. The material used in simulation corresponds to the used 
batch of material in production. The friction coefficient, total binder force and force distribution 
are adjusted to fit the draw-in of the produced part. With these simulation settings the simulated 
thinning distribution is compared with the measured thickness reduction of the part (see Figure 
4). The measurement is performed with a GOM ATOS system in two different regions of the 
part. The figure below shows one of the regions. 

 

Figure 4: Comparison of thickness reduction between digitised part (left) and simulation (right) 

The simulation result from AutoForm R7 is relatively close to the measurement. The 
deviations are mostly below 0.02 mm. Also the thinning of the material passing through the 
drawbead can be predicted by the simulation with a good accuracy. Differences in the thinning 
distribution are based on the simplifications in the simulation, such as the constant friction 
coefficient, the neglection of the tool deflection but also on the fluctuating initial blank 
thickness. 

In view of the comparison of the thickness reduction, the equalized simulation is a suitable 
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operating point for the variational simulations. The defined ranges are shown in the table below. 
The forces are specified based on different press settings during serial production, the friction 
coefficients based on experience [9] and the material parameters based on the suppliers material 
data sheets. The design of experiment with 96 simulations is automatically created in 
AutoForm R7 according to the Latin Hypercube Sampling with six independent variation 
parameters. Although the variations of yield stress and tensile strength correlate with each other, 
they are varied independently to simulate low-quality (high yield stress, low tensile strength) 
and high-quality batches of material. 

 
Table 3: Variation parameters and range 

Variation parameter Minimum Nominal Maximum 
Binder force Ftot 2’000 kN 2760 kN 2’800 kN 
Force distribution ΔF -30 kN 60 kN 300 kN 
Friction µ 0.09 0.11 0.13 
Yield stress σ0.2 103.8 MPa 113.8 MPa 123.8 MPa 
Tensile strength σts 225.4 MPa 235.4 MPa 245.4 MPa 
r-values (r0, r45, r90) -10% 0.71, 0.50, 0.71 +10% 

 

3.1 Simulation criteria 
In AutoForm R7 a wide range of result variables are available to quantify a potential quality 

feature in the part. For example splits can be detected by evaluating the result variables Thinning 
or Max. Failure (ratio of major strain to FLC). In the variational simulations three regions with 
risk of splits could be detected (see Figure 5). Additionally a skid line and a region with 
insufficient stretch below the skid line are identified to be critical. The criteria are slightly worse 
in the left half of the part (which corresponds to the mudguard on the right hand side of the car), 
which is why the following analyses are focused on the left side of the part. 

 

Figure 5: Defined simulation criteria of part 

Skid lines represent damage to the sheet metal. They are clearly visible as scratch marks on 
the finished part. In case the material is dragged against sharp features of the tool after the first 
contact. They usually arise when the sheet is bended over a sharp angular feature and is 
subsequently pulled over this feature (e.g. drawbeads, die entry radius) or stretched over the top 
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of the punch (e.g. design features). If the skid lines are located in the visual range of the finished 
part, they should be avoided. By adjusting the binder force, changing the addendum design or 
the retention force of the drawbead through geometrical adaptions, the movement over the 
radius can be reduced. Thus, skid lines may be reduced or even avoided [3]. As the tools already 
exist and used for serial production, skid lines should be avoided without cost-intensive rework, 
therefore only by changing the press settings. 

In AutoForm R7 skid lines are computed with two user defined analysis parameters: the 
maximum tool radius (curvature of tool) and the contact pressure between the tool and the sheet. 
If the curvature and the contact pressure exceed the predefined radius and pressure values in 
the same area, a skid line may occur [3]. 

After computing all simulations, the simulation criteria are defined for the different result 
variables. For each defined criterion a metamodel is fitted. The used types of metamodels are 
based on the Response Surface Methodology, whereby the polynomial degree is limited to a 
quadratic base model with interaction coefficients. Every metamodel is validated with the 
leave-one-out cross validation, to guarantee an appropriate model and to avoid an overfit. 

Based on the metamodels the influences of the varied parameters on the defined criteria are 
quantified by using sensitivity analysis. The applied method is the Fourier Amplitude Sensitivity 
Test (FAST) [10]. The resulting sensitivities are shown in Figure 6. 

 

Figure 6: Sensitivities on splits (a), skid impact lines (b) and insufficient stretch (c) 

The sensitivities for split criterion (Figure 6 a) point out the friction and binder force to be 
the most relevant parameters, which is a plausible behaviour. Furthermore the tensile strength 
shows a relatively small sensitivity. The higher the tensile strength is, the smaller the risk of 
splits. A similar behaviour could be identified for the insufficient stretch, apart from the not 
negligible dependence of the yield stress. The higher the yield stress is, the smaller will the 
stretching in this region turn out. The skid line conversely is primary depending on the force 
distribution. The metamodel suggest that an increasing friction, due to rising tool temperature 
during serial pressing, could be corrected by changing the force distribution. 

3.2 Process window 
In the current state of the art different process windows can be displayed, such as one- and 

two-dimensional process windows based on conservative minimum/maximum analysis, convex 
hulls and multi-dimensional hypercubes parallel to the axes. For each of these simplification 
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methods some information gets lost [11], [12]. 
Every simulation criteria and hence every metamodel is limited by an upper or lower 

limitation value, e.g. splits, more specifically the result variable from AutoForm Max. Failure 
[3], at 70% of the major strain in the FLC. By keeping the material properties and the force 
distribution at a constant value, the metamodel of the criterion is reduced to a three-dimensional 
surface in dependency of the binder force and the friction. The defined limitation value can now 
be visualised as a contour line. The projection of this line in the plane of the two remaining 
parameters (binder force and friction) illustrates the process boundary regarding this specific 
simulation criterion (see Figure 7, process boundary in red). 

This approach is repeated for the remaining simulation criteria and provide further process 
boundaries. Skid lines are limited at 15 mm (process boundary in blue) and the insufficient 
stretch criterion at 1% thinning (process boundary in green). (Note: These limitation values do 
not necessarily correspond to reality, because the simulation settings can significantly change 
the numerical results. However, the simulation behaviour shall be assumed to be similar to the 
real process behaviour.) 

 

Figure 7: Process windows for different force distributions 

The sensitivity analysis (see Figure 6) already pointed out, that the force distribution does 
not strongly influence the split and the insufficient stretch criteria. The skid lines conversely 
are significantly affected by changing force distributions. This behaviour can also be observed 
in Figure 7: If the forces on die cushions 2, 4 and 6 are increased respectively reduced on 1, 3 
and 5 (see Figure 3), the skid lines might grow. To avoid skid lines the die cushion forces 1, 3 
and 5 should be increased. 

At the beginning of the serial production, the tools are cold and thus the friction is low. To 
reach nevertheless a sufficient stretching for the first part, the total binder force should be 
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increased at the beginning of the production. After the tools warm up and thereby the friction 
increases, the binder forces have to be reduced. Otherwise the process would run into risk of 
splits. 

The shown process windows in Figure 7 are only valid for the pre-defined batch of material 
(see table 3 for nominal material properties). As soon as the material properties change, the 
process boundaries and thus the process window alters. 

3.3 Influence of material on process windows 
The fluctuations of the material properties in different batches of material can be very 

pronounced. Therefore the influences on the process window have to be analysed individually. 
For this two additional batches of material with various formability are exemplarily analysed. 
The resulting process windows are shown in Figure 8 below. 

 

Figure 8: Process windows for three batches of material with different formability 
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In case a material batch with good formability characteristic (combination of low yield stress 
and high tensile strength) is used in production, risk of splits are very small. Also the process 
boundary due to insufficient stretch become less critical. Thus the process window gets bigger 
the process is more robust. 

A material batch with bad formability characteristics (combination of high yield stress and 
low tensile strength) affects negatively the process boundaries. Although the skid lines can be 
avoided, the risk of splits and insufficient stretch are getting worse. The remaining process 
window becomes pretty narrow. Therefore the robustness is reduced, because small changes in 
friction lead to either risk of splits or insufficient stretch. Hence, the press settings should be 
adjusted more frequently. 

Apart from that, the two different split criteria (red and orange) react differently to the force 
distribution. While the orange split criterion is getting worse for higher force deltas, the red one 
is not really affected. For large force deltas the orange split criterion is getting more critical 
compared to the red split criterion. 

4 APPLICATION OF METAMODELS FOR PROCESS CONTROL 
During serial pressing the quality criteria cannot be quantified as the simulation does. The 

part contains either a split or not. A precise statement about a numerical value (e.g. thinning of 
the material) is associated with high expenditures and costs. A much less expensive and more 
flexible approach is to measure the draw-in of the part optically in order to enable a quality 
assessment. For that it is essential to locate the draw-in measurement positions, which allow a 
reliable conclusion about the defined criteria in the part. 

4.1 Selection of draw-in measurement positions 
Based on the variation simulations in AutoForm the correlation between the draw-in and the 

values of the different simulation criteria are calculated [8]. For each criterion the correlations 
are displayed in colour around the part (see Figure 9). 

 

Figure 9: Absolute draw-in correlations and resulting draw-in measurement positions (on bottom right) 
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The selected draw-in measurement positions are placed in the regions with good correlation 
values over 0.75 with as many criteria as possible. Consequently some criteria can be observed 
by more than one draw-in measurement, which increases reliability (see table 4). To fully 
observe the detected simulation criteria of this part, three measurement positions are sufficient. 

 
Table 4: Correlation values between virtual draw-in sensors and simulation criteria 

Simulation criterion S-01 S-02 S-03 
Split headlamp -0.75 -0.7 -0.91 
Skid line -0.03 0.94 0.7 
Insufficient stretch 0.79 0.72 0.88 

 
On the basis of the variational simulations the virtual draw-in measurements are fitted with 

metamodels. They contain the virtual knowledge how the process settings have to be changed 
in case the friction increases due to rising tool temperatures or in case another batch of material 
is processed. 

4.2 Feed forward and feedback control 
The previously generated knowledge of the process can be used in a feed forward approach 

to improve the part quality even before the feedback loop would be able to react. The feedback 
loop is used to compensate all non-measurable effects, such as changing friction conditions due 
to rising tool temperatures. Therefore the metamodels are evaluated [13]. 

If another batch of material is processed with different material properties, the strain 
distribution in the part, and thus the draw-in would change. To suppress a shift in draw-in and 
to keep the same part quality, the forces have to be adjusted. These adjustments are evaluated 
based on the corresponding draw-in metamodels [13]. The material properties are measured 
with an eddy-current measurement system [14]. 

5 CONCLUSION 
With the newly released AutoForm version R7 it is possible to generate all required 

simulation criteria, though not transferable one-to-one to reality as numerical values. But the 
behaviour respectively the influences on the criteria can be modelled with sufficient reliability. 

Multidimensional systems with different influencing parameters and complex relationships 
are very difficult for the press operator to get oriented trustworthy and to adjust the press 
settings accurately in case of any changes in the process. Therefore process windows are used 
to visualise the influences of the input variables on the simulation criteria. This kind of 
visualisation simplifies the understanding of the process and provides assistance to adjust the 
press settings. 

For a subsequent process control the simulation results are adequate, because the 
metamodels are able to map the behaviour of the different input parameters on the draw-in. The 
metamodels provide a first approach how the press settings should be changed, before the part 
is produced. Changes in non-measurable effects, such as changing friction conditions, can be 
corrected based on the metamodels with a feedback control. 
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Abstract. Micro hot embossing process is considered as one of the most promising micro 
replication processes for manufacturing of polymeric components, especially for the high 
aspect ratio components and large surface structural components. A large number of hot 
embossing experimental results have been published, the material modelling and processes 
simulation to improve the quality of micro replication by hot embossing process are still 
lacking. This paper consists to 3D modelling of micro hot embossing process with amorphous 
thermoplastic polymers, including the mechanical characterisation of polymers properties, 
identification of the viscoelastic behaviour law of the polymers, numerical simulation and 
experimental investigation of micro hot embossing process. Static compression creep tests 
have been carried out to investigate the selected polymers’ viscoelastic properties. The 
Generalized Maxwell model has been proposed to describe the relaxation modulus of the 
polymers and good agreement has been observed. The numerical simulation of the hot 
embossing process in 3D has been achieved by taking into account the viscoelastic behaviour 
of the polymers. The microfluidic devices with the thickness of 2 mm have been elaborated 
by hot embossing process. The hot embossing process has been carried out using horizontal 
injection/compression moulding equipment, especially developed for this study. A complete 
compression mould tool, equipped with the heating system, the cooling system, the ejection 
system and the vacuum system, has been designed and elaborated in our research. Polymer-
based microfluidic devices have been successfully replicated by the hot embossing process 
using the compression system developed. Proper agreement between the numerical simulation 
and the experimental elaboration has been observed. It shows strong possibility for the 
development of the 3D numerical model to optimize the micro hot embossing process in the 
future.  
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1 INTRODUCTION 
Micro hot embossing process is considered as one of the most promising micro replication 

processes for manufacturing of polymeric components [1]. It is used to elaborate the micro or 
nano components in diverse fields, thanks to its relatively lower cost for embossing tool, 
flexibility choice of embossing material and high replication accuracy for small features. In 
micro hot embossing process, the embossed material is always heated to a certain 
temperature, which allows the material flow into the cavities of mould insert. For amorphous 
thermoplastic polymers, the processing temperature is lightly above their glass transition 
temperature (Tg), which the massive changes in physical properties of polymer occur during 
this temperature range. More and more micro-components have been fabricated with 
thermoplastic polymers by micro hot embossing process during recent years, but the lack of 
the numerical modelling and simulation restricts the further development of the process [2]. 
The object of this work is to propose a 3D numerical model to investigate the effects of the 
hot embossing process parameters, such as embossing temperature, embossing pressure, 
processing time, on the replication accuracy of polymeric components.  

Amorphous thermoplastic polymers have a randomly ordered molecular structure, unlike 
the highly ordered molecular structure of crystalline of semi-crystalline polymers. The 
amorphous thermoplastic polymers soften gradually as the temperature arises, allowing to a 
relatively larger moulding temperature range compared to the crystalline polymers. Various 
behaviour laws have been proposed in the literature in order to describe the physical 
behaviour of the amorphous thermoplastic polymers used in the micro hot embossing process 
[3-9]. The viscoelastic model has been widely applied in the numerical simulation of hot 
embossing process because of its efficiency in numerical computation and its well-fitting with 
the experimental characterization [10]. 

This paper consists to 3D modelling of micro hot embossing process with amorphous 
thermoplastic polymers, including the mechanical characterisation of polymers properties, 
identification of the viscoelastic behaviour law of the polymers, numerical simulation and 
experimental investigation of micro hot embossing process. Static compression creep tests 
have been carried out to investigate the selected polymers’ viscoelastic properties. The 
Generalized Maxwell model has been proposed to describe the relaxation modulus of the 
polymers and good agreement has been observed. The numerical simulation of the hot 
embossing process in 3D has been achieved by taking into account the viscoelastic behaviour 
of the polymers. Different loads have been applied on the mould die insert and the 
viscoelastic responses of the polymer substrate have been investigated in the simulation. The 
microfluidic devices with the thickness of 2 mm have been elaborated by hot embossing 
process. The comparison between the numerical simulation and the experiments shows proper 
agreement for the prediction of the polymer substrate deformation using the hot embossing 
process. 

2 MODELLING APPROACH  
In the numerical simulation of the hot embossing process, the mould die cavity was 

considered as a rigid body, and the polymer substrate exhibits the viscoelastic behaviour. The 
related constitutive equations have been implemented in the software. The stress tensor of the 
viscoelastic material is separated mathematically in two parts [11], the volumetric stress and 
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the deviatoric stress, as shown in the following equation:  

vbK   I d  (1) 

where is bK the bulk modulus, v is the volumetric strain, I is the identity matrix, 
and d  is the deviatoric stress. 

The strain tensor of the viscoelastic material is written as: 
 

v
3
1

 I d  (2) 

where d  is the deviatoric strain, with the volumetric strain given by:  

 ijv trace    (3) 

The general dependence of the deviatoric stress on the strain history could be 
expressed in the form:  

    ''2
0

' dttG
t

dttd      (4) 

where  tG  is the shear modulus, which could be obtained by the well-known 
relationship with the elastic modulus for homogeneous isotropic materials: 

 

     12cr
t EG  (5) 

where   is Poisson’s ratio, and crE  is the relaxation modulus identified in the 
compression creep tests.  

 

3 IDENTIFICATION OF VISCOELALSITC PROPRETIES THERMOPLASTIC 
POLYMER 

The true stress vs. time and true strain vs. time curves of the amorphous polymer PMMA 
have been obtained from compression creep tests at the hot embossing temperature range 
from Tg+ 20◦C to Tg+ 40◦C. The relaxation modulus, expressed as the ratio between the true 
stress and true strain of the polymer specimens during the creep tests, could thereby be 
obtained. The relaxation moduli of the PMMA are presented in Figure 1. The relaxation 
modulus of the polymer decreases with respect to time at different testing temperatures in 
short-term compression creep tests. With the increase of the testing temperature, the 
relaxation modulus decreases. The relaxation modulus exhibits a sudden decline at the 
beginning of the compression creep tests and then decreases smoothly with time.  

In this study, the Generalized Maxwell model was used to describe the relaxation modulus 
of the amorphous PMMA specimens with respect to time, as obtained from the compression 
creep tests. Two relaxation time constants have been characterized to fit the experimental data 
from the compression creep tests. The compression relaxation modulus crE of polymer could 
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be expressed as follows: 
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where crE  is the relaxation modulus when time becomes infinite, t  represents time, crE1

and cr
1 are the relaxation modulus and relaxation time at 1-branch, respectively, and crE2 and 

cr
2  are the relaxation modulus and relaxation time at 2-branch, respectively. 

 

 
Figure 1: Relaxation modulus of PMMA at Tg+ 20◦C, Tg+ 30◦C and Tg+ 40◦C in short-term compression creep 

tests. 

4 NUMERICAL SIMULATION OF HOT EMBOSSING PROCESS 
In this study, a 3D model composed by the polymer substrate and the micro mould die 

cavity insert was created in the simulation. The mould was considered as a rigid body, which 
was supposed to be undeformable during the simulation. The polymers substrate was 
considered as viscoelastic material, described by the Generalized Maxwell model using the 
identification parameters obtained in compression creep tests. The simulation of the hot 
embossing process was effectuated at Tg+ 20◦C, Tg+ 30◦C and Tg+ 40◦C. The imposed loads 
were applied on the mould die cavity insert. The bottom surface of the polymer substrate was 
fixed, and the displacement of this surface was imposed as 0.  

4.1 Hot embossing with fixed compression displacement 
The polymer substrate was first compressed with a fixed compression displacement of 0.1 

mm with a constant compression speed, shown in Figure 2. The compression tests lasted for 
30 s at each compression temperature. Figure 2(a) presents the total displacement of the top 
surface of the polymer substrate. The reservoir and the channel exhibit almost the same 
displacement, because the displacement imposed on the mould die insert is the same 
everywhere. A cutting line in the reservoir zone on the top surface of the polymer substrate, 
which passes through the center of the reservoir, shown in Figure 2(b), has been selected in 
order to investigate the displacement profile. Figure 3(c) shows the displacement profile of 
the polymer PMMA substrate at the cutting line at different compression temperature. The 
initial height of the polymer substrate is approximately 2 mm and it is compressed by the 
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mould die insert during the simulation test. The displacement of the polymer substrate in the 
reservoir zone is approximately 0.1 mm, which is equal to the applied compression 
displacement. There is not significant difference in the displacement of the polymer substrate 
among the different compression temperatures. However, the displacement ofthe polymer 
substrate at Tg+ 40◦C is a little more significant than that at Tg+ 20◦C. This demonstrates that 
with the same applied compression displacement, the polymer substrate exhibits a larger 
displacement at a higher compression temperature. 

 

 
Figure 2: (a) Displacement of the polymer PMMA substrate in the hot embossing simulation with fixed 

compression displacement 0.1mm at Tg + 20 °C, (b) location of the cutting line on the top surface of the polymer 
substrate and (c) displacement profile of the cutting line at the end of the testing time at different compression 

temperature. 

4.2 Hot embossing with constant pressure 
The polymer substrate was then compressed with a constant pressure of 1 MPa for 30 s at 

each compression constant pressure of 1 MPa at different compression temperatures, shown in 
Figure 3. The initial height of the polymer substrate is approximately 2 mm, and it is 
compressed by the mould die insert at constant pressure during the simulation test. In this test, 
the difference in the displacement of the polymer substrate in the reservoir zone at different 
compression temperatures is more significant than in the previous simulation test. Figure 3(a) 
shows the total displacement of the top surface of the polymer PMMA substrate with applied 
pressure 0.1 MPa at Tg + 40 °C in the hot embossing simulation. A cutting line in the 
reservoir zone on the top surface of the polymer substrate, which passes through the centre of 
the reservoir, shown in Figure 3(b), has been selected in order to investigate the displacement 
profile. Figure 3(c) shows the displacement profile of the polymer PMMA substrate at the 
cutting line at different applied pressures. The displacement of the polymer substrate increases 
with the rise of the compression temperature. When the applied pressure on the mould die 
insert is fixed at 1 MPa, the displacement of the polymer substrate is approximately 0.8 mm at 
Tg+ 20◦C, and the displacement increases to approximately 1.6 mm at Tg+ 40◦C. This 
demonstrates that with the same applied pressure, a polymer substrate exhibits a larger 
displacement at a higher compression temperature. 
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Figure 3: (a) Displacement of the polymer PMMA substrate in the hot embossing simulation with constant 

pressure 1 MPa at Tg + 20 °C, (b) location of the cutting line on the top surface of the polymer substrate and (c) 
displacement profile of the cutting line at the end of the testing time at different compression temperature. 

5 EXPERIMENTAL INVESTIGATION WITH MICROFLUIDIC DEVICE 
The replication of microfluidic devices has been effectuated with horizontal electric 

injection/compression moulding equipment. Mould die inserts with three different cavity 
dimensions have been developed in this study to obtain microfluidic devices. The height of 
the micro mould die cavities on the three moulds is approximately 200 µm, 100 µm and 50 
µm, respectively.  

 

 
Figure 4: (a) PMMA microfluidic devices obtained with the mould die insert (100 µm) by the hot embossing 
process (b) 3D images of the selected zones of the silicone replicas elaborated from the PMMA microfluidic 

device. 

It shows us that microfluidic devices based on PMMA substrates have been successfully 
obtained using the three mould die cavities. Figure 4(a) shows the microfluidic device 
obtained using the mould die cavities with the height of the cavities equal to 100 µm. It seems 
that the micro cavities in the mould die insert are well filled by the polymer flow. There are 
no significant replication defects visible on the microfluidic devices. The microfluidic devices 
produced from thermoplastic polymer substrates are optically transparent, which cause 
difficulties in measuring their dimensions and surface topography directly with an optical 
method. Therefore, room temperature vulcanizing (RTV) silicone rubber was used to replicate 
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the negative micro pattern on the microfluidic devices. Figure 4(b) shows the 3D images of 
the silicone replicas elaborated from these microfluidic devices. Four zones in the replica 
were observed to investigate the shape transfer efficiency using the hot embossing process. A 
proper replication was achieved by effectuating the comparison with the images obtained for 
micro mould die cavity insert. 

A comparison between the numerical results and the experimental results has been made to 
verify the physical modelling accuracy for the hot embossing process. The identical boundary 
conditions have been applied for the numerical and experimental tests to make this 
comparison. PMMA has been compressed at the compression temperature of Tg+ 40◦C for 30 
s in the hot embossing process. The displacement imposed on the polymer substrate is fixed at 
0.1 mm in the numerical simulation, and the gap imposed is fixed to make sure to compress 
the polymer substrate by 0.1 mm for the experimental test. One cutting line on the polymer 
PMMA substrate, located in the reservoir zone, has been drawn to compare the micro cavity 
geometry after the hot embossing process. The 3D image of the reservoir zone has been 
obtained by an optical profilometer. The 2D contour of the reservoir has been obtained to 
enable the comparison of the simulation and numerical results. The 2D contours of the 
polymer substrate in the same position, both in the numerical and in the experimental results, 
has been shown in Figure 5. This shows that the diameter of the reservoir is approximately 
2000 µm in the numerical simulation, and in the experimental result, the value is 
approximately 1980 µm. The difference between the simulation result and the experimental 
result is probably due to the deviation in the selections of the cutting line and the 2D con-tour 
of the microfluidic device. The simulation results show suitable agreement for the prediction 
of the polymer substrate deformation in the replication of a microfluidic device using the hot 
embossing process. 

 
Figure 5: Comparison of the displacement profile on cross section of the reservoir zone of the PMMA 

microfluidic device obtained by hot embossing process with a fixed compression displacement of 0.1 mm at Tg+ 
40◦C. 

6 CONCLUSIONS AND PERSPECTIVES 
This research work consists on the 3D modelling of the micro hot embossing process using 

the amorphous thermoplastic polymers. Uniaxial compression creeping tests on cylindrical 
polymer specimens were carried on in the temperature range from Tg+ 20◦C–Tg+ 40◦C. The 
relaxation moduli of polymers at Tg+ 20◦C, Tg+ 30◦C and Tg+ 40◦C were obtained with 
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respect to time. The Generalized Maxwell model with two branches was used to characterize 
the viscoelastic behaviour of the polymer in the compressing creep tests. Acceptable 
agreement has been observed by the comparison of experimental data with the fitting models. 
The Generalized Maxwell model using the parameters identified in the compression creep 
tests has been used to describe the polymer behaviour in the hot embossing process. The 
numerical simulation of the filling stage of the hot embossing process has been achieved by 
taking into account the modelling of the viscoelastic behaviour of amorphous thermoplastic 
polymers. Polymer-based microfluidic devices have been successfully replicated by the hot 
embossing process using the compression system developed in our group. Proper agreement 
between the numerical simulation and the experimental elaboration has been observed. It 
shows strong possibility for the development of the 3D numerical model to optimise the micro 
hot embossing process in the future. 

REFERENCES 
[1] Worgull, W. Hot Embossing: Theory and Technology of Microreplication. Elsevier, 

Burlington (2009). 
[2] Worgull, W. and Heckele, M. New aspects of simulation in hot embossing. Microsyst. 

Technol. (2004) 10:432-437. 
[3] Govert L.E., Timmermans P.H.M., Brekelmans W.A.M. The influence of intrinsic strain 

softening on strain localization in polycarbonate: modeling and experimental validation. J. 
Eng. Mater. -T. ASME (2000) 122:177-185. 

[4] Anand, L. and Gurtin, M.E. A theory of amorphous solids undergoing large deformations 
with applications to polymeric glasses. Int. J. Solids Struct. (2003) 40:1465-1487. 

[5] Anand, L. and Ames, N.M. On modeling the micro-indentation response of anamorphous 
polymer. Int. J. Plasticity (2006) 22:1123-1170. 

[6] Rinaldi R., Gaertner R., Chazeau L. Gauthier C. Modelling of the mechanical behaviour 
of amorphous glassy polymer based on the Quasi Point Defect theory—Part I: Uniaxial 
validation on polycarbonate. Int. J. Nonlinear Mech. (2011) 46:496-506. 

[7] Srivastava V., Chester S.A., Ames N.M., Anand L. A thermo-mechanically-coupled large 
deformation theory for amorphous polymers in a temperature range which spans their 
glass transition. Int. J. Plasticity (2010) 26:1138-1182. 

[8] Fleischhauer R., Dal H., Kaliske M., Schneider K. A constitutive model for finite 
deformation of amorphous polymers. Int. J. Mech. Sci.(2012) 65:48-63. 

[9] Holopainen S. Modeling of the mechanical behavior of amorphous glassy polymers under 
variable loadings and comparison with state-of-the-art model predictions. Mech. Mater. 
(2013) 66:35-58. 

[10] Cheng G., Sahli M., Gelin J.C. and Barrière T. Process parameter effects on dimensional 
accuracy of a hot embossing process for polymer-based micro-fluidic device 
manufacturing. Int. J. Adv Manuf. Technol. (2014) 75:225-235. 

[11] Cheng G., Sahli M., Gelin J.C. and Barrière T. Physical modelling, numerical simulation 
and experimental investigation of microfluidic devices with amorphous thermoplastic 
polymers using a hot embossing process. J. Mater. Process. Technol. (2016) 229:36-53. 

 

711



Geomaterials and Concrete3D finite element simulations of reinforced concrete elements exposed to fire

XIV International Conference on Computational Plasticity. Fundamentals and Applications
COMPLAS XIV
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Abstract. Fire could dramatically reduce strength of reinforced concrete elements and
it is considered one of the major threats for the structural safety of buildings: structural
members may even collapse due to intensity and duration of fire. In this study, 3D finite
element simulations of reinforced concrete elements under fire loading are presented. A
quasi static one-way-coupled thermo-mechanical analysis is carried out, in which a heat
transfer simulation is conducted first and then internal forces are computed. A phe-
nomenological constitutive model based on damage-plasticity is used for concrete at high
temperature. Transient creep strains are included in the model for elevated temperature.
Extended Leon model is used for yield function and isotropic damage is assumed. Numer-
ical results are compared with experimental data found in the literature, showing good
agreement.

1 INTRODUCTION

Concrete, as one of the most widely used construction material, is likely exposed to
high temperature, in case of extreme events such as explosions and during fire or in
special structures such as nuclear vessels. Its mechanical properties, like density, thermal
expansion, and thermal conductivity, require a careful evaluation in order for the material
performance to be understood under extreme high temperature. In general, strength and
stiffness of concrete decrease with the increase of temperature and degradation of concrete
mechanical behaviors mainly results from dehydration of concrete at the micro-level [1].
The behavior of concrete though is particularly complex to predict, due to the differences
of each constitution in terms of thermal response, with several factors affecting the fire
resistance (eg. concrete strength, moisture content, concrete density, aggregate type).
For example, high strength concrete (HSC) has lower permeability and water-cement
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ratio than normal strength concrete (NSC), therefore, under high temperature exposure,
moisture can escape with a slower rate, leading to a faster increase in pore pressure
and consequently a major reduction in load bearing capacity [2]. Thus, fire design and
assessment of structure has become a fundamental aspect of structural design and, in this
contest, urges the development of computational models capable of accurately capturing
the behavior of reinforced concrete elements at elevated temperatures.
In this study, a plastic damage model for the simulation of concrete behavior under
elevated temperature has been developed. The constitutive model adopted is based on
isotropic damage coupled with plasticity in effective stress space. While hardening under
compressive loading is modeled within the plasticity framework, softening under both
tensile and compressive loadings are taken into account within the damage mechanics
framework, where damage is modeled as a function of plastic strains. A sequential coupled
thermo-mechanical analysis has been chosen: firstly, a transient heat transfer analysis is
carried out to determine the temperature distribution over the specimen; then, based on
its results, a mechanical analysis is conducted. For thermal analysis, material parameters
such as specific heat, thermal conductivity coefficient are taken from standard design
codes or experimental studies found in literature such as [3, 1]. Moisture diffusion and
phase change during elevated temperatures are not considered at this stage.

2 Constitutive Model

The total strain tensor can be decomposed into mechanical strain εσ, free thermal
strain εfth, creep strain εcr, and transient creep strain εtcr, as shown below:

εtotal = εσ + εfth + εcr + εtcr (1)

Generally, the creep strain is considerably smaller than the other strain components in fire
applications, due to the short duration of a fire events and, therefore, it can be neglected
for fire safety assessment of structures [4].

2.1 Constitutive Model at ambitious temperature

According to incremental theory of plasticity, the mechanical strain tensor εσ can be
split into elastic εe and plastic components, εp:

εσ = εe + εp (2)

The elastic part is the recoverable portion of the total strain and, considering linear
elasticity, it is given by

εe = D−1σ (3)

where D and σ are the elasticity tensor and the stress tensor respectively. By using
these two equations, stress relation with strain can be defined as:

σ = D (ε− εp) (4)

2
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If we assume that the stiffness degradation is isotropic (scalar), then the stiffness tensor
is written as:

D = (1− ω)De (5)

where ω is the damage parameter and De is the initial elasticity tensor. Substitution
of equation (4) into (3) leads to the following equation:

σ = (1− ω)De (ε− εp) = (1− ω) σ̄ (6)

where σ̄ is the effective stress, defined as:

σ̄ = De (ε− εp) (7)

According to this equation, the constitutive relation for the damage response can be
decoupled from the plastic response, providing numerical advantages.

Several combined plasticity and damage models have been developed in recent years.
To ensure that a constitutive model remains thermodynamically admissible, the second
principle of thermodynamics must be satisfied, which requires non-negative dissipation
and this condition leads to certain constraints on the constitutive model. Grassl and
Jirasek [5] studied thermodynamic admissibility of different types of coupling of damage
and plasticity and have shown that, formulating the plasticity constitutive model in terms
of effective stress, the only condition required for the thermodynamic admissibility is the
softening plastic modulus not to drop below a critical value, given by the pure plastic
model.

2.1.1 Plasticity Formulation

In order to obtain the effective stress due to strain increment, the increase of plastic
strain has to be estimated. Plasticity formulations require a yield function, a flow rule
and a hardening rule:

f p (σ̄, κp) ≤ 0 (8)

ε̇p = λ̇
δgp

δσ̄

κ̇p = λ̇ H.

The Kuhn-Tucker conditions for loading-unloading need to be satisfied: f p (σ̄, κp) ≤
0,λ̇ ≥ 0, λ̇f p (σ̄, κp) = 0. Here f p and gp denote the yield surface and the plastic potential
function respectively, λp is the plastic multiplier, κp = [κt

p, κ
c
p] is (accumulated plastic

strains) plastic state variables, and H is the matrix for multiaxial stress situation:

H (σ̄, εp) =

[
χ(ˆ̄σ) 0 0
0 0 −(1− χ(ˆ̄σ))

]
δgp

δ ˆ̄σ
(9)
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where ˆ̄σ denotes the principal effective stress and χ is a weight factor defined as [6] :

χ =
3∑

i=1

〈ˆ̄σ〉/
3∑

i=1

|ˆ̄σ| (10)

The extended Leon Model, successfully used for the simulation of the concrete behav-
ior under uniaxial, biaxial and multi-axial loadings by many researchers [7, 8, 5, 9], is
employed in this study for the definition of the yield surface, which is smooth and convex
except for the point where parabolic meridians intersect the hydrostatic axis. The yield
function is given in terms of invariant of effective stress tensor, hardening parameter, k
and friction parameter, m0 as follows:

f p =

[
(1− k)

(
p̄

fc
+

ρ̄√
6fc

)2

+

√
3

2

ρ̄

fc

]2

+ k2 m0

(
p̄

fc
+

ρ̄ r(θ)√
6fc

)
− k2 = 0 (11)

where p̄ = Ī1/3, ρ̄ =
√
2J̄2, θ = cos−1

(
3
√
3/2J̄3/J̄2

3/2
)
/3 denote the effective mean

stress, the deviatoric radius and the Lode angle respectively and Ī1 is the first invariant
of stress tensor, J̄2, J̄3 are the second and the third invariant of deviatoric stress tensor.
The friction parameter depends on compressive and tensile strength of concrete and it is
given by:

m0 = 3
f 2
c − f 2

t

fcft

e

e+ 1
(12)

The shape of the deviatoric section is controlled by the function, r (θ, e),

r(θ) =
4 (1− e2) cos2 θ + (2e− 1)2

2 (1− e2) cos(θ) + (2e− 1)
√
4 (1− e2) cos2(θ) + 5e2 − 4e

(13)

where e is the eccentricity parameter, calibrated according to the biaxial strength of
concrete.

A non-associated flow rule is adopted in order to control excessive dilatancy, which is
necessary to guarantee a realistic modeling of cohesive frictional material such as concrete
and rocks. The plastic potential function controls the direction of the plastic strains and
hence the relative ratios between the plastic strain components. The plastic potential is
defined as follows;

gp =

[
(1− k)

(
p̄

fc
+

ρ̄√
6fc

)2

+

√
3

2

ρ̄

fc

]2

+ k2

(
mg

p̄

fc
+m0

ρ̄√
6fc

)
− k2 = 0 (14)

where mg is variable controlling the dilatation of concrete.
The non-linear behavior of concrete in the pre-peak region is described by isotropic

hardening. The hardening parameter, k = fc/fcu, which controls the evolution of yield
surface under compression, is defined in terms of equivalent plastic strain:
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k = k0 + (1− k0)

√
1−

(
1− κc

p/κ
peak
p

)2

for κc
p ≤ κpeak

p (15)

k = 1 for κc
p > κpeak

p

k0 = fc0/fcu is the initial yield strength and κpeak
p the plastic strain value at strength

of concrete under uniaxial compression. Softening under compressive loading and tensile
behavior is modeled with the damage formulation described in the session below.

2.1.2 Damage Formulation

Elastic stiffness degradation and softening under both compression and tension are
formulated using an isotropic damage. Concrete behaves differently under tensile and
compressive loading, therefore, two different damage formulations, one for tensile damage
ωt and one for compressive damage ωc, are defined independently, following Lee and
Fenves [6]. Damage is assumed to be depended on the accumulated plastic strain, hence
no additional damage surface is required. Internal damage variables are defined equal to
the plastic variables, i.e. κt

d = κt
p, κ

c
d = κc

p. Damage evolution law is assumed in the
following exponential form:

ωt = 1− e−κt
d/at (16)

ωc = 1− e−((κ
c
d−ε̄p0)/ac)

2

Where at and ac are material constant for tension and compression loading respectively
to be calibrated against uniaxial test results. When tensile and compressive damage
parameters are obtained, then the total damage is calculated as follows:

ω = 1− (1− ωt) (1− ωc) (17)

3 EFFECTS OF TEMPERATURE ON MATERIAL CHARACTERISTICS

3.1 Free Thermal Strain

The free thermal strain of concrete depends on the type of aggregate used. Eurocode
[10] suggests the following values for the free thermal strain.

For siliceous aggregates:

εth = −1.8× 10−4 + 9× 10−6T + 2.3× 10−11T 3 for 20◦C ≤ T ≤ 700◦C (18)

εth = 14× 10−3 for 700◦C < T ≤ 1200◦C

For calcareous aggregates:

εth = −1.2× 10−4 + 6× 10−6T + 1.4× 10−11T 3 for 20◦C ≤ T ≤ 700◦C (19)

εth = 12× 10−3 for 700◦C < T ≤ 1200◦C
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In this study, the free thermal strain increment is calculated as follows:

ε̇fth = αṪI (20)

where I denotes the second order identity matrix and α the coefficient of free thermal
strain which can be obtained from the free thermal strain given by Eurocode. Also Nielsen
et al. [11] suggested the following function for coefficient of free thermal strain:

α = 6× 10−5/
(
7− θ̄

)
for 0 ≤ θ̄ ≤ 6 (21)

α = 0 for θ̄ > 6

Here θ̄ = (T − 20) /100 represents the normalized temperature.

3.2 Transient creep

When concrete is first loaded and then heated, the thermal strain in the material is
higher than that experienced by unloaded specimens. This strain difference is called
transient creep strain or load induced thermal strain and an exhaustive overview of this
phenomenon can be found in Torelli et. al [12]. The transient creep strain, which is
an irreversible strains, depends on the temperature reached by the material and it is
proportional to the compressive load level. Experimental results have shown that it does
not depend on the heating rate or age of concrete [13]. Following De Borst and Peeters
[14], it is modeled as follows:

εtr = FtrHtr
σ−

fc,T0

(22)

where Ftr is the transient creep function, σ− the negative part of effective stress tensors,
fc,T0 the concrete strength at ambitious air temperature T0. H is a fourth order tensor
defined as:

Htr = −νtrδijδkl +
1

2
(1 + νtr) (δikδjl + δilδjk) (23)

Here νtr is the Poisson ratio for transient creep components. Ftr denotes the change of
transient creep strain with respect to temperature under uniaxial loading and its function
has been described by several different models in the literature. In particular, Pearce et
al. [15] have given the following parabolic function:

Ftr = 0.01×
(
2Aθ̄ + B

)
for 0 ≤ θ̄ ≤ θ̄∗ (24)

Ftr = 0.01×
[
2C

(
θ̄ − θ̄∗

)
+ 2Aθ̄∗ + B

]
for θ̄ > θ̄∗

θ̄∗ = 4.5, A = 4− 6%0, B = 1− 1.5%0 and C = 7− 10%0 values are suggested in the
same paper.

3.3 Compressive behavior of Concrete exposed to elevated temperature

The temperature dependency of concrete compressive strength is taken from Eurocode
2. Eurocode provides tabular data for siliceous and calcareous aggregates concrete, which
can be approximated by the exponential curve given below:
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f ′
c,T = f ′

c,0 exp
[
−(T̄ /5.5)2

]
for siliceous aggregate (25)

f ′
c,T = f ′

c,0 exp
[
−(T̄ /5.5)2.5

]
for calcareous aggregate

where T̄ = (T − 100) /100 is the relative temperature.
The ratio of tensile and compressive strength is assumed constant, i.e. degradation of

tensile strength is assumed to be equal compressive one.

3.4 Modulus of Elasticity

The modulus of elasticity is assumed to be a function of temperature and the formu-
lation given by Stabler [16] is adopted in this study, as follows:

Ec (T ) = (1− ωE)E (T0) (26)

where ωE denotes thermal degradation of Modulus of elasticity and it is formulated as
:

ωE = 0.2T̄ − 0.01T̄ 2 for 0 ≤ T̄ ≤ 10 (27)

ωE = 1.0 for T̄ > 10

where T̄ = (T − T0) /100 is relative temperature and T0 = 20 ◦C.

4 NUMERICAL RESULTS

4.1 Transient creep model

Firstly, an axially restrained cubic specimen is simulated in order to check the imple-
mentation of the transient creep formulation. For this simulation, the material parameters
have been assumed following Torelli et. al [12]: vtr = 0.37, E = 47000 MPa (Elastic Mod-
ulus), v = 0.2 (Poisson ratio), fcu = 57 MPa (compressive strength), ft = 5.7 MPa (tensile
strength). The specimen is exposed to heating-cooling cycles up to 140 ◦C and 180 ◦C
and then it is heated up to 220 ◦.
The numerical results in terms of temperature vs stress curves are shown in figure 1.
As soon as the temperature increases, compressive stresses occur in the material, due to
the prevented thermal expansion, causing transient creep strain. With the increase of
transient creep strain, a stress relaxation is observed, which is the reason for the reduc-
tion of stress with the increase of temperature. During the cooling phase, the transient
creep strain does not change and does not increase until the temperature values reach the
maximum value experienced during the temperature history.

The experimental tests conducted by Anderberg and Thelandersson [17] are simulated
to validate the transient creep model. The concrete specimen was loaded first and then
heated up a certain temperature level. In particular, the specimen was subjected to
different levels of compression: ζ = 0, ζ = 0.225, ζ = 0.35, ζ = 0.45 and ζ = 0.675, with
ζ being the ratio between the applied stress and the material strength. In this example,
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Figure 1: Uniaxially restrained specimen subjected to temperature cycle

the coefficient of free thermal strain is given in Eq. 21 and the following parameters for
the transient creep function are adopted: A = 0.004, B = 0.001 and C = 0.007. The
numerical results, plotted in Fig. 2, show a good agreement with the experimental data,
confirming that the free thermal expansion is well captured by the model.

4.2 Reinforced concrete beam

After the validation of the transient creep model, a reinforced concrete beam has been
simulated with the proposed model. A simply supported beam tested by Lin et. al [18] has
been selected to compare with numerical results. The beam is characterized by a 6.1 m
long span between supports and a 305×355 mm rectangular cross-section, reinforced with
4φ19 rebars on the tension side and 2φ19 rebars on the compression side. The compressive
strength of concrete is fcu = 29.5 MPa and yield strength of steel fy = 435.8 MPa. The
beam has been loaded up to certain level of load first and then exposed to ASTM E119
fire from three sides. The results of the heat transfer analysis are shown in Fig. 3, in
terms of temperature vs. time for the corner rebar. Fig. 4 shows the mid-span deflection
of the beam with respect to temperature and, numerical results are in good agreement
with experimental ones, confirming the prediction capability of the present model.

5 CONCLUSION

In this study, a damage plasticity model for concrete under elevated temperature has
been developed, where the transient creep strain are explicitly obtained. The performance
of the model is validated by a comparison with experimental results gathered from the
literature: the adopted model for transient creep model has been firstly validated for a
concrete specimen and then a 3D reinforced concrete beam has been simulated with the
proposed model. The results have shown good agreement, proving that the model can

8
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Figure 2: Strain upon heating under constant load levels

Figure 3: Evaluation of corner rebars temperature with time
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Figure 4: Mid-span deflection of the RC beam

capture the behavior of concrete expose to high temperatures.
In the experimental tests reported in literature, no significant spalling is observed for

normal strenght concrete (NSC), but it becomes an important issues for high strength
concrete (HSC) due to its low porosity [19]. Consequently, the moisture diffusion in the
concrete and spalling will be introduced to model.
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Abstract. The ability of the Modified Cam Clay (MCC) model combined with the Von 

Mises (VM) model, considering the effect of curing time on the enhancement of the mechanical 
properties of a chemically stabilised soft soil is examined. The evolution of the strength and 
stiffness over time is based on the results of undrained compressive strength (UCS) tests carried 
out for different curing times (from 28 days to 360 days). Initially, the MCC/VM models 
associated with the effect of curing time are validated by CIU triaxial tests, for curing times of 
28 and 90 days. Finally, the behaviour of an embankment built on a soft soil reinforced with 
deep mixing columns is predicted based on the previously validated models. The results show 
that the increase of curing time of the DMCs slightly decreases the settlement obtained with a 
curing time of 28 days. 

 
 
1 INTRODUCTION 

Over the last years, various embankments have been built on soft soils. In general, these 
types of soils show high compressibility, low undrained shear strength and reduced 
permeability. One way to solve these problems consists of installing rigid vertical inclusions in 
the soil foundation, such as: concrete piles, stone columns and deep soil mixing columns 
(DMCs), i.e., of chemically stabilised soil columns.  

Several experimental studies have shown that, due to pozzolanic reactions, the strength and 
stiffness of the stabilised soils increases over time [1-3]. However, the current design of 
stabilised soils uses the mechanical properties evaluated for 28 days of curing as a reference [4, 
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5]. Considering the lack of the numerical studies related to the enhancement of the mechanical 
properties of stabilised soils over time, it is very pertinent to study the impact of this effect on 
numerical predictions. 

 

2 SCOPE OF THE WORK  
Initially, the performance of the Modified Cam Clay (MCC) model associated with the Von 

Mises (VM) model and considering the effect of the curing time is validated using the results 
of triaxial CIU (isotropic consolidation followed by an undrained shear phase) tests for two 
curing times, 28 and 90 days [1]. Finally, the effect of the curing time on the settlement and the 
stress concentration ratio of an embankment built on a soft soil reinforced with DMCs is 
analysed. 

A 2-D finite element code with several constitutive models was used, upgraded at the 
University of Coimbra and capable of carrying out elastoplastic analyses with coupled 
consolidation and creep.  

3 CONSTITUTIVE MODEL 
The behaviour of the stabilised soil is simulated by two coupled constitutive models (Figure 

1), MCC/VM, which show two yield functions that may be activated either independently or 
simultaneously. Both models (MCC and VM) assume a linear elastic behaviour inside the yield 
surface and consider an associated plastic flow rule. 

The yield function of the MCC model is represented by an ellipse-shaped surface oriented 
in line with the p’ axis, described by [6, 7]: 
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where M is the slope of the critical state line (CSL),  and  are, respectively, the slope of the 
virgin consolidation line and the slope of the overconsolidation line in the plot e-lnp’ and eo is 
the void ratio for p’ equal to 1 (Figure 1a). The size of the yield function changes with the 
hardening rule  ck  t,eh , related to the isotropic preconsolidation pressure, p’c (Figure 1b), 
which depends on the void ratio (ek) and the curing time (tc). The tc promotes the change of 
 ck  t,eh  which induces an increase in the apparent p’c and consequently eo (Figure 1). The 

VM model is described by [6, 8]: 
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where  c
p
v

p  t, ,h   is the hardening rule, represented by the parameter qc. The hardening rule 
is evaluated considering that the trace of the yield surface on the q- plane is a hyperbola [9, 
10]:  

f
c

c R 
b + a

p' 
 = q




 (3) 

where a and b are normalized hyperbolic parameters, and Rf (qfailure/qult) is the failure ratio [11]. 
 

 
Figure 1: Effect of creep and curing time on the MCC model: a) hardening rule (e-p’ plane);  

b) yield surface (p’-q plane). 

4  EFFECT OF CURING TIME ON STABILISED SOIL 
Figure 2 depicts the evolution of the unconfined compressive strength ratio (qu/qu-28d) against 

curing time (from 28 to 360 days). The results show that qu/qu-28d increases faster for shorter 
curing times, tending to reach a constant value for higher tc. Thus, for a curing time higher than 
360 days, it is assumed that there is no increase of the cementation bonds, i.e., qu is constant 
and equal to the value obtained for 360 days. 

Considering that the power function presented in Figure 2 reflects the increase of the 
cementation bonds on the mechanical behaviour, a similar function is used to predict the 
evolution of the p’c over tc: 

  days) 360  (t           t4568.0 'p'p c
2438.0

c)d28(c)t(c c   (4) 

The prediction of Young’s modulus (E’) over tc, is based on equation (4), a reduction factor 
(Fred =0.4) is required to match the experimental results, taking the form of: 
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Figure 2: Effect of curing time on the unconfined compressive strength ratio [1]. 

 

Equations (4) and (5) are included in the finite element method (FEM) code, in order to take 
into account the effect of the curing time on the stiffness (E’) and the size of the yield surface 
of the MCC model (p’c). 

5 NUMERICAL PREDICTION OF THE LABORATORY TESTS  
Results of triaxial CIU tests were used to validate the CCM/VM model associated with the 

tc effect. The numerical predictions were carried out with only 1 FE element (eight-noded 
isoparametric quadrilateral) and 8 nodes, making the evaluation of the displacement at eight 
nodes and the excess pore pressure at the four corner nodes possible. Table 1 shows the 
parameters for the MCC/VM model used in the numerical analyses. 
 
  Table 1: Parameters of the soft soil and the stabilised soil (i.e. DMCs) used in the numerical analyses [1]. 

Soil type Stabilised soil/DMCs 
Curing time tc (days) 28 90 ≥ 360 

Elastic 
parameters 

E’ (MPa) 164.7(*)  189.0(**) 225.2(**) 
v 0.3 0.3 0.3 

MCC 
model 

e0 5.070 5.204(#) 5.349(#) 
e0 (*) (*) (*) 

 0.435 0.435 0.435 
 0.0074 0.0074 0.0074 
M 1.50 1.50 1.50 

VM 
model 

a 0.0013 0.0013 0.0013 
b 1.683 1.683 1.683 
Rf 1.0 1.0 1.0 

        (*) Depends on the stress level;. (**) Evaluated from equation (5); (#) Evaluated from equations (1), (4). 
 
Figure 3 compares the numerical predictions with the experimental results of the CIU triaxial 

tests carried out with samples of the stabilised soil, isotropically consolidated with a confining 
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pressure (p’0) of 50 kPa, for the curing times of 28 and 90 days. The results obtained show that 
the numerical models used are able to replicate the significant increase in the strength and the 
slight increase in the stiffness over curing time, due to the pozzolanic reactions which promote 
the increase of the cementation bonds. In fact, the stress-strain behaviour (Figure 3) obtained 
numerically matches the experimental results very well until the peak strength; however, after 
that, the MCC/VM model does not simulate the softening observed in the laboratory tests. 

 
Figure 3: CIU tests with stabilised soil for a curing times of 28 and 90 days. 

5 NUMERICAL PREDICTION OF THE BEHAVIOUR OF AN EMBANKMENT 

5.1 Materials 

The previously tested models are used to study the behaviour of a large-scale embankment 
built on soft soils reinforced with Deep Mixing Columns (DMCs), simulated by an 
axisymmetric cylindrical unit cell (Figure 4). The soil foundation is composed by 7.5 metres of 
soft soil placed under a 0.5 metre thick layer of sand. The water table is on the top of the layer 
of sand. The construction of the embankment consists of 4 sub-layers, each one with a thickness 
of 1.0 metre applied with a time delay of 5 days. The construction of the embankment started 
after a curing time for the DMCs of 28 days, in order to have the strength required in current 
design. 

The finite element (FE) mesh used in the axisymmetric analysis consists of 130 eight-noded 
isoparametric quadrilateral elements and 355 nodal points. An FE with twenty nodal degrees of 
freedom was used below the water table, making it possible to simulate the consolidation 
phenomenon. In terms of boundary conditions of the FE mesh, the bottom boundary was 
restrained from moving in both directions, both lateral vertical sides were restrained from 
moving in the horizontal direction, the top boundary of the soil foundation is permeable, while 
the lateral and the bottom boundaries are impermeable. 
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Figure 4: Embankment analysis. FEM mesh used. 

 
The embankment material ( = 22 kN/m3) is simulated by an elastic law (E’ varies between 

15/10/5/1 MPa from the bottom to the top layer; ’=0.3) associated with the Mohr-Coulomb 
criterion (c’= 10 kPa; ’= 35º). The behaviour of the sand layer is replicated by a linear elastic 
law with the parameters: E’=2.0 MPa, ’=0.3,  = 15kN/m3 and k= 10-4 m/s. The MCC/VM 
model is used to predict the behaviour of DMCs; the following parameters, other than those 
shown in Table 1, are considered: K0 = 0.8 [12],  = 16 kN/m3, k= 3x10-10 m/s and kh/kv= 1.0. 
The soft soil is simulated by the MCC model with the parameters:  = 0.204,   = 0.03, M = 
1.5, e0= 2.315, K0 = 0.4,  = 15 kN/m3, k= 10-9 m/s and kh/kv= 3; Young’s modulus of the soft 
soil is calculated by [13]: 

  
0

0 p' '2 - 1 e + 13 = '


E  (6) 

where e0 and p'0 are the initial void ratio and volumetric effective stress respectively, ’ is the 
Poisson ratio and  is the swell-recompression index. The coefficients of the permeability vary 
with the void ratio according to[14]: 

kC
0e  e

10xk = k 0



 
(7) 

where k0 is the coefficient of permeability corresponding to e0 and Ck is equal to e0/2 [15]. 

5.2 Results and discussion 

 Four cases are modelled in this work. Case A analyses the behaviour of the embankment on 
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the soft soil without DMCs. Cases B, C and D simulate the reinforcement of the soil foundation 
with DMCs, considering the properties of the DMCs evaluated for 28 days (Case B), 90 days 
(case C) and considering the enhancement of the their properties with the curing time (case D). 

 
Figure 5: Embankment built on soft soils reinforced with DMCs. Evolution of settlement over time. 

 

 
Figure 6: Embankment built on soft soils reinforced with DMCs. Evolution over time of the  

effective vertical stress on the DMCs. 
 

Figure 5 shows the evolution of the settlement at the top of the soil foundation for the vertical 
axis of the unit cell over time. Firstly, it should be emphasised that the reinforcement of the soft 
soil with DMCs decreases the settlement of the embankment significantly, inducing, for a time 

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Se
ttl

em
en

t (
m

)

Time (years)

Soil - A

Soil + DMC, tc=28 days - B

Soil + DMC, tc=90 days - C

Soil + DMC, tc=var - D

-0.070

-0.065

-0.060

-0.055

-0.050

0.0 1.0 2.0 3.0 4.0 5.0

Se
ttl

em
en

t (
m

)
Time (years)

0

100

200

300

400

500

0.0 1.0 2.0 3.0 4.0 5.0

s'
v,

 D
M

C

Time (years)

z = 2.5 m

340

360

380

400

420

0.2 0.4 0.6 0.8 1.0

s'
v,

 D
M

C

Time (years)

Soil + DMC, tc=28days - B

Soil + DMC, tc=90 days - C

Soil + DMC, tc=Var - D

729



Paulo J. Venda Oliveira, António A. S. Correia and Luís J.L. Lemos 

 8 

of 20 years, a reduction higher than 10 times. Comparison of cases B, C, and D shows that the 
effect of the curing time has a low impact on the numerically predicted settlement. Indeed, the 
consideration of the variation of the mechanical properties with tc (case D) decreases the 
settlement by about 1% in relation to case B (tc=28 days), and increases the settlement by about 
3% in relation to case C (tc = 90 days). The high consolidation rate induced by the use of DMCs 
[4] results in the major part of the settlement occurring in a short period of time (after the 
placement of the embankment layers), therefore the mechanical properties of the DMCs are 
similar in cases B and D, which justifies the small differences obtained in both cases.  
 Figure 6 depicts the evolution over time of the effective vertical stress on the DMCs 
(s’v,DMC) for a depth of 2.5 metres. The results show a slight increase in the s’v,DMC for higher 
curing times, that is from case B to C and from case C to D. Indeed, the increases of the stiffness, 
from cases B to D, promote the transference of stresses from the soil to the DMCs as a 
consequence of the “arching effect” [4]. 

6 CONCLUSIONS 
This work studies the effect of curing time on the mechanical behaviour of a chemically 

stabilised soft soil. The relationship between the curing time and the undrained shear strength 
was approximated by a power function, which is used to predict the evolution over time of the 
effective yield stress, and Young’s modulus (with a correction factor of 0.4).  

Firstly, the results of triaxial CIU tests, carried out for 28 and 90 days of curing time, were 
used to validate the constitutive model laws and the effect of curing time. Next, these models 
were used to predict the behaviour of an embankment built on a soft soil reinforced with DMCs. 
Some conclusions can be reached: 

- The results of the triaxial CIU tests show that the numerical models are able to simulate 
the stress-strain behaviour until the failure of samples of the stabilised soil, for two curing 
times (28 and 90 days). However, the softening observed after the peak strength is not 
predicted by the models.  

- Reinforcing the soil foundations with DMCs significantly decreases the settlement of the 
embankment. 

- The curing time has a low impact on the settlement obtained, since the major part of the 
deformation occurs in the short term, due to the high stiffness of the DMCs. 

- The increase of the curing time promotes a slight increase in the effective vertical stress, 
which is associated with a higher stiffness.  
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Abstract. Moisture diffusion and related fluid pressures play a key role in cracking and 
spalling of concrete subject to high temperatures. This paper describes recent developments of 
a mode for moisture and heat transfer in porous materials, to be combined with an existing 
and well tested meso-mechanical model for concrete. Liquid and gas flows are formulated 
separately, yet later they can be combined in terms of s single variable, Pv. The material pore 
distribution curve is taken as the basis for developing a new physically-based desorption 
isotherm alternative to the traditional Bazant & Thonguthai’s model. A simple academic 
example for temperatures between 27 and 800ºC is presented to show the behaviour of the 
model. 
 
 
1 INTRODUCTION 
Two are the main mechanisms generally accepted to govern the development of cracking and 
fracture of concrete exposed to high temperature, for example in the case of fire. The first one 
is related to the incompatibility of thermal deformations between aggregates and cement 
paste, which may lead to stresses beyond elastic range. The second one corresponds to the 
water vapor pressure buildup in the pores, that may take place as the result of heat and water 
moisture transfer due to temperature and pressure gradients.  

Original work of the group in this field was focusing on the first of those mechanisms [1,2] 
by means of a temperature-driven purely mechanical analysis of a meso-structural model 
which included cracking via zero-thickness interface elements [3,4]. The present paper 
describes the recent work on the study of the second of those mechanisms by means of a 
thermo-hygro model to analyse moisture movement and pore pressure build up as temperature 
increase. 

Analysis of heat and moisture diffusion is generally based on the heat and mass water 
conservation equations combined with Fourier law (heat flow) and Fick’s Law (moisture 
migration). These two diffusion processes may be considered uncoupled or coupled. The 
moisture diffusion analysis in turn may be represented with two independent variables 
(typically the two pressures of gas and water vapor or capillary pressure) [5,6], or be 
simplified to only one unknown variable [7]. For temperature below the critical point of water 
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(374.15ºC), one must also distinguish between saturated and non-saturated (partially 
saturated) concrete; and in this case a constitutive equation for the pore state saturation may 
be needed. For higher temperature above the critical point, liquid water phase does not exist, 
and the equations of an ideal gas may be considered. 

In the case of partial saturation, additional equations are needed to relate the water content 
of the pore system, to the partial pressure of the water vapor Pv and the capillary pressure Pc. 
These relations are a function of temperature T, and typically involve the degree of saturation 
S and the pore radius r distribution [8]. In the literature, these relations may take different 
forms; in Geotechnical literature the water retention curves relate the degree of saturation to 
the temperature and capillary pressure S=S(Pc,T); in materials science sorption-desorption 
isotherms relate water content to vapor pressure or relative humidity and temperature 
w=w(H,T), where H= Pv/Psat and the saturation pressure being a function of temperature Psat 
= Psat(T). 

One of the best known models is that of Bazant & Thonguthai´s [7], which is based on a 
single primary unknown variable, the vapor pressure  Pv, and proposes a set of 
phenomenological isothermal desorption curves w=w(Pv,T). These curves have been used by 
many other authors, and in particular Tenchev [5] has modified the curves and extended the 
formulation to consider separate liquid water and water vapor pressures as independent 
primary variables.  

Gawin & Schrefler [6], consider liquid water and water vapor separately in the mass 
transfer formulation, which are related through the saturation of liquid water, which are 
defined as a function of capillary pressure, S=S(Pc), for a given temperature. 

The present paper describes the new formulation developed to represent the thermal and 
moisture diffusion in concrete, which should eventually be coupled to the existing meso-
mechanical model of the research group, in order to analyze the influence on the concrete 
damage and cracking due to high temperatures. Due to the many phenomena to be covered in 
the overall model, it has been established as a priority to try to maintain the representation of 
moisture diffusion with one single primary variable. 

In a recent publication [9], a model was presented which consisted of a modification of the 
original formulation of Bazant and Tounguthai´s [7] which reduced the excessive pressures. 
However, although that model managed to reproduce qualitatively the pressure and water 
content profiles expected in basic 1-D, the formulation exhibited some significant 
shortcomings such as: (a) consideration of liquid and vapor water as a single phase for most 
purposes, (b) absence of physical basis for some of the assumptions and in particular the 
material pore structure was not taken into account, (c) sorption isotherm based on relative 
humidity H, concept that is not well defined after the critical point of water (374,15ºC), (d) 
law that allowed the water content w to grow unlimitedly as the vapor pressure was increased, 
something not physical since water can only fill the available pore space. All these 
shortcomings have motivated the development of the new model presented in the following 
sections. 

2 THERMAL AND MOISTURE TRANSFER MODEL 
Same as in the previous model [9], the formulation may be separated into two parts: (a) 

desorption isotherm and (b) conservation equations, which are presented in the following 
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subsections. 

2.1 Derivation of a desorption isotherm based on pore distribution and Kelvin equation.   
One of the novel aspects of the model, for temperatures below the critical point of water, is 

the derivation of a desorption isotherm as the result of the combination of the pore 
distribution curve and some fundamental equations of thermodynamic equilibrium between 
water vapor and liquid water in the pores.  

In the literature one can find different expressions for the degree of saturation of liquid 
water as a function of the capillary pressure [10-14]. Normally the empirical equations 
S=S(Pc) proposed are inaccurate when the saturation is close to zero since, in this field not 
much care is paid to the behavior at very low water content [8]. 

In the present study, the development starts form the pore size distribution curve S�r�,	
where	S	has	the	meaning	of	the	fraction	of	the	pore	space	which	is	contained	in	pores	of	
diameter	 smaller	or	 equal	 to	 r.	This	 is	 complemented	with	 the	assumption	 that	water	
will	 fill	 up	 first	 the	 smallest	 size	 pores	 then	 progressively	 larger	 pores.	 With	 this	
assumption,	the	curve	S�r�	can	also	be	interpreted	as	giving	the	degree	of	saturation	S	
for	which	the	pore	of	radius	r	is	partially	filled	�and	all	pores	of	smaller	radii	are	totally	
filled,	while	 all	 pores	 of	 radii	 larger	 than	 r	 are	 totally	 empty�.	 �ote	 that	 �elvin�s	 law	
supports	this	assumption	in	a	partially	saturated	porous	medium	provided	enough	time	
has	passed	so	that	chemical	equilibrium	can	been	reached	between	water	in	the	menisci	
and	water	vapor	migrating	from	larger	pores	to	smaller	pores.	For	fast	drying	processes,	
larger	 pores	 are	 emptied	 first	 and	 therefore	 it	 seems	 also	 reasonable,	 while	 for	 fast	
wetting	processes	it	may	not	be	so	certain	to	hold	and	strictly	speaking	it	would	require	
further	investigation	although	here	it	has	been	assumed	also	for	convenience.		

Assuming an exponential-type expression for S�r�,	and after combination with Laplace´s 
and Kelvin´s equations [8], one can obtain a power-type relation between S and Pv valid for 
temperatures below the critical point of water: 
 

� � ����� �
� ��

           (1) 

 
where �� is the saturation pressure at the current temperature, and can be known using 
classical thermodynamic tables (Çengel & Turner, 2001) [15], � is a constant, and exponent 
m includes the effect of absolute temperature, the density of liquid water and the surface 
tension of water defined as an equation depending on temperature, as given in [16]. 	

In figure 1, equation S=S(Pv,T) (1) is represented for a various values of temperature. 
 
 
 
 
 
 
 
 

734



M. Rodríguez, C.M. López and I. Carol 

 4

 
Figure 1: Evolution of the saturation degree in terms of the ratio ����� for different temperature values. 

To obtain finally the total water content, w, must be related to S and Pv. For this purpose, 
total water content w may be decomposed as the sum of the liquid water, wL, plus vapor 
water, wV :  

 
� � ∅ � �����

��
� ∅ �� � �� �����������

��
(2) 

 
where ∅ is porosity; S is the degree of saturation, ρL is liquid water density [Kg/m2] which 
may be obtained from thermodynamic tables in terms of temperature (Çengel & Turner, 2001) 
[15], and ρV is the density of water vapor, which may be taken from the perfect gas equation:  
 

�� � ��
����   (3)

 
where Rv is the gas constant for water vapor [J/Kg ºK] and Ta is the absolute temperature. 

Note that, expressions (1) and (3) replaced into (2) constitute a new physically-motivated 
desorption isotherm alternative to Bazant and Thongouthai´s [7] for temperatures below the 
critical point of water. For temperatures above that point, S = 0 and equation (3) simply 
becomes � = ∅����. 

2.2 Conservation equations 
Temperature distributions are obtained from separate thermal diffusion analysis 

(uncoupled), and only one pressure variable is considered to describe the water transfer 
process where the water dehydration is included. 

The heat and water mass conservation equations may be expressed as: 
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�� ���� � �������������� (4)

��
�� � ����� ��̅ � ���

��  (5)

in which ρ and C are the mass density [Kg/m3] and heat capacity of concrete [J/Kg ºC], kT is 
the heat conductivity [J/Kg seg ºC], w is the total mass of free water per m3 of concrete 
[Kg/m3]; wd [Kg/m3] is the mass of chemically bound water that is released to the pore as a 
result of the dehydration process (dehydration of the solids in cement paste as a result of 
heating); and � ̅is the total mass flow of water per unit area [Kg/m2 seg].  

Total mass flow of water, �,̅ may be also decomposed as the sum of the flow of liquid 
water, ��̅, plus the flow of vapor water, ��̅, both in [Kg/m2 seg]: 
 

� ̅ � ��̅ � ��̅    (6) 
 
where, inserting Fick´s laws for each of them, one obtains: 
 

��̅ � �� � �� � ���� ���        (7) 

��̅ � �� �1 � �� ��
�� ��

� ��
�� ���        (8) 

 
In the previous equations, � indicates gradient, k represents concrete intrinsic permeability 
[m2]; kL and kV  are relative permeabilities of liquid water and water vapor, respectively, µL 
and µV  are dynamic viscosities for liquid water and water vapor respectively en [Kg/m2 seg]; 
and PL and PV correspond to the liquid pressure and vapor pressure, both in [Kg/m2]. Under 
the critical point of water, these two pressures are related by capillary pressure Pc: 
	

�� � �� � ��           (9) 
 
Combining now equations (7), (8), (9) and Kelvin´s equation, one obtains:  
 

� ̅ � ��	�	�� � ���� 	������� ����� ������
���
�� �� ����� � � ������ 1��

���
�� � ��

� ��	�	�� 	�	���� �1 � ������ 1��� � � �1 � �� ��
�� ��

� ��
�� � ��� 

      (10) 

 
Note that thanks to assumptions made, only Pv shows up in this final equation. 
The dehydration process is assumed to start at about 105ºC, and the expression used is 

similar to that of Bazant and Thonguthai´s [7]:  
 

�� � ����� ����   (11) 
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in which wh
105 is the hydrated water content at 105ºC and f(T) is a function which represents 

the amount of water that is dehydrated when reaching higher temperature. Function f(T) is 
obtained by fitting experimental data of the weight loss measurements on heated concrete 
specimens, which can be obtained from the literature [17-19]. The expression used for f(T) is 
the following: 
 

���� � 1 � ������
�
���

�
 (12)

 
where q, p and Tr are constants fitting parameters which varies for different concretes and T 
represent the temperature.  

With equations (2), (10) and (11) the system is complete and equation (5) may be solved. 
The model described requires various additional parametric relations. Porosity ∅ is defined as 
proposed in [5] in terms of initial porosity ∅� and temperature. Intrinsic permeability of 
concrete k is also obtained using expression given in [5] in terms of initial intrinsic 
permeability �� and porosity. Expresions for relative permeability of liquid water �� and 
vapor �� correspond to the ones used in [20]. Expresions for dynamic viscosity of liquid 
water �� and vapor ��in terms of parameters ��� y �� and temperature have been taken from 
references [10] and [20].  

3 RESULTS 
The example of application presented in this section is a simplified version the one used in 

Tenchev et. al. (2001) [5] and Davie et. al. (2006) [20]. It consists of solving the 1D pressure 
distribution and water content in the direction perpendicular to the exposed surface, of a thick 
concrete wall. The numerical analysis is made on a long and narrow 2D FE domain of 
20×0.2cm (horizontal×vertical), which is discretized with a single row of 730 linear 
rectangular elements and the left vertical end corresponds to the exposed surface.   

Previous to the moisture calculation, temperature distributions are obtained from a separate 
thermal diffusion analysis, where the (left vertical) exposed edge is subject to temperature 
increments from 27 to 800ºC according to the ISO 834 curve [21], condition which is applied 
via mixed Newman-Dirichlet boundary condition (heat flow proportional to the difference of 
the resulting surface temperature with the desired prescribed value, proportionality constant 
h). Thermal flow is assumed null on the other three faces of the FE domain, and the initial 
temperature value is 27ºC for all nodes of the mesh. The resulting temperature distribution is 
then applied as an input for the moisture diffusion analysis, with a constant vapor pressure 
value assumed prescribed on the (left vertical) exposed edge of the domain (of 1,783e-3 MPa 
which corresponds to a relative humidity of 50% and 27ºC), while moisture flow is assumed 
null on the other three faces. The initial vapor pressure value was 2,67e-3 MPa for all nodes of 
the mesh, which corresponds a relative humidity of 75% at T0 = 27ºC. 

Thermal parameters used are: ρ= 2300 Kg/m3; C=1171 J/KgºC; kT= 66 J/min m ºC and the 
convective heat transfer coefficient, h = 6500 J/min m2 ºC. For moisture diffusion analysis, 
the parameters used are: k0 = 5e-17 m2; μV0=1.475e-8 Kg min/ m2; αv=5.88e-11 Kg min/ m2 ºK; 
β=2.5; Ø0=0.08; Rv=46.15 m/ºK; T0=27ºC; ��� = 1000Kg/m3. The parameters to obtain the 
dehydration rate are: wd105=60 Kg/m3, Tr���50� q�1 and p��� 
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a) d)

b) e)   

c) f)   
Figure 2: (a) Distribution of temperatures prescribed to the water content analysis; (b) vapor pressure; (c) 

saturation degree; (d) liquid water content; (e) vapor water content, (f) total water content as a function of the 
distance from the fire exposed edge for 10, 20, 30, 40, 50 and 60 minutes. 

Figure 2 shows the curves of temperature prescribed T (2a), vapor pressure  (2b), 
saturation degree S (2c), resulting liquid water content wL (2d), vapor water content wv (2e) 
and total water content w (2f), as functions of x (depth in the concrete wall), for six different 
heating times of 10, 20, 30, 40, 50 and 60 minutes. Only the part of the mesh affected by the 
process is represented (from x=0 to 0.1m), the rest remains in initial conditions. The results 
turn out qualitatively similar to those obtained in the literature, in which as the high 
temperatures penetrate the material, a front of low water content and high vapor pressure also 
moves into the material at around the location of the 250-300ºC front. 
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In Figure 2, the zone of growing pressures can be seen (fig. 2b) to coincide with the zone 
of growing water vapor content (Fig. 2e). This is due to a faster rate of water evaporation than 
liquid water transport. Moreover, the zone where water vapor increases also coincides with 
the zone where liquid water is practically inexistent. The sudden drop in water vapor content 
right after the maximum value (Fig. 2e), coincides with the sudden transition from dry to 
saturated for similar times (Fig. 2d), all of which is dictated by the evolution of the saturation 
degree (Fig. 2c). For each time, the location of the maximum vapor pressure p marks pretty 
well the limit of the dry zone in corresponding S curve.  

In Fig. 2d (liquid water distribution), one can clearly identify the four zones from left to 
right: a) a dry zone where liquid water has totally evaporated, b) a reduced zone of 
evaporation in which liquid water changes from its initial value (38 kg/m3) to practically zero; 
c) a zone of growing liquid water content till a maximum over its initial value of 38 kg/m3 due 
to the flow towards the interior of the material due to the pressure gradient, with a 
condensation front when it reaches the interior zone at lower temperature (moisture clog); and 
d) the inner zone of material not affected by the process, where initial conditions remain.  

4 CONCLUDING REMARKS 
The model described for moisture diffusion in concrete at high temperatures intends to be a 

physically-based model capable of representing the most essential aspects of moisture 
diffusion in concrete, while keeping the formulation simple enough (single-variable) so that 
eventually it can be implemented in the more general context of a meso-level mechanical 
model of concrete already developed and verified in a large variety of situations.  

In previous work [9], a first attempt made was based on the isothermal sorption curves of 
Bazant and Thougouthai [7]. However some shortcomings were identified. The new 
formulation presented in this paper tries to overcome some of those limitations. Flow of water 
and vapor are initially considered as independent phenomena depending on their respective 
pressures, although later the use of Kelvin´s equation brings the problem back to a single 
primary variable Pv. Desorption isotherms are not proposed phenomenologically, but come 
out as the result of the combination of a pore distribution curve and some fundamental laws 
such as Laplace and Kelvin´s equations. The model uses the concept of Ps (and therefore 
relative humidity H), only for temperatures below the critical point of water, and provides 
consistent transition to situations above that point, when only water vapor is present in the 
pores. Water content cannot grow beyond maximum material water capacity given by pore 
space. These and other advantages, make this model a sounder basis for incorporation into the 
complex meso-level model which is already under development. 
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E. Oñate, D.R.J. Owen, D. Peric & M. Chiumenti (Eds)

MULTIPHYSICAL FAILURE PROCESSES IN CONCRETE:
A CONSISTENT MULTISCALE HOMOGENIZATION

PROCEDURE

Felipe Lopez Rivarolaa, Nicolás Agust́ın Labandaabc, and Guillermo J. Etseac

aUniversidad de Buenos Aires. Facultad de Ingenieŕıa. LMNI-INTECIN (UBA-CONICET),
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Abstract. Durability and strength capabilities of concrete materials are vastly affected
by the combined action of temperature and mechanical loading, which give rise to mul-
tiphysical failure processes. Such a phenomenon involves complex cracking, degradation
and transport mechanisms on different scale lengths of concrete mixtures which, in turn,
depend on the particular properties of the different constituents. Thus, the macroscopic
observation of relevant concrete mechanical features such as strength, ductility and dura-
bility are the result of several different properties, processes and mechanisms which are
not only coupled but moreover, depend on multiple scales. Particularly, regarding the
pore pressure and thermal actions, most of the degradation processes in concrete are
controlled by the heterogeneities of the microscopic scale. In the case of the mechanical
actions both the micro and mesoscales play a relevant role. In this context, multiphysi-
cal failure processes in cementitious material-based mixtures like concrete can only and
fully be understood and accurately described when considering its multiscale and multi-
constituent features. In the realm of the theoretical and computational solid mechanics
many relevant proposals were made to model the complex and coupled thermo-hydro-
mechanical response behavior of concrete. Most of them are related to macroscopic for-
mulations which account for the different mechanisms and transport phenomena through
empirical, dissipative, poromechanical theories. Moreover, although relevant progress was
made regarding the formulation of multiscale theories and approaches, none of the existing
proposals deal with multiphysical failure processes in concrete. It should be said in this
sense that, among the different multiscale approaches for material modeling proposed so
far, those based on computational homogenization methods have demonstrated to be the
most effective ones due to the involved versatility and accuracy. In this work a thermody-
namically consistent semi-concurrent multiscale approach is formulated for modeling the

1

742



N.A. Labanda, F. Lopez Rivarola, G.J. Etse

thermo-poro-plastic failure behavior of concrete materials. A discrete approach is consid-
ered to represent the RVE material response. After formulating the fundamental equations
describing the proposed homogenizations of the thermodynamical variables, the consti-
tutive models for both the skeleton and porous phases are described. Then, numerical
analyses are presented to demonstrate the predictive capabilities of the proposed ther-
modynamically consistent multiscale homogenization procedure for thermo-mechanical
failure processes in concrete mixtures.

1 INTRODUCTION

A thermo-poro-mechanical multi-scale problem to model concrete degradation is pre-
sented in this paper and schematically represented in Figure 1. The multi-scale model is
stated within the semi-concurrent formulations [1] where the strain tensor ε, the tempera-
ture θ and it gradient ∇θ is transferred from the coarse scale to the fine scale. The mortar
in the micro-scale (or representative volume element RVE) is considered a porous media.
Biot’s poromechanics theory is considered for the mortar simulation, while the aggregate
is simulated as a simple elastic material. After solving the boundary value problem in
the fine-scale the macro-stress σ (x, t), the macro-heat flux q (x, t) and the macro-pore
pressure p (x, t) are obtained.

Figure 1: Schematic representation of the proposed multi-scale procedure.

The paper is organized as follow: the themo-poro-mechanic problem in the coarse
scale is stated in Section 2. Multi-scale equations are given in Section 3. Fine scale
constitutive modelling and some thermodynamics aspects are discussed in Section 4. A
numerical example is presented in Section 5 and finally, some conclusions are drawn in
Section 6.

2
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2 Thermo-poro-mechanical problem in the coarse scale

In the following section, the equilibrium equations for a thermo-poro-mechanics with
undrained hydraulic conditions are presented. It is important to note that all variables
with sub-index µ, are those acting in the fine scale.

The thermal problem can be expressed as: Given a thermal source f , find θ ∈ Θ such
that the heat flux q fulfil

∫

Ω

q · ∇xδθ dΩ =

∫

Ω

fδθ dΩ, ∀δθ ∈ Θ. (1)

The poro-mechanical problem can be expressed as: Given a temperature field θ that
satisfied (1) and a load in the Neumann boundary f , find u ∈ U such that the stress field
σ fulfil ∫

Ω

σ (uµ, pµ, θµ) · ∇s
xδu dΩ =

∫

Γ

f · δu dΓ, ∀δu ∈ U (2)

where
Θ =

{
θ ∈ H1 (Ω) : essential boundary conditions

}
(3)

U =
{
δu ∈ H1 (Ω) : essential boundary conditions

}
(4)

In equation 1 it can be seen that the macro stress tensor σ (uµ, pµ, θµ) depends on three
micro scale variables: the micro-scale displacement uµ, the micro-scale pore pressure pµ
and the micro-scale temperature θµ.

3 Multi-scale framework

Given a point x ∈ Ω in the macro scale and being y ∈ Ωµ the coordinate system in
the RVE, the following scale bridging equations can be formulated.

3.1 Thermal problem

• Axiom 1 - Kinematical admissibility

The following scale transition equation for the temperature gradient is considered

∇xθ =
1

|Ωµ|

∫

Ωµ

∇yθµ dΩµ ⇒ ∇xθ =
1

|Ωµ|

∫

∂Ωµ

θµn d∂Ωµ, (5)

being n the external normal of theRVE boundary ∂Ωµ. In the same way, the temperature
compatibility between scales is defined

θ =
1

|Ωµ|

∫

Ωµ

θµ dΩµ. (6)

The insertion of the macro-scale temperature gradient ∇xθ in the micro-scale temper-
ature field θµ, is considered as

θµ (y) = θ +∇xθ · (y − y0) + θ̃µ (y) ⇒ ∇yθµ (y) = ∇xθ +∇yθ̃µ (7)
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with

y0 =
1

|Ωµ|

∫

Ωµ

y dΩµ. (8)

Introducing equation (7) in (6) the following constraint over the temperature fluctua-
tion field is obtained ∫

Ωµ

θ̃µ dΩµ = 0 (9)

Finally, the space of kinematically admissible fluctuations in the microscopic temper-
ature field are

Θ̃µ =

{
θµ ∈ H1 (Ωµ) :

∫

Ωµ

θµ dΩµ = 0,

∫

∂Ωµ

θµn d∂Ωµ = 0

}
(10)

• Axiom 2 - Multi-scale virtual principle

The thermal multi-scale virtual principle can be written as

q · ∇xδθ =
1

|Ωµ|

∫

Ωµ

qµ (θµ) · ∇yδθµ dΩµ, ∀ δθµ ∇xδθ admissible (11)

• Consequence 1 - Thermal equilibrium problem in the RVE

Considering ∇xδθ = 0 in equation 11, the thermal equilibrium equation in the micro-
scale is obtained

1

|Ωµ|

∫

Ωµ

qµ (θµ) · ∇yδθ̃µ dΩµ = 0, ∀ δθ̃µ ∈ Θ̃µ (12)

• Consequence 2 - Homogenization operator for thermal flux

Considering δθ̃µ = 0 in equation 11, the homogenization operator for the thermal flux
is obtained

q =
1

|Ωµ|

∫

Ωµ

qµ (θµ) dΩµ. (13)

A Fourier law for materials in the fine scale will be considered

qµ (θµ) = −Kµ∇yθµ. (14)

3.2 Thermo-poro-mechanical problem

• Axiom 1 - Kinematical admissibility

For the scale transition equations a fractured RVE domain noted as Γµ with normal
nµ is considered

ε =
1

|Ωµ|

[∫

Ωµ

∇s
yuµ dΩµ +

∫

Γµ

[[uµ]]⊗s nµdΓµ

]
. (15)
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Applying Green’s theorem to equation 15, the following equations is obtained

ε =
1

|Ωµ|

∫

∂Ωµ

uµ ⊗s n d∂Ωµ. (16)

The insertion of the macro-scale strain tensor ε in the RVE kinematics, is defined as

uµ = u+ ε (y − y0) + ũµ, ⇒ ∇s
yuµ = ε+∇s

yũµ. (17)

Finally, the space of kinematically admissible displacement fluctuations are

Ũµ =

{
u ∈ H1 (Ω) :

∫

Ωµ

u dΩµ = 0,

∫

∂Ωµ

u⊗s n d∂Ωµ = 0

}
(18)

• Axiom 2 - Multi-scale virtual principle for poro-mechanical problems

The multi-scale virtual principle considering a poro-mechanic material in the RVE
with undrained hydraulic conditions, can be expressed as

σ ·∇s
xδu =

1

|Ωµ|

∫

Ωµ

σµ (uµ, pµ, θµ) ·∇s
yδuµ dΩµ+

∫

Γµ

tµ · [[δuµ]]dΓµ, ∀δu δuµ admissible,

(19)
where the last term is the contribution of the activated cohesive elements in the multi-scale
virtual power.

• Consequence 1 - Micro-mechanical equilibrium problem

Considering ∇s
xδu = 0 in equation 19, the micro-scale equilibrium equation is obtained

∫

Ωµ

σµ (uµ, pµ, θµ) · ∇s
yδũµ dΩµ +

∫

Γµ

tµ · [[δuµ]]dΓµ = 0, ∀δũµ ∈ Ũµ (20)

• Consequence 2 - Homogenization operator for the stress tensor

Considering δũµ = 0 in equation 19, the homogenization operator for the stress tensor
is obtained

σ =
1

|Ωµ|

∫

Ωµ

σµ (uµ, pµ, θµ) dΩµ. (21)

4 Helmholtz free energy in the RVE

Following Ref. [2], the energetic consistency in the micro-scale is stated considering
the Helmholtz free energy as follows

ψµ

(
∇s

yuµ, pµ, θµ
)
= ψB

µ

(
∇s

yuµ, pµ, θµ
)
+ψF

µ (δµ) , (22)
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where ψB
µ is the Helmholtz free energy for the bulk phase and ψF

µ is the Helmholtz free
energy for the fractured phase, defined as [3, 4]

ψB
µ

(
∇s

yuµ, pµ, θµ
)
=

1

2
Cµ

(
∇s

yuµ

)
·
(
∇s

yuµ

)
−Bµ

(
∇s

yuµ

)
θµ+

+
1

2
Mwb

2
w

(
tr
(
∇s

yuµ

)
− ζw

bw

)2

+
1

2

(
−C

T0

+Mwα
2
w

)
θ2µ+

−Mwbw

(
tr
(
∇s

yuµ

)
− ζw

bw

)
αwθµ + χµρµζw,

(23)

and

ψF
µ (δµ) =

{
Gc

δµ
δc

(
2− δµ

δc

)
, if δµ ≤ δc

Gc, if δµ > δc
, with δµ =

√
[[uµ]] · [[uµ]] . (24)

The coefficients needed to calibrate the porous media in the model are: bw the Biot
coefficient, Mw the Biot modulus, ζw = φwSw the water volumetric fraction being φw

water porosity and Sw the degree of saturation, αw coefficient of thermal expansion, C
volumetric heat capacity and T0 the reference temperature. The skeleton part is calibrated
using the elastic material operator

Cµ =
Eµ

1− ν2
µ

[(1− νµ) I+ νµ (I ⊗ I)] (25)

and the tensor of thermomechanical expansion of the skeleton

Bµ =
αµEµ

1− ν2
µ

[1 + νµ (trI − 1)] I (26)

Considering Coleman’s relations, from equation 22 the following relation can be ob-
tained

σµ

(
∇s

yuµ, pµ, θµ
)
=

∂ψµ

∂∇s
yuµ

= Cµ

(
∇s

yuµ

)
−Bµθµ+

+Mwbw
[
bw

(
tr
(
∇s

yuµ

)
− ζw − αwθµ

)
I
] (27)

or expressed in term of the pore pressure

σµ

(
∇s

yuµ, pµ, θµ
)
= Cµ

(
∇s

yuµ

)
−Bµθµ + bwpµI (28)

It is interesting to note that combining equation 28 with 21 the homogenization of the
total stress in the macro scale is the result of the homogenization of the effective stress in
the micro-scale plus the homogenization of the porous pressure in the micro-scale

σ = σ′ + p, (29)
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being the effective stress

σ′ =

(
1

|Ωµ|

∫

Ωµ

Cµ dΩµ

)
ε+

1

|Ωµ|

∫

Ωµ

Cµ

(
∇s

yũµ

)
dΩµ −

(
1

|Ωµ|

∫

Ωµ

Bµ dΩµ

)
θ+

−

(
1

|Ωµ|

∫

Ωµ

Bµ ⊗ (y − y0) dΩµ

)
· ∇s

xθ −
1

|Ωµ|

∫

Ωµ

Bµθ̃µ dΩµ

(30)

and the pore pressure

p =
1

|Ωµ|

∫

Ωµ

bwpµ dΩµI, with pµ = Mw

[
bw

(
tr
(
∇s

yuµ

)
− ζw − αwθµ

)]
. (31)

The homogenized constitutive tensor C retains the classical structure. To compute
tensors B and G two extra assumption are considered: a temperature invariant Biot
coefficient and a constant fluid mass. The first order thermomechanical contribution to
the macroscopic stress tensor is

− ∂σ

∂θ
= B = B + B̃ +Bp, (32)

where

B =
1

|Ωµ|

∫

Ωµ

Bµ dΩµ, B̃ = − 1

|Ωµ|

∫

Ωµ

Cµ

(
∇s

y

∂ũµ

∂θ

)
dΩµ, (33)

while the contribution of the pore pressure can be stated as

Bp =
1

|Ωµ|

∫

Ωµ

bw
∂pµ
∂θ

dΩµI, with
∂pµ
∂θ

= Mw

[
bw

(
tr

(
∇s

y

∂ũµ

∂θ

)
− αw

)]
. (34)

In the same way, the second order thermomechanical contribution to the macroscopic
stress can be stated as

− ∂σ

∂∇s
xθ

= G = G+ G̃+Gp, (35)

where

G =
1

|Ωµ|

∫

Ωµ

Bµ ⊗ (y − y0) dΩµ, (36)

G̃ = −

[
1

|Ωµ|

∫

Ωµ

(
Cµ

(
∇s

x

[
∂ũµ

∂∇s
xθ

]

k

))

ij

dΩµ+

− 1

|Ωµ|

∫

Ωµ

(Bµ)ij

[
∂θ̃µ
∂∇s

xθ

]

k

dΩµ

]
(ei ⊗ ej ⊗ ek) ,

(37)

while the contribution of the pore pressure is

Gp =
1

|Ωµ|

∫

Ωµ

bw
∂pµ
∂∇s

xθ
dΩµI, (38)
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with

∂pµ
∂∇s

xθ
= Mw

[
bw

(
tr

(
∇s

y

∂ũµ

∂∇s
xθ

)
− αw

(
y − y0 +

∂θ̃µ
∂∇s

xθ

))]
. (39)

The homogenized macroscopic stress can then be calculated as

σ = Cε−Bθ −G∇s
xθ. (40)

5 Numerical examples

Some numerical examples are presented in this section, considering an uncoupled
scheme solution for the thermo-poro-mechanical problem. The proposed RVE for the
analysis in concrete is presented in Figure 2.

Figure 2: Proposed RVE for thermo-poromechanical analysis.

5.1 Multi-scale thermal problem

The considered thermal conductivity tensor for cement mortar and aggregates are

Kmortar
µ =

[
0.7 0
0 0.7

]
W

m ◦C
, Kaggreg

µ =

[
3.0 0
0 3.0

]
W

m ◦C
. (41)

Using the homogenization procedure presented for the thermal problem, the following
homogenized thermal conductivity tensors for different sub-spaces of equation 10 are
obtained

(
in W

m ◦C

)

KTaylor =

[
1.3696 0

0 1.3696

]
, KLinear =

[
1.079 0.0024854

0.0024854 1.0622

]
,

KPeriodic =

[
1.0754 0.0023161

0.0023161 1.0573

]
, KTraction =

[
1.0724 0.0023531

0.0023531 1.0549

]
.

(42)
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Considering a temperature gradient of ∇s
xθ = [1; 0] and the homogenized tensors, the

macroscopic flux vectors in each case are

qTaylor =

[
1.3696

0

]
W

m2
, qLinear =

[
1.079

0.0024854

]
W

m2
,

qPeriodic =

[
1.0754

0.0023161

]
W

m2
, qTraction =

[
1.0724

0.0023531

]
W

m2
.

(43)

It can be seen that the macroscopic thermal flux vectors presented in the last equations
have a different direction compared with the introduced macroscopic temperature gradient
due to the anisotropy induced by the stochastic nature of the aggregate distribution. The
Taylor (classical mixture theory) sub-space is the only one not capable of recognizing
this effect, as it does not consider the heterogeneous geometrical conformation of the
micro-structure.

Considering the minimally restricted space, or uniform traction space, and introducing
a macroscopic temperature of θ = 100◦C, figure 3 shows the temperature distribution
within the considered RVE for different values in ∇s

xθ. It can be seen that the average
value in the microscopic temperature field θµ is the macroscopic introduced temperature.

(a) ∇s
xθ = (0, 1) (b) ∇s

xθ =
(√

2
2 ,

√
2
2

)

(c) ∇s
xθ = (1, 0) (d) ∇s

xθ = (0, 0)

Figure 3: Temperature distribution within the RVE.
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5.2 Multi-scale thermo-mechanical problem

In order to study the thermo-mechanical problem, a constant thermal distribution
in concordance with a temperature gradient ∇s

xθ = (0, 0) is considered. The material
parameters used to characterize the components of the micro-scale are presented in Table
1. The macro-scale temperature is increased and then returned to the initial temperature
condition, introducing initial damage. Then, a monotonically increasing macro-strain is
imposed to de RVE until it losses ellipticity.

The final configuration of the proposed RVE for different temperatures can be seen in
Figure 4, showing a different failure mode for different temperatures. The homogenized
stress-strain curves are plotted in Figure 5. It can be seen that the peak stress of the
proposed constitutive model is reduced due to the damage induced by the temperature,
and there is an increase in ductility. This results coincide with experimental analysis
found in literature.

Mortar Aggregate Interface
Young modulus E [MPa] 30800 37000 -

Poisson modulus 0.28 0.16 -
Critical tension σc [MPa] 6 - 3

Fracture energy Gc [N/mm] 0.14 - 0.070
Skeleton thermal expansion coefficient αµ [1/◦C] 7.4e−6 12.6e−6 -
Water thermal expansion coefficient αw [1/◦C] 207e−6 - -

Water porosity φw 0.16 - -
Water Biot coefficient bw 0.4073 - -

Water Biot modulus Mw [MPa] 9400 - -
Porous saturation degree Sw 0.5 - -

Table 1: Properties for concrete.

10
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(a) Macro temperature θ =
0◦C. Displacement amplified
x500.

(b) Macro temperature θ =
400◦C. Displacement amplified
x150.

(c) Macro temperature θ =
700◦C. Displacement amplified
x100.

Figure 4: Final configuration of the RVE for different temperatures and temperature gradient ∇s
xθ =

(0, 0).

4

3

2

1

0

σ n
n

1.0x10-30.80.60.40.20.0

ε22 

 Macro-Temperature = 700 C
 Macro-Temperature = 400 C
 Macro-Temperature = 0 C

Figure 5: Homogenized stress versus strain curves for different temperatures.

The considered tensors of thermomechanical expansion for cement mortar and aggre-
gates are

Bmortar
µ =




0.2072
0.2072

0


 MPa

◦C
, Baggreg

µ =




0.3709
0.3709

0


 MPa

◦C
. (44)
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Using the homogenization procedure presented, the following homogenized thermal
conductivity tensors for different sub-spaces are obtained

BTaylor =




0.2548
0.2548

0


 MPa

◦C
, BTraction =




0.2507
0.2454
0.0164


 MPa

◦C
. (45)

6 Conclusions

A multi-scale model for thermo-poro-mechanic problems has been presented and dis-
cussed in this paper. Starting from a semi-concurrent formulation, the Helmholtz free
energy of the mortar phase in the micro-scale is reformulated using the Biot theory for
porous media to consider the effect of the pore pressure induced by the heat transfer
through the material. Some numerical examples showing the homogenized response of a
concrete like material are presented and discussed. The lost of resistance of the material
due a temperature increasing has been numerically reproduced, and the final damage
configuration is presented.

REFERENCES

[1] Blanco P.J., Giusti S.M. Thermomechanical Multiscale Constitutive Modeling: Ac-
counting for Microstructural Thermal Effects, Journal of Elasticity: The Physical
and Mathematical Science of Solids, 2013. Vol.111.
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Abstract. The tool setting process for rotary draw-bending is very complex. Only experienced 
machine operators know which settings lead to a good result in relation to the bending task. Up 
to seven individual tools can be installed, positioned and set in the process independently. A 
complete set of tools consists of: pressure die, mandrel, wiper die, inner and outer clamp die as 
well as the bend die and the collet or piston bend. [1] Furthermore there are the axis settings, 
which can be adjusted with the parameters distance, force, angle, torque and time. If a defect 
occurs after the successful set-up process the machine operator has various possibilities to solve 
the problem. The effects of the different setting parameters and the procedure for the fastest 
possible elimination of the error are often unclear. The goal is to be able to use an adjustment 
support for the setting process by means of physical-analytical principles and systematically 
constructed FE simulations at the bending machine. In order to evaluate the bending result, the 
condition of the bending component is examined concerning the quality characteristics, 
cracking, wrinkling, cross-section deformation and elastic deformation. [2] Based on performed 
and analyzed FE simulations, adjustment recommendations regarding the respective quality 
characteristics are to be established as well as predictions about possible defects. The simulation 
and calculation results flow into a database. This is used for the implementation of an electronic 
expert, who uses a visualization aid to provide the machine operator with information and 
recommendations on the setup settings. This avoids errors during the equipping process and 
saves set-up time. Machine operators and particularly trained employees are guided and 
supported in their work. 
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1 INTRODUCTION 
At present, the set-up process and the adjustment process of the rotary draw bending are 

mainly based on the knowledge of the machine operators, which can result in high 
subjectivity. Particularly in the case of work sequences with intensive set-up times, a 
shortening of this non-value added activity is very important. This fact is multiplied when 
small series or individual components have to be realized. Interviews revealed that it often 
takes at least six months until a new trained employee, trained by experienced machine 
operators, can carry out his first set-up process by herself or himself. The transfer of 
information is cumbersome and the first economic set-up times are not reached until the 
employee has acquired his own experience. The aim of the joint research project "Cyber 
equipping 4.0 - cyber-physical support of humans during the set-up process using the example 
of a bending process for small-scale production on the basis of a knowledge transfer 
approach" is the quantification of the machine operator's experience knowledge in order to 
implement a setting rule and a set-up support for the machine operators using the approach of 
mental modeling. This set-up support should also be able to capture and process information 
using new possibilities of visualization, such as augmented reality technology. In order to be 
able to equip this set-up support with important process knowledge, FE simulations are to 
illustrate the influence of setting parameters on the quality characteristics of the bending 
component and to check and evaluate the results for universal validity. The first results of this 
research project are to be disclosed as followed. 

2 THEORY 
According to [2], rotary draw bending is a forming process which is shape-related. 

 
Figure 1: Rotary draw-bending tool kit [1] 

Prior to the bending process the tube is pushed over the mandrel from the front and fixed in 
the piston bend as well as between the inner and outer clamp dies. After that the bend die 
rotates around the bending center with the required bending angle. The tube is thereby pulled 
around the bending center while it is in contact with the cavity in the bend die. The outer 
clamp die rotates around the same center point so that the tube end remains fixed over the 
entire process. The pressure die serves to absorb the reaction force from the bending moment. 
Moreover, the pressure die can transmit a force through the tube and the inner mandrel on the 
wiper die. This passive reaction force superimposes the compressive stresses on the inner arc 
of the tube bow to prevent wrinkling. In addition to the function as a force-transmitting 
element, the mandrel serves for geometrically supporting the hollow profile. An ovality can 

1 piston bend or collet 
2 mandrel 
3 pressure die 
4 outer clamp die 
5 inner clamp die 
6 bend die 
7 wiper die 
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thus be countered. After the bending process has been completed, the bend part is released 
from the clamping of the outer and inner clamp dies. After the movements of the machine 
axes to their basic positions are done, the next bending can be carried out or the component 
can be removed after releasing the clamp die. The torque required for bending, initiated by the 
bend die, is transmitted to the plurality of tools and dissipates different reaction forces. This 
results in a complex force profile along the tube to be bent. In addition, up to seven different 
tools can be set independently of each other (figure 1). The settings are based on the position 
(translational displacement and rotational orientation), in selecting the correct speeds, as well 
as accelerations and the resulting process times. These aspects make the flexural bending 
process a complicated forming process that reacts very sensitively to parameter variations. 
Finding connections between setting parameters and bending results and then handing them 
over to other employees is difficult and time-consuming. There is a great demand for a 
visualization instrument, which combines know-how with a visual, comprehensible 
presentation. 

2.1 Equipping process 
A tool setting process can be subdivided into a static and a dynamic component. The static 

tool setting process includes all in-house activities and necessities, which are indispensable 
for the actual set-up task. This includes the provision of tools and the maintenance of storage 
areas, as well as the infrastructure necessary for the correct allocation of tools to bending 
components. In addition, the static part includes the set-up process itself. This involves 
dismantling the old tool set and installing the new tool sets. It is also distinguished into a 
small, as well as a large set-up process, depending on how many tools have to be exchanged. 
The dynamic tool setting process includes all activities which are to be carried out after the 
static tool setting process. These include in particular parameter variations within the machine 
control for setting the process, as well as the adjustment of the process due to component 
faults. For a fast, targeted adjustment of the process parameters, a strong process 
understanding is necessary. 

2.2 Quality characteristics 
The VDI 3431 [2] currently comprises over twenty different quality characteristics on the 

bending component which can be tested both quantitatively and qualitatively according to the 
customer's requirements (see also [1], [3], [4]). 

Table 1: Quality characteristics, extract from VDI 3431 [2] 

characteristic formular-
symbol 

Inner and outer diameter Di, Da 
Bending radius Rth 
Bending angle α 
Cross-section area - 
Cracking (DIN EN ISO 8785) [3] - 
Roundness of tubes - 
Wall thickness s 
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In the context of this publication, the quality characteristics cracking on the outer curve and 
ovality or cross-section deformation were analyzed using FE simulations. 

3 DISCUSSION 

3.1 Simulation software 
With the aid of the FE simulation program PAM-Stamp 2G of the ESI-Group, Neu-

Isenburg Germany, a simulation model was modeled according to the real process of the 
company Westfalia Metallschlauch GmbH, Hilchenbach Germany. 
The quality characteristics explained in chapter 2.2 can be assigned to different process 
parameters by which these are influenced. The parameters of the rotary draw bending process 
to be set are listed in table 2. The adjustment parameters were modeled in PAM-Stamp 2G 
with the semi-finished material 1.4512, a tube outer diameter of Da = 101.6 mm, a wall 
thickness of 2 mm, a bending angle of 127.7°, and a bending ratio of 1 × Da. 

3.2 Reference simulation 
In order to find out in how far and strong which process parameters influence the bending 
result, an OFAT study (one factor at a time) was first carried out. For this purpose, a reference 
simulation was set up, in order subsequently to vary successively individual process 
parameters. The reference simulation generates a bending result, which is classified as a good 
part, in accordance with customer’s wishes and requirements. A large number of simulations 
arose, which after evaluation contribute to the improvement of the process understanding. 
Table 2 shows the values for which the process parameters were set during the reference 
simulation. Within the contact definition, the COULOMB's coefficient of friction was 
specified as tangential behavior. 

Table 2: Process parameter of the FE-simulation 

Process parameter 
in PAM-Stamp 2G Value Unit 

Clamp die force 125 kN 
Clamp die coefficient of friction 0.4 - 
Piston bend speed 7.5 mm/s 
Mandrel position 0 mm 
Mandrel speed 19 mm/s 
Mandrel coefficient of friction 0.05 - 
Presure die displacement 0.15 mm 
Pressure die speed 9.4 (= 94 %∙ 𝑣𝑣𝐵𝐵𝐵𝐵) mm/s 
Pressure die coefficient of friction 0.2 - 
Wiper die position 0 mm 
Wiper die coefficient of friction 0.15 - 

 
In the first 2 s of the simulation time the clamping of the tube is made. Only after the 
clamping force has reached 100 %, the forming begins. The feed rate is reduced via the piston 
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bend during the conversion from second 6 (c.f. figure 2 l.h.). This results in less wrinkling. 
The mandrel is initially left at its starting position during the forming process, which is also 
shown in figure 2 r.h. In the last 5° of the bending angle, the mandrel is retracted, while at the 
same time the rotational speed of the bend die and the pressure die displacement in transversal 
direction (c.f. figure 3 l.h.) are reduced. The paths marked green and red show the setting 
limits between which a parameter variation was performed. 

  
Figure 2: Amplitude profile of the adjustment parameters 

The speed of the pressure die 𝑣𝑣𝑃𝑃𝑃𝑃 is dependent on the rotational speed of the bend die 𝑣𝑣𝐵𝐵𝑃𝑃, 
related to the outside radius of the tube bow. For this reason, the coefficient 𝑣𝑣𝑃𝑃𝑃𝑃/𝑣𝑣𝐵𝐵𝑃𝑃 is 
introduced. If this coefficient is 100 %, the speed of the pressure die is exactly the same as the 
rotational speed of the outer bow of the tube. In the case of the bending task simulated here, 
the angular velocity amounts 𝜔𝜔𝐵𝐵𝑃𝑃 = 0.0656 𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠 and thus the rotational speed of the 
outside bow is 𝑣𝑣𝐵𝐵𝑃𝑃 = 10 𝑚𝑚𝑚𝑚/𝑠𝑠. In figure 3 r.h., the amplitude profile of the displacement 
which the pressure die moves in longitudinal direction at specific simulation times is shown. 
Moreover, the coefficienst 𝑣𝑣𝑃𝑃𝑃𝑃/𝑣𝑣𝐵𝐵𝑃𝑃of the shown velocities are displayed in percent.  

   
Figure 3: Amplitude profile of the adjustment parameters 

At the displacement of the pressure die in longitudinal direction there are three different speed 
ranges during the bending process. The initial speed, up to second 6, is 33 % above the tube 
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speed. This is followed by a variable speed up to second 25. If the bending angle is exceeded 
90°, a continuously low end speed of 60 % of the tube speed is used. During the last 5° the 
speed of the pressure die is 0 mm/s. 
 
The forming limit diagram was used for the evaluation of the simulations. This represents the 
maximum main transformation degree  over the minimum main transformation degree . 
For the failure limit, a simplified calculation model according to [5] with a constant value for 
the positive range of  and a constant slope of -1 for the negative range of  was used. 
Figure 4 shows the forming limit diagram of the reference simulation. 

  

Figure 4: Forming limit diagram of the reference simulation 

3.3 Key indicators for assessing the failure criteria 
The value FLDCRT, forming limit diagram failure criterion, is used for the failure criterion 

cracking on the outer radius [6]. The FLDCRT value is calculated for a point A in figure 5 
according to equation (1). 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑇𝑇𝐴𝐴 = 𝜑𝜑1
𝐴𝐴

𝜑𝜑1𝐵𝐵
 

(1) 

  

Figure 5: Calculation of the FLDCRT value 

𝜑𝜑1 

𝜑𝜑2 
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In order to be able to compare the simulations, the FLDCRT value is determined from each 
point of the forming limit diagram. Then the largest value is stored as a comparison 
characteristic value. If the value of an evaluated simulation is less than 1, the bending part is 
crack-free. If the value exceeds 1, at least one FLD point has exceeded the limit shape change 
and the component fails. 

 
Figure 6: FLD distance value of the reference simulation 

Figure 6 shows the FLD distance value of PAM-Stamp 2G, which indicates the distance 
between point A and point B, where a negative distance corresponds to a point A below the 
forming limit curve (c.f. figure 5). The FLDCRT value is calculated from this value. 
 
For the failure criterion ovality, the out-of-roundness u is calculated according to 
VDI 3430 [1] from the coordinates of the simulations at an angle of 60° of the arc. For this 
purpose, in the simulation program, as shown in figure 6, a cutting plane is laid through the 
tube at the 60° angle and the coordinates of each node point of the tube cross-section are 
stored out. Subsequently, the tube outer diameter in the direction of the main axis and the 
secondary axis are calculated, and the percentage of the out-of-roundness u is determined. 
The simulated bends pass through a spring back program of PAM-Stamp 2G before being 
evaluated to measure the comparative values of the unclamped tubes. 

3.4 Quality characteristic cracking 
The process parameters which are explained in more detail in chapter 3.2 and also 

displayed in figure 6 are the pressure die displacement 𝑠𝑠𝑃𝑃𝑃𝑃, which corresponds to the 
adjusting force of the pressure die, the characteristic number 𝑣𝑣𝑃𝑃𝑃𝑃/𝑣𝑣𝐵𝐵𝑃𝑃, as well as the piston 
bend speed 𝑣𝑣𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. The effects of the variation of these three parameters on the quality 
characteristic cracking are shown in the following figures. 
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Figure 7: Pressure die displacement influence on the cracking probability 

If the pressure die displacement values are less than 0.05, the bending parts are located in the 
cracking area (FLDCRT> 1), as can be seen in figure 7. At values between 0.05 to 0.25, the 
cracking probability decreases to FLDCRT = 0.894. At a pressure die displacement of 
0.3 mm, the cracking probability increases again. 0.3 mm corresponds to the clearance 
between the mandrel and inner wall of the tube, which is reduced by the pressure die at a 
displacement of 0.3 mm to 0 mm. This probably leads to a higher friction. 

 
Figure 8: Pressure die speed influence on the cracking probability 

As can be seen in figure 8, a raising pressure die speed is lowering the cracking probability. 
At a pressure die length of 460 mm (blue marking), the supporting effect of the pressure die 
seems to decrease at the speed coefficient of 90 % therefore the cracking probability is 
increasing. At a speed coefficient higher than 90 %, the pressure die moves so far that less 
than 1/3 of its length fits closely to the tube. This reduces the supporting effect. In simulations 
with a bigger pressure die length of 670 mm (red marking) the cracking probability does not 
rise at higher speeds. The supporting effect is retrained. 
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Figure 9: Piston bend speed influence on the cracking probability 

As figure 9 shows, the cracking probability decreases with an increasing piston bend speed. 
The first three, red marked values pertain to simulations, in which the piston bend was slower 
than the end of the tube, so it has never touched the end face of the tube. Thus the values 
correspond to a boost speed as good as 0 mm/s. The valuation shows that it is not possible to 
bend completely without piston bend at this bending task, as, according to the FLDCRT 
value, the tube will crack. 

  
Figure 10: Mandrel speed influence on the cracking probability 

A rising speed ensures a slight increase in the probability of cracking, as can be seen in 
figure 10. A polynomial trend line second degree connects the points. 

3.5 Quality characteristic ovality 
The three process parameters, already explained in chapter 3.2, have also been varied for 

the quality characteristic ovality. The effects of the variation to the ovality are shown in the 
following illustrations. 
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Figure 11 displays that at a pressure die speed lower than the speed of the tube’s outer bow 
(blue marking 94 %), a rising infeed till 0.15 mm causes an expansion of the ovality, the 
tube’s outer bow might be braked stronger. At a higher pressure die speed, (red marking 
130 %), a rising delivery causes a reduction of the ovality. At this point, the boost effect 
might be strengthened. 

 
Figure 11: Pressure die displacement influence on the out-of-roundness 

At a pressure die displacement of 0.16 mm in figure 11, the out-of-roundness decreases and 
slowly starts to increase again. The influence of the pressure die displacement to the out-of-
roundness u seems to be in interaction with the mandrel shaft. The mandrel shaft‘s diameter 
amounts to 97.3 mm and the internal tube diameter amounts to 97.6 mm, so the radius has a 
0.15 mm clearance. The first contact between the inner wall of the tube and the mandrel shaft 
is initiated at a displacement of 0.15 mm. If this infeed is increased, the mandrel gets slightly 
pushed out of its position by the pressure die. The active friction forces increase. At a 
displacement of 0.3 mm there is no clearance between the mandrel and the inner wall of the 
tube anymore. Simulations with higher displacements led to oversized, unwanted bulges. 

  
Figure 12: Pressure die speed influence on the out-of-roundness 

According to figure 12, the out-of-roundness decreases at a rising pressure die speed. On this  
bending task, the speed of the tube center has 66 % of the rotation speed of the tube’s outer  
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bow. At a simulated speed of 65 %, the out-of-roundness is at a particular high level. 

  
Figure 13: Piston bend speed influence on the out-of-roundness 

As can be seen in figure 13, varying the piston bend speed has no clear influence on the out-
of-roundness. The first, red marked value pertains to a simulation, in which the piston bend 
was slower than the end of the tube, so it has never touched the end face of the tube (no boost 
effect due to the piston bend). 

  
Figure 14: Mandrel speed influence on the out-of-roundness 

Figure 14 shows that to vary the mandrel speed does not allow any conclusions to be drawn 
about the ovality. 

4 CONCLUSION 
The evaluation of the simulations has shown that the process parameters of the pressure die 

influence the bending result in a massive way. The piston bend and the mandrel do not have 
such an important impact to the bending result. This realization underlines the approach of 
adjusting the process parameters in the course of an equipping process, as previously 
recommended by our chair of forming technology (also seen in figure 15). This process aims 
in the first place to increase the pressure die speed and the displacement of the pressure die, till 
the error pattern is repaired. Thereby, it is important to pay attention to the interaction of the 
tube’s speed at the tube’s outer bow and with that to the rotation speed of the bend die, as well 
as to the interaction of the mandrel shaft‘s diameter and the resulting clearance to the inner wall 
of the tube. 

0
25
50
75

100
125
150
175

0 2 4 6 8 10 12 14

ou
t-o

f-r
ou

nd
ne

ss
 u

 [%
]

piston bend speed vPiston [mm/s]

0
25
50
75

100
125
150
175

5 10 15 20 25 30 35 40

ou
t-o

f-r
ou

nd
ne

ss
 u

 [%
]

mandrel speed [mm/s]

764



M. Eng Linda Schulte, Dr.-Ing. Christopher Kuhnhen, M. Sc. Darwin Abele, M. Sc. Sven Hoffmann,  
Dr. Aparecido Fabiano Pinatti de Carvalho, Univ.-Prof. Dr.-Ing. Bernd Engel, Prof.-Dr. Marcus Schweitzer, 

Univ.-Prof. Dr. Volker Wulf 

 12 

  
Figure 15: Approach and order of adjusting the process parameters of a rotary draw bending machine 

5 OUTLOOK 
All of the described investigations highlight the dependency of the configurable process 

parameters to the quality characteristics of the bending components of cracking and ovality. In 
the next working steps, actual bending tests will be carried out, based on the bending task shown 
in this paper, and the results will be compared to the described simulation results. The overall 
aim of the investigation is to provide the visualization tool, as planned in the project cyber 
equipping 4.0, with a software, which specifically saves process data of every bending and 
performs an automatic evaluation. The simulations should provide a knowledge database, 
which is little by little extended with results of actual bending processes. Based on these results, 
the visualization tool should output recommendations to parameter corrections, depending on 
the presented error pattern. The accuracy of the recommendations should increase with growing 
data quantity. In this way, machine operators and especially trained employees can be guided 
and supported in their activity. 
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Abstract. Vibrating screens are often used in the mining industry to separate mineral 
particles by size. In many designs, spring arrays are used to provide the system with the 
necessary stiffness for screens to vibrate in a controlled manner. Naturally, these springs are 
subjected to varying loading cycles, which can cause their premature fatigue failure. This 
behavior has been studied by means of finite element analysis and compared with data 
obtained from a real case scenario, in which a helical spring failed. The 3D computational 
model was developed using the geometric characteristics and material properties of a 
fractured spring, as well as the loading characteristics of a specific vibrating screen. The 
meshing and the simulation tasks were performed in the general purpose software ANSYS 
Mechanical. Given the nature of the helical springs and the high-cycle loading conditions, for 
the fatigue analysis it was determined that a stress-life approach with constant amplitude and 
non-proportional loading best fit the investigated phenomenon. In solving the non-
proportional loading case, stress values of two static scenarios were required to determine the 
upper and lower limits. Then, to perform the fatigue calculations a solution combination was 
used. In addition, in order to correct the effect of mean stress and calculate the stresses 
component respectively the Goodman and Von Mises theories were employed. Simulation 
results showed that spring would present failure below the second turn of the coil when 
working with the full nominal load during nearly forty million cycles. These results strongly 
agreed with the data extracted from a vibrating screen where fractured spring had been 
working. Fatigue analysis also predicted that the nominal load should be reduced to 90% in 
order for the spring to meet the minimum life requirements before failure occur.   

1 INTRODUCTION 
In the mining industry, vibrating screens play an important role, as they allow the adequate 

sorting of minerals by their size. Complexity in the design of these machines make numerical 
techniques a proper tool to study their dynamic behaviour, which could include modal or 
harmonic response analysis [1]. 

The operational characteristics of a vibrating screen imply that its components support 
loading and unloading cycles, which could often activate fatigue mechanisms. As it is well 
known, these mechanisms could lead to the component failure, even though the stress levels 
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that they support are below the yield stress of the material. 
The springs that are located in the vibrating screen structure are not exempt from these 

effects, which is why it becomes important to examine the loads that they support. The type of 
loading in these springs and their geometry, cause the principal stress directions to change 
over time. This phenomenon is the cause of non-proportional fatigue, which could have great 
influence over the strength of a material, diminishing it up to 10 times its original value [2]. 

A general case of non-proportional fatigue, which includes not only change in the principal 
stress directions, but also a non-constant load amplitude, has been studied in [3]. There, 
expected life of compression helical springs was predicted based on critical sliding planes on 
the fracture surface (Fatemi-Socie and Wang-Brown), as well as with methods based on 
angular strains (Coffin-Manson). A finite element model that simulated the conditions of the 
experiment later confirmed these results. 

An even more detailed analysis on the characteristics of the steel from which compression 
springs are usually made can be found in [4]. In contrast with the former analysis, these 
experiments were carried out by bringing test specimens under loading and unloading cycles 
with varying alternating stress values. The Wöhler curves that were obtain through these tests 
showed that not only the type of loading has influence on the fatigue stress limits, but it is 
affected also by the surface finish and environmental conditions in which the material works. 
As a supplement to these analysis, [5] describes mathematical crack propagation models as 
functions of the number of cycles that correspond to the results of the experiments. Moreover, 
[6] introduces changes in the microstructure to such models, as to evaluate their influence on 
the fatigue stress limits and on crack propagation. 

Even though the experiments mentioned up to this point have been useful to determine 
mechanical properties in helical springs, all of them have been carried out under controlled 
laboratory conditions. In contrast, [7] presents the analysis of a helical compression spring 
that belonged to the suspension system of an automobile, which had failed due to fatigue 
during normal operation. It was confirmed by a FEM analysis that contact stress between the 
first turn of the spring (where the failure occurred) and the base, as well as the presence of 
corrosion, were the cause of nucleation and propagation of cracks that ultimately led to the 
failure. 

Similarly to the latter, the analysis in the present article is based on the failure of a spring 
during normal operation of a vibrating screen. The geometry was modeled after a spring 
taking its dimensions directly from the fractured specimen. A FEM analysis was then 
performed using ANSYS Mechanical. In order to consider the weight of the components and 
the load of the vibrating screen, a static scenario was first evaluated to obtain the mean 
deformation during operation. Later, the maximum and minimum vibration amplitudes were 
taken from field data and were added or subtracted from the static deformation, respectively. 
Together with the spring geometry, they caused the principal stresses to vary over time, which 
implied a case of non-proportional fatigue that was analyzed using the software Fatigue Tool, 
considering an adequate correction on the mean stress to predict the life and safety factor of 
the spring. 

2 ANALYSIS METHODOLOGY 
The vibrating screen from which the springs were taken presents two types of loading over 
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them: the first, a static load due to the weight of its components and the material it processes; 
the second, a dynamic load due to the exciters that produce the screen vibration. The 
combined effect of both types of loading causes the stress amplitude to oscillate 
symmetrically around the static stress (pulse loading). 

As the dynamic load in terms of force was not directly known, field data concerning the 
maximum and minimum values of the vibration amplitude were taken. The numerical 
simulation was based in three scenarios: a first one, considering the static load due to the 
weight of the screen and its nominal load, which allowed the calculation of the static 
deformation (and thus, the static force). The second scenario considered the vibration 
amplitude as contributing to the static load (in the same direction), which gave as result the 
state of maximum compression over the spring. The last scenario considered the vibration 
amplitude in the opposite direction of the static load, which gave as result the minimum 
compression value over the spring. 

The results of the static scenarios were finally combined in a single fatigue scenario, which 
considered the non-proportional effects due to the varying principal stress directions. 

3 ANALYSIS PROCEDURE 
The following lines contain information about the preprocessing stage of the simulation: 

geometry, material model and properties, meshing and boundary conditions. 

3.1 Geometry  
The geometric model was made based on the spring dimensions that operated in the 

vibrating screen. The shape, as some of the most important dimensions and the 3D model can 
be observed in figure 1. 

 
Figure 1: Geometry and 3D model for the analysis 

3.2 Meshing 
Meshing of the 3D model was performed using tetrahedral, second-order elements that 

allowed a good adaptation of the numerical model to the existing geometry, as well as a better 
interpolation between the nodal results. It was also considered convenient a mesh refinement 
in the coil planar faces. The final mesh had 274124 elements, together with a mean element 

768



Rosendo Franco, Pedro A. Flores and Angel A. C. Peinado 
 

 4 

quality of 0.83 and a mean aspect ratio of 1.89. Figure 2 shows the final mesh together with 
the mesh refinement zone. 

 
Figure 2: Spring mesh and detail of the mes refinement zone 

3.3 Material properties 
For the present analysis, a SAE 5160 steel was considered [8]. Table 1 shows some 

physical and mechanical properties that were taken into account during the simulation. Also, 
figure 3 shows the S-N curve for this steel, which is necessary to perform the fatigue analysis 
[9]. 

Table 1: Physical and mechanical properties of SAE 5160 

Density 
(kg/m3) 

Elastic Modulus 
 (GPa) 

Ultimate Stress 
(MPa) 

Yield Stress 
(MPa) 

Poisson’s 
ratio 

7850 210 1400 1200 0.3 
 
 

 
Figure 3: S-N curve for SAE 5160 
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3.4 Boundary conditions 
As the dynamic forces are unknown, displacement boundary conditions over the planar 

faces of the spring were applied instead. On its base, three displacement restrictions were 
imposed: null displacement in the normal direction of the planar face, null displacement in the 
radial and tangent direction of the inner vertex in the planar face and null displacement in the 
tangent direction of the outer vertex in the planar face. Such displacements can be observed in 
figure 4. 

 
Figure 4: Condiciones de contorno en la base del resorte 

To impose the spring load, a displacement was used on the upper planar face of the spring 
in its normal direction. This displacement value changed according to the scenarios describe 
in the analysis methodology. Figure 5 shows this boundary condition for one of the analyzed 
scenarios. 

3.4.1 Static scenario due to the weight of the components 
The first simulation scenario only considered the weight of the vibrating screen 

components on the springs. Available field data showed that each spring supported 9810 N. 
This load was imposed on the upper planar face of the spring in order for the total static 
deformation to be calculated. 

3.4.2 Static scenario for the maximum compression on the spring 
In this scenario, the vibration amplitude (4.9 mm) was subtracted to the already negative 

deformation due to the weight of the components (calculated in the previous scenario). 
Frictionless contact conditions were also stablished between the first upper and lower turns fo 
the coil, in order to prevent self-penetration during the simulation. These conditions are 
shown in figure 6. 
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Figure 5: Vertical displacement on the upper planar face of the spring 

 
Figure 6: Contact conditions between the coil faces 
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3.4.2 Static scenario for the minimum compression on the spring 
This time, the vibrating amplitude was added to the negative deformation due to the static 

load, resulting in a lower state of compression. The rest of boundary conditions were similar 
to the previous scenario. 

3.4.2 Fatigue analysis scenario 
In this scenario, loads from the previous scenarios were considered cycling and varying 

over time with constant amplitude. Due to the facts exposed in the first part of the article, the 
fatigue analysis was defined as non-proportional. Taking into account that vibrating screens 
usually work at high frequencies, a stress-based approach was used to predict the life of the 
springs. Goodman theory for mean stress correction was used together with the von Mises 
equivalent stress. Finally, the highest cycle number in the S-N curve defined infinite life (109 
cycles).  

4 RESULTS 
Results of each of the static scenarios were used as inputs to the final fatigue scenario. The 

results obtained in this last scenario were compared with the actual fractured spring with very 
good similarities between the numerical model and the component. Also, predicted life had a 
remarkable correlation with the actual life on which the spring was operational.  

4.1 Minimum compression scenario 
As previously described, in this scenario the highest displacement was applied (34 mm) 

and thus, higher equivalent stress values were expected. The higher stresses were obtained 
from the second upper turn of the coil down to the second lower turn. The stress value in the 
middle turns was approximately constant. The maximum stress value was 466 MPa. Figure 7 
shows the equivalent stress distribution for this scenario. 

 
Figure 7: Equivalent stress for the first scenario 
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4.2 Maximum compression scenario 
The imposed displacement was 24 mm. In this case, a very similar stress distribution was 

obtained compared to the previous scenario. The maximum equivalent stress was 336.6 MPa. 
The equivalent stress distribution can be observed in figure 8. 

 
Figure 8: Equivalent stress for this scenario 

4.3 Fatigue analysis scenario 
Based on the conditions stablished in the analysis methodology, the results of non-

proportional fatigue concluded that the spring would have a predicted life of 3.99⋅107 loading 
cycles before failure. The predicted life for the entire spring can be observed in figure 9. 

 
Figure 9: Predicted life of the spring 
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If it is taken that the spring should have had a working life of 109 cycles, its fatigue safety 
factor was calculated to be 0.25, as shown in figure 10. 

 
Figure 10: Safety factor for the spring base on the fatigue analysis 

A fatigue sensibility study to the load value showed that, for 109 cycles, only 20% of the 
nominal load should be applied. In figure 11, it is shown that if the nominal load is lowered 
by 10%, the spring can achieve 40 working days. 

 
Figure 11: Fatigue sensitivity analysis and limit nominal load for 40 working days (red) 

0.00E+00

1.00E+08

2.00E+08

3.00E+08

4.00E+08

5.00E+08

6.00E+08

7.00E+08

8.00E+08

9.00E+08

1.00E+09

0.0 0.2 0.3 0.5 0.7 0.9 1.0 1.2 1.4 1.6 1.7 1.9 2.1 2.2 2.4
Loading history

Available life (cycles)

774



Rosendo Franco, Pedro A. Flores and Angel A. C. Peinado 
 

 10 

5 CONCLUSIONS 
- The different loading scenarios and the spring geometry when the vibrating screen is 

working with nominal load create the conditions for the spring to be analyzed via a 
non-proportional fatigue analysis. 

- Results obtained through numerical simulation suggest that, when the vibrating 
screen worked under nominal load, expected life of the springs was about 40 working 
days, which strongly agreed with actual experience with the fractured specimen. 

- The latter also indicates that the stress levels and fatigue life prediction was correct, 
as the spring presented failure on the turn of the coil in which the numerical 
simulation showed the highest level of equivalent stress. 
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Abstract. Compressor blades are one of the well-known products made of titanium alloys. They 
are usually manufactured by a forging process followed by a sequence of machining processes. 
Precision forging eliminates a considerable amount of machining; however, due to the close 
tolerances, the process should be designed in a manner to meet dimensional and geometrical 
tolerances as well as the desired mechanical and metallurgical properties. In this paper, effects 
of two main process parameters, the process temperature and strain rate, on the dimensional 
and geometrical accuracy of the isothermally forged blades are investigated experimentally. 
The results are analyzed by the response surface method (RSM). In order to justify the results 
and have a tool for further studies, a coupled thermo-mechanical finite element method model 
is developed and verified by the experimental results. The results show that the process 
temperature and pressing speed and their interaction have a meaningful effect on the thickness 
error; however, the interaction effect of the process temperature and pressing speed on the twist 
error is not considerable and moreover the bow error of the forged blades is not significant. 
Finally, the results show that for a given geometry, by selection of appropriate process 
parameters, a sound workpiece with acceptable dimensional and geometrical aspects can be 
manufactured without any need for a die shape compensation. 

 
1 INTRODUCTION 
The titanium and its alloys, including Ti-6Al-4V the workhorse of titanium alloys, have 
widespread applications in various industries. One of these applications is in the field of 
compressor blades manufactured by the forging process. Considering the raw material and 
machining costs, the precision forging may result in reducing the final price of the product. 
Besides, because of a considerable dependence of its flow stress on the temperature and 
deformation rate, using the isothermal forging results in a more uniform mechanical and 
metallurgical properties [1].  
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Ou and Balendra studied a non-isothermal airfoil forging process, including the airfoil 
geometrical deviation due to the elastic die deflection numerically [2]. They compensated the 
airfoil geometrical deviation by modifying the die profile in the opposite direction to the elastic 
die deflection. Moreover, they studied the effect of preform cross-sections on the elastic die 
deflection by the 2D finite element method (FEM) [3]. Hu and Balendra studied the airfoil 
section's form errors arisen from the die elasticity and cooling by the 2D FEM simulations. 
They concluded that the process temperature had a great impact on the thickness error [4]. Ou 
et al. simulated a non-isothermal airfoil forging by 2D FEM and presented a compensating 
factor to adapt the die profile to the airfoil errors [5-10]. Bruschi and Ghiotti investigated the 
effects of different cooling sequences on the cooling-induced errors of AISI430 forged blade. 
Their results showed that applying turbulent air to cool down the forged blade, increased the 
airfoil geometrical stability [11]. Lu et al. compared the application of one or two compensating 
factors to recompense the forging errors during the non-isothermal forging of a compressor 
blade by 3D FEM simulations. Their results demonstrated the usefulness of the single factor 
method to recompense the forging errors [12]. In order to increase the forging accuracy, Lu and 
Ou studied stochastic aspects of a blade forging process to optimize the systematic and random 
errors [13]. Lu and Ou presented an approach to assess the contribution of press machine 
deflections on the accuracy of a forged blade. Their results showed that the press deflection had 
a considerable effect on the accuracy of the forgings [14]. Makem et al. presented an automated 
technique to assess the dimensional and geometrical accuracy of the blade forgings in the design 
and modeling steps [15]. Simonetto et el. developed an approach consist of numerical and 
experimental studies to evaluate the distortions of stainless steel forged blades in order to 
optimize the die design [16].  
The literature review showed that although the Ti-6Al-4V blades have been manufactured by 
the forging process since several decades ago, but many researchers are still interested in 
optimization of various aspects of the blade forging. The process temperature and pressing 
speed are two main factors that govern the mechanical and metallurgical properties of the 
forgings; however, the effects of these factor on the geometrical and dimensional aspects of the 
forgings, which is a significant subject in the case of the precision forging, are not well 
addressed in the literature. In the current paper, a comprehensive numerical and experimental 
study of the effects of the temperature and pressing speed on the geometrical aspects of the 
isothermally forged blade is presented.  

2 THE BLADE'S DIMENSIONAL AND GEOMETRICAL ASSESSMENT  

2.1 The Blade's Dimensional and Geometrical Errors 
During the manufacturing process of the blades, several dimensional and geometrical errors 
may arise. Some geometrical errors can be eliminated during the subsequent machining 
processes; however, some of them may not be modifiable which result in scraping the blade. 
The blade's geometrical errors are shown schematically in Figure 1. The excessive rotation of 
the airfoil around the x-axis and y-axis results in the lean and tilt errors, respectively. These 
errors can often be compensated during the machining processes. The rotation of the tip cross 
section respect to the platform cross section around the z-axis is defined as the twist. The 
deviation of the twist from its nominal value results in the twist error. The out-of-tolerance twist 
error is not often modifiable by the machining processes. The airfoil thickness is defined 

777



S. Javid Mirahmadi and Mohsen Hamedi 

 3

according to Figure 2. The chord line is a straight line between the leading (A) and trailing (B) 
edges. At a particular distance from the leading edge on the chord line (C), a line perpendicular 
to the chord line intersects the airfoil section at two points (D and E). The distance between two 
intersection points (DE) is defined as the airfoil thickness at C.  
 

   
Desired 

geometry Bow Tilt Lean Twist Thickness 
Error 

Figure 1: Common geometrical errors arisen during blade manufacturing 

 
Figure 2: A typical airfoil section 

2.2 Error measurement 
After the precision forging of the blades, Bow, twist and thickness errors should be considered 
to be in the permissible tolerance range to prevent the blade scrappage. Behind the forged blades 
were cooled down and the lubricant removed from their surface, they were subjected to 
coordinate measurement in order to determine various types of the dimensional and geometrical 
accuracy. The locating of the blades was done by the 3-2-1 rule at the root as shown in Figure 
3. The coordinate measuring was done at four sections from the root to the tip (Figure 3). At 
each point, the blade's thickness and consequently thickness error was determined. The twist 
error was calculated by measuring the rotation difference between the first and the last cross-
section. The bow, lean and tilt errors were considered at the stacking line. 

 
Figure 3: Locating and measuring points of blade. 
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3 MATERIALS AND METHODS 

3.1 Experimental Study 
 Preform preparation 

Forging of compressor blades is a complex forming process that needs an accurate design of 
the preform to ensure complete die-filling as well as meeting the mechanical and metallurgical 
properties. In this study, the preforms made of Ti-6Al-4V were formed by using the extrusion 
process. All the preforms were manufactured with the same processing parameters. Before the 
isothermal forging process, the preforms were glazed to prevent the formation of alpha-case 
and also lubricate them.  
 Experimental setup 

In order to carry out the isothermal blade forging process and study the dimensional and 
geometrical errors during the forging process, there was a need to precisely control the 
deformation rate and the process temperature; so, a 6 MN hydraulic press was equipped with a 
servo-hydraulic power-pack and a PLC control system. An electric furnace, isolated from the 
press bed by water-cooled plates, was used to heat the dies. The dies were fabricated from a 
nickel-base superalloy to withstand the forging stresses at the high processing temperatures. 
Both of the preform and dies were held enough in the furnace to remove the temperature 
gradient inside them. In the die design step, the cavity orientation was chosen in a manner to 
minimize the lateral forces, in addition, preventing the locating of the preform incorrectly.  
 Experimental tests 

The process temperature and pressing speed are two main factors that govern the forging 
process of the blades. Inappropriate selection of these factors may result in the unsuitable 
mechanical and metallurgical properties. In order to assess their effects on the geometrical 
aspects, a set of experiments was designed based on the face-centered central composite 
response surface method. The dies and preforms were held enough in the furnace to have a 
uniform temperature at the test points 890, 920 or 950 °C and then the forging tests were 
conducted at the mean strain rates 0.179, 0.036 or 0.007 s-1 at the middle of the airfoil. All the 
tests at the factorial and axial points were replicated two times, and three times at the center 
point in a random sequence. After the cooling sequence of the forged blades and removing the 
lubricant from their surface, they were subjected to coordinate measurement in order to 
determine various types of dimensional and geometrical accuracy. 

3.2 Numerical Simulations 
A finite element method (FEM) model was developed and verified by the experimental results 
to better understand the mechanisms governing the experimental results and prepare a verified 
tool for further studies (Figure 4). The workpiece was considered as rigid-viscoplastic and 
elastic-plastic during the forging and cooling processes, respectively. The flow curves of Ti-
6Al-4V were determined by the isothermal compression tests and presented in [17]. The friction 
factor at the die-workpiece interface was determined as a function of the temperature and 
deformation rate by the isothermal ring compression tests [18] and implemented in the model. 
The simulation parameters were chosen as the experimental ones. To simulate the isothermal 

779



S. Javid Mirahmadi and Mohsen Hamedi 

 5

forging process, the temperatures of the workpiece, dies, and environment were set to the 
selected process temperature at the start of the simulation.  

 
Figure 4: Developed FEM model. 

4 RESULTS AND DISCUSSION 
After conducting the tests, all the isothermally forged blades were subjected to coordinate 
measurement to determine the geometrical and dimensional accuracy. The results of various 
errors are presented and discussed here. The isothermal forged and trimmed blade is shown in 
Figure 5. 

 
Figure 5: Isothermally forged and trimmed blade. 

4.1 Thickness Error 
The thickness error in the non-isothermal forging is the most considered aspect of the 
dimensional accuracy in the literature [2, 5, 6, 8, 9, 12]. As a rule of thumb, an increase of the 
forging pressure (force) and/or a decrease of the die elastic modulus result in more thickness 
error; however, how the process temperature and forging speed alter these parameters should 
be assessed more precisely.  
Step-by-step evolution of the elastic die deflection and accordingly thickness error during the 
isothermal forging process at 890 °C and strain rate 0.179 s-1 is shown in Figure 6. As the 
process proceeds, the forging force increases and thus the die's elastic deflection grows. At the 
end of the process, the maximum elastic die deflection was 0.131 mm in the middle of the airfoil 
near the platform. Several parameters affect the elastic die deflection, including the friction 
factor at the workpiece-die interface, the flow stress of Ti-6Al-4V and the elastic modulus of 
the dies at the process temperature. Increasing the process temperature results in lower flow 
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stress and elastic modulus, and higher friction factor [18]. The former results in lower forging 
force and consequently less die deflection. To consider the elastic die deflection, flow stress 
has an opposite effect on elastic modulus and friction factor. Increasing deformation rate 
increases the flow stress, but at the same time decreases the friction factor that has opposite 
effects on elastic die deflection and consequently thickness error.  

 

a b c 

d e f 
Figure 6: Evolution of die elastic deflection during the isothermal forging at 890 °C and strain rate of 0.179 /s. 

By conducting the forging process isothermally at various process temperatures and 
deformation rates, according to the design of experiments, superimpose of the different effects 
results in a variety of thickness errors as a function of the process temperature and the strain 
rate. The effect of the mentioned factors on the thickness error was evaluated by analysis of 
variance which is presented in Table 1. The modeled response surface is shown in Figure 7.  

 
Figure 7: The thickness error as a function of the process temperature and speed. 
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Table 1: ANOVA table of effective parameters on thickness error 

Source Sum of 
Squares×10-4 df Mean 

Square×10-4 F Value p-value Prob 
> F 

Model 290.0 4 72.3 16.33 <0.0001 
A-Temperature 39.1 1 39.1 8.84 0.0060 
B-Strain Rate 130.0 1 130.0 29.97 <0.0001 
AB 92.0 1 92.0 20.79 <0.0001 
A2 25.3 1 25.3 5.72 0.0237 

Residual 120.0 28 4.4  

Lack of Fit 35.0 10 3.5 0.71 0.7060 
Pure Error 88.9 18 4.9  

Cor Total 410.0 32  

 
According to Figure 7 the maximum elastic deflection and consequently thickness error was 
taken place at the lower process temperature and the higher deformation rate and was 
approximately 0.28 mm. At lower strain rates, the effect of the process temperature on the 
thickness error was not considerable; however, at higher strain rates, the process temperature 
had a significant effect on the thickness error. From another point of view, at 890 °C, the strain 
rate had a much more effect on the thickness error rather than 950 °C. Two phenomena govern 
this finding. First, the measured flow curves showed a more dependence of the flow stress to 
the strain rate at lower temperatures. Second, at the lower temperature, strain rate doesn't have 
a considerable effect on friction factor; however at a higher temperature, increasing the strain 
rate decreases the friction factor significantly that reduces the effect of strain rate on the flow 
stress and consequently forging force. The results show that by selection of an appropriate 
region in the process window, acceptable thickness error within the blade's tolerance can be 
achieved. 

4.2 Twist and Bow Errors 
The twist and bow errors are two temperature-related errors that happen during the cooling 
sequence. The initial process temperature, deformation rate, and non-uniform deformation affect 
the temperature distribution inside the forged blade at the end of the forging process. The leading 
and trailing edges undergo a more deformation and so a more adiabatic temperature rise (Figure 
8). Increasing the deformation rate results in a higher adiabatic temperature rise. Moreover, the 
lower initial process temperature leads to a more flow stress and a higher adiabatic temperature 
rise. The temperature distribution coupled with the varying thickness of the airfoil profile results 
in a non-uniform cooling of the blade and consequently deviation of the airfoil. Because of small 
thickness in the leading and trailing edges, they cool down faster than the central portion of the 
airfoil that increases their strength. The contraction of the central area results in the warpage of 
the airfoil and twist and/or bow formation.  
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Figure 8: The temperature distribution at the end of forging process for the initial temperature 890 °C and 0.179 s-1. 

The resulted response surfaces as a function of the process temperature and speed for the twist 
and bow errors are presented in Figure 9 and 10, respectively. The results show that both of 
increasing the initial temperature and decreasing the velocity result in a more uniform 
temperature at the end of the process that cause a more twist error. This finding shows that the 
geometry and its effect on the cooling sequence has a significant influence on the warpages after 
the forging process. In other words, for the temperature-related errors, non-uniform cooling is 
more important than non-uniform temperature distribution at the end of the process.   

Figure 9: The twist error as a function of the process 
temperature and speed. 

Figure 10: The bow error as a function of the process 
temperature and speed. 

4.3 Tilt and Lean Errors 
As stated in the previous section, the non-uniform cooling of the airfoil may result in the 
buckling of the airfoil. Because of high bending strength around the y-axis in Figure 1, there is 
no considerable tilt and lean after the process. Moreover, the lean and tilt errors can be readily 
compensated in the machining process of the blade's root.  
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5 CONCLUSION 
The compressor blades made of titanium alloys are commonly manufactured by forging 
process. By conducting the process isothermally, the desired control on the geometrical aspects 
as well as the mechanical and metallurgical properties is achievable. Investigating the 
temperature and the strain rate effect in the isothermal blade forging revealed their significant 
interaction effect on the dimensional and geometrical accuracy. Concerned about the thickness 
error, increasing the process temperature has a positive effect on the flow stress, however, a 
negative effect on the elastic modulus of the dies and the friction factor. Increasing the forging 
speed improves the lubricity in the die-workpiece interface, but at the same time rises the flow 
stress. These parameters have an opposite effect on the die elastic deflection and consequently 
airfoil thickness error. Such opposite effects govern the geometric deviations. In the other 
words, increasing the forging speed results in a more thickness error; however, initial process 
temperature determines the significance of this finding. So, an appropriate selection of process 
temperature and forging speed will result in acceptable dimensional and geometrical tolerances 
without any need of die shape compensation. 
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Abstract. The effective modeling of the flow of fresh concrete materials in settings such
as that of the vane test is a challenging process that is the object of ongoing research.
Previous works modeled concrete and cement pastes as solids subjected to yielding or
as Bingham or power-law fluids, both in two or three dimensions [1, 2]. Of the existing
models, those implementing power-law fluids in three dimensions carry the best predictive
ability considering the typically heterogeneous composition of concrete suspensions and
the relatively complex three-dimensional features of their flows.

In this work, we model the vane test in a power-law cement paste using the Proper
Generalized Decomposition (PGD). In this framework, the three-dimensional problem is
solved as a sequence of 2D × 1D problems, thus alleviating the curse of dimensionality.
This choice is supported by experience from previous works using the PGD to simulate
Non-Newtonian behavior using iterative resolutions [3, 4]. It is also particularly useful in
addressing the inverse problem corresponding to the identification of the material proper-
ties of cement pastes from experimental data, as this requires many direct resolutions of
the forward problem. The use of the PGD is also appealing because the model parameters
can be introduced as extra coordinates of the problem [5].

1 INTRODUCTION

Cement paste characterization is an active field of research. Many cement paste ma-
terial models currently exist in the relevant literature, based on different physics. Some

1
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works attempt to model cement pastes as solids subjected to yielding [1] while others rely
on Brinkman or Power-law fluids [2]. Both types of models have good predictive abili-
ties, although fluid models accounting for suspended particles – such as Non-Newtonian
power-law fluids – have a slight advantage.

The conventional vane test consists of a vane rotating inside of a cylinder containing
a fluid that must be characterized. The test determines the properties of liquids by mea-
suring the torque on the vane axis [6]. For example, the vane test is used to measure
concrete properties based on solid models in [7]. Vane test measurements can also be
used to identify the Non-Newtonian power-law properties of cement pastes.

During the vane tests considered in this work, the mixing velocity is increased gradu-
ally, at a rate that is sufficiently slow for steady-state conditions to be assumed at every
computational time step. To identify material properties using this test, one may need to
solve the system of partial differential equations modeling the forward problem at each
iteration of an inverse optimization algorithm. The use of the Proper Generalized De-
composition (PGD) is particularly appealing in this case, since the material parameters
as well as the angular mixing velocity can be included as extra coordinates of the problem
[8, 9]. The result is therefore a “Computational Vademecum” or a “book of solutions,”
which can be used on the fly to evaluate the quantities of interest during the optimization
process of the inverse algorithm.

The PGD’s suitability to tackle multidimensional linear problems using the domain
separation process is clearly established, with dramatic computational time reductions
[10, 11]. However, to the knowledge of the authors, the PGD is not frequently used
to resolve multidimensional nonlinear problems. Some works have tackled space domains
separations, without including any extra parameters as coordinates of the problem [12, 4].
A few other works have illustrated the ability to simulate nonlinear thermal models using
parameters as extra coordinates by combining the PGD and the Proper Orthogonal De-
composition (POD) [9, 13]. In this work, we use the Proper Generalized Decomposition
to simulate Non-Newtonian power-law fluid in a vane test while considering the process
parameters as extra-coordinates of the problem.

2 MODELING THE VANE TEST

In this section we describe the modeling of the vane test using Non-Newtonian power-
law fluids. The modeled vane test has the dimensions shown in Figure 1. Because the
problem is not axisymmetric, a three-dimensional simulation is necessary to capture the
fluid flow.

Designating by v the velocity vector, the conservation of mass in the modeled fluid
region can be written as:

∇ · v = 0. (1)

2
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24 mm

10 mm

48 mm

48 mm

10 mm

4 mm

18 mm18 mm

Figure 1: Modeled vane test dimensions.

For the test considered, the angular velocity imposed to the rotating vane changes very
slowly. The mixing process is thus modeled assuming steady-state conditions at different
velocities. Considering the cement paste as a highly viscous liquid, the momentum balance
equation writes:

∇P = ∇ · (η∇v) , (2)

where P is the fluid pressure and η the apparent viscosity. For Non-Newtonian power-law
fluids, the apparent viscosity η can be written as [14]:

η = K ·Dn−1
eq ·D, (3)

K and n being two material parameters, D the strain rate tensor and Deq the equivalent
strain rate tensor given by:

Deq =
√
D : D. (4)

The symbol “ : ” corresponds to the tensor product contracted twice. Since the LBB
conditions are still unclear in a separated representation framework, the penalty method
is used to solve the problem for the velocity field in the domain. This is initiated by
expressing the conservation of mass as [15]:

∇ · v = λP, (5)

with λ sufficiently small. Plugging equations (5) and (3) into the momentum balance
equation (2), one can write:

∇ (∇ · v) = λ · ∇ ·
[(
K ·Dn−1

eq ·D
)
∇v

]
. (6)

3
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Expression (6) represents the main equation to solve. The boundary conditions for the
vane test represented in Figure 1 are expressed as:





v = 0 at R = 30 mm (non-slip condition)
v = 0 at z = 0 mm and z = 120 mm
v = R× ω at the contact with the vane (non-slip condition)

(7)

where R is the radius measured from the dashed axis represented in Figure 1 and ω is the
angular velocity of the vane.

For the vane test considered, a steady-state modeling approach entails that the problem
be solved at each time step with the corresponding value of the angular velocity. The
angular velocity is thus introduced as an extra coordinate of the problem, which yields
the velocity field as a function of the spatial coordinates x, y, z and the angular velocity
ω.

3 SOLVING THE NON LINEAR PROBLEM BY THE PGD

To solve the problem using the PGD, we start by expressing the weak form of equation
(6). Denoting by v

∗ the test function, the weak form writes:
�

Ω

(∇ · v∗) · (∇ · v)dΩ+ λ

�

Ω

(∇D
∗)T : η : ∇DdΩ = 0. (8)

The resolution of this four-dimensional problem – which ultimately yields v(x, y, z, ω)
– starts by a linearization process. The problem is thus solved first for n = 1, which is
equivalent to considering a Newtonian fluid of apparent viscosity K. Solving the multidi-
mensional problem requires introducing ω which only appears in the boundary conditions,
as an extra coordinate. We thus act by means of a change of variables [8] and introduce
the variable F satisfying the boundary conditions expressed in (7), i.e.:




F = 0 at R = 30 mm,
F = 0 at z = 0 mm and z = 120 mm,
F = R× ω at the contact with the vane, and
F = 0 on the rest of the domain.

(9)

We now define V = v − F and replace v by V + F in equation (6). The problem can
hence be resolved for V using homogeneous boundary conditions [8].

For the specific setting considered in this work, the spacial domain can be separated
into a sum of 2D × 1D domains. This said, the reduction in computational time that
would result from such a decomposition is not significant because of the geometrical com-
plexity. We thus choose to refrain from implementing any variable separation in 3D and
hence to maintain the three-dimensional physical domain as represented in Figure 2. The
meshed domain is shown in Figure 3.

4
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Figure 2: Illustration of the three-
dimensional domain considered in the sim-
ulation.

Figure 3: Mesh of the 3D considered do-
main obtained by using the Gmsh software.

5
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The model’s output corresponds to the velocity field v as a function of the spacial
coordinates x, y, z and the angular velocity ω. This field is written in a separated form
as:

v =




u(x, y, z, ω) =
i=N�
i=1

Ui(x, y, z) · Si(ω)

v(x, y, z, ω) =
i=N�
i=1

Vi(x, y, z) · Si(ω)

w(x, y, z, ω) =
i=N�
i=1

Wi(x, y, z) · Si(ω)




(10)

where u, v and w are the three components of the velocity vector along x, y and z respec-
tively.

A fixed point iterative algorithm is used to solve the problem for Non-Newtonian fluids
characterized by n �= 1. The velocity profile obtained from the Newtonian solution is used
as a first guess. At each iteration of the fixed point algorithm, a four-dimensional problem
is resolved using the PGD. To this aim, all operators should be written in a separated
form, including the operator multiplied by the viscosity η. Thus, at each iteration, the
four-dimensional viscosity field η(x, y, z, ω) is determined using equation (3); it is then
written in a separated form by means of a singular value decomposition (SVD). A new
velocity field is finally determined from the separated viscosity result. The iterative pro-
cess is repeated until the convergence of the viscosity η.

The material parameter K can be introduced as an extra coordinate of the problem
at the expense of using a high order singular value decomposition (HOSVD) to write the
viscosity in a separated form [16]. The HOSVD generates however approximation errors
when writing the viscosity in a separated form and may lead to a dramatic reduction of
the PGD’s efficiency. The authors therefore prefer to use the PGD to solve v(x, y, z, ω)
and combine the PGD to a POD during the identification process to keep the problem as
simple and accurate as possible.

4 RESULTS AND DISCUSSION

A typical example considering K = 300 Pa.s and ω = 0.5 rad/s is retained. For this
example, the nonlinear problem corresponding to the weak form in equation (8) is resolved
with n = 0.7, 0.8, 0.9 and 1 respectively. A horizontal section at mid-height of the vane
showing the magnitude superimposed to a quiver plot of the velocity field is provided in
Figure 4 for each of these four cases.

Figure 4 reveals striking differences in the velocity fields between the cases correspond-
ing to different values of n. In particular, a shear-thinning behavior can be clearly observed
by comparing the cases n = 0.7 and n = 1, for example. This is for instance revealed by
the sharp drop in the magnitude of the velocity field as one moves away from the tips of
the blades in the case corresponding to n = 0.7 as opposed to the more homogeneous and
gradual decrease of the same quantity between the tip of the blades and the outer cylinder

6
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n = 1 n = 0.9

n = 0.8 n = 0.7

Figure 4: Typical magnitude and quiver plot of the velocity field; n = 0.7, 0.8, 0.9 and 1.
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Figure 5: Typical 3D magnitude and quiver plot of the velocity field in the physical
domain for n = 0.7.

when n = 1. A typical three-dimensional magnitude and quiver plot of the velocity field
inside of the entire physical domain is also illustrated in Figure 5 at at ω = 0.5 rad/s for
n = 0.7.

One may also wish to determine the value of the torque applied to the vane – a quantity
that is critical to the identification of material parameters from experimental results. To
this aim, we distinguish in this work two origins of this torque: (i) the normal pressure
field acting on the lateral surfaces of the blades of the vane and (ii) the shear stresses
acting on the tips of the blades and on the vane’s shaft. The contribution of the shear
stresses acting radially on the lateral faces of the blades is neglected due to the their small
eccentricity.

The normal pressure on the blades can be determined from equation (5), and thus the
corresponding torque TP expressed as:

TP =

∫

A∗

1

P r× dA−

∫

A∗

2

P r× dA, (11)

where A∗
1 is the area of the vane surfaces upstream of the fluid flow and A∗

2 downstream,
r the radial distance from the axis of the vane to the point of application of the pressure
and dA a differential area at this point. Figure 6 illustrates a typical variation of TP for
n = 0.7. The influence of n on the the part TP of the torque that is due to the normal
pressure acting on the lateral surfaces of the blades appears to be marginal.

The second component of the torque Tη that is due to the shear stresses is illustrated

8
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Figure 6: Torque Tp generated by the nor-
mal pressure on the blades for n = 0.7, 0.8,
0.9 and 1 as a function of ω.
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Figure 7: Torque Tη generated by the shear
stresses acting on the tips of the blades for
n = 0.7, 0.8, 0.9 and 1, as a function of ω.

in Figure 7. This component is defined by:

Tη =

∫

A†

η · r×∇v · dA, (12)

where A† corresponds to the area of the tip of the blades and of the upper circular shaft
connecting the blades to the actuator. The dependence of Tη on n and ω appears to be
strongly nonlinear. A linear variation of Tη as a function of ω can also be noted for n = 1.

In future work, the model’s outputs shall be compared to experimental results to
identify cement paste material properties K and n.

5 CONCLUSION

A novel approach to the modeling of the vane test on cement pastes using Non-
Newtonian power-law fluids is proposed in this work, with the final objective of iden-
tifying material properties of the pastes. The PGD is used to simulate the fluid flow in
the vane test while introducing the mixing velocity as an extra coordinate. The nonlinear
four-dimensional problem is addressed using the PGD by means of a first linearization
process using a fixed-point iterative algorithm. The full resolution process – involving 100
nodes in ω and 16050 finite elements discretizing the 3D spatial domain – typically takes
a few minutes only, on a normal portable PC.

The proposed model replicates successfully the nonlinear behavior of the torque as a
function of the angular velocity. Such behavior is typically observed experimentally when
running vane tests on cement pastes.

9
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Abstract. Crack initiation and propagation is an essential aspect in the mechanical behavior 
of a large variety of materials and structures in all fields of Engineering and, in particular, the 
prediction of crack trajectories is one of the major challenges of existing numerical methods. 
Classical procedures to fix crack direction have been based on local criteria such as maximum 
(tensile) hope stress. However, Fracture Mechanics principles suggest that global criteria 
should be used instead, such as maximizing structural energy release rates. An emerging trend 
along this way is based on Configurational Mechanics, which describes a dual version of the 
mechanical problem in terms of configurational pseudo-stresses, pseudo-forces, etc. all with a 
physical meaning related to the change in global structural elastic energy caused by changes 
in the structural geometry (configuration). In the FEM context, these concepts are applied to 
optimize the total energy of the mesh with respect to reference coordinates using the discrete 
configurational forces. Configurational stresses given by Eshelby’s energy-momentum tensor 
may be integrated using standard expressions to give configurational nodal forces. Adequate 
treatment of these forces in the context of iterative FE calculations, may lead to prediction of 
crack trajectories in terms of global structural energy.   

1 INTRODUCTION 
The purpose of this paper is to introduce basic ideas of Configurational Mechanics related 

to crack initiation and propagation. According to Steinmann [1], Configurational Mechanics 
can be considered from the viewpoints of continuum mechanics or computational mechanics. 
In the context of continuum mechanics, configurational forces would describe the energy 
variations due to changes of material configuration, while in a computational context the 
discrete forces may indicate the quality of a finite element mesh. In both cases, 
configurational analysis consists of evaluating the energy variations due to changes of the 
material configuration (original geometry of the structure or mesh). Configurational 
mechanics may be used to solve a large variety of problems, such is mechanics of dielectrics, 
thermodynamic problems, or mechanical problems with presence of dislocations and 
fractures, etc. 

Configurational forces are derived combining the energy and momentum balance, with the 
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so called pseudo-momentum balance or configurational force balance. The original concept is 
due to Eshelby [2], who introduced the so called energy-momentum tensor	� � �� � ���. In 
the fifties, Eshelby developed the driving forces for elastic singularities, defining the well-
known “Maxwell tensor of elasticity”. Configurational forces are the negative gradient of total 
energy with respect to the position of a point or defect, so forces are used to evaluate 
imperfections, dislocations, etc.  

In addition, configurational forces may take a special meaning in the context of the Finite 
Element Method, because the FEM yields only approximate solutions which depend on 
discretization. The equilibrium equation is approximated but not exactly satisfied, and energy 
is also approximated but not exactly evaluated, and the error may depend on the chosen 
discretization. The concept of finite element mesh optimization using configurational forces is 
described in [1, 3, 4, 5, 6, 7], with application to remeshing methods or r-adaptivity methods 
[3, 7].  

2 CONFIGURATIONAL MECHANICS IN THE CONTEXT OF THE FINITE 
ELEMENT METHOD 

Configurational forces show the direction in which the original position of the nodes of 
mesh would have to be moved, so that the overall energy in the mesh would decrease. Energy 
variation can be caused by physical changes such as changes in dimensions of geometry of the 
domain (if the nodes changing location are at the boundary for instance), or changes of the 
mesh discretization (if the nodes changing location are in the interior of the domain and their 
location does not affect the boundaries but only the internal arrangement of the mesh). 

Nevertheless, both can be represented by configurational forces which are the gradient of 
the total domain elastic energy  with respect to original nodal location � (Eq. 1). Since, in 
general, energy is a function of original location as well as final node position after 
deformation	�, i.e.	 � 	��� ��, this means that configurational forces are evaluated at 
constant	�: 

�̂ � ∂
∂������ (1) 

In the finite element context, energy may be expressed as an integral over the domain, of 
the specific energy per unit volume, which leads to the following integral expression of the 
configurational forces: 

�̂ � ������ � �T���� (2) 

where B is the traditional FE matrix, W is the specific elastic energy per unit volume of 
original configuration, �	is the 3x3 unit matrix, � is the deformation gradient and � is the first 
Piola-Kirchoff stress. 

Equation (2) may be obtained by combining the basic definition of configurational forces 
(Eq.1) with finite element equations, or by alternative procedures as it is developed in some 
articles [4, 5, 6, 7]. 

Expression (2) contains the well-known Eshelby’s stress tensor, also called energy-
momentum tensor, which is defined as:  
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� � �� � ��� � �� � �� (3) 

Note the alternative expression of � in terms of symmetric tensors, second Piola-Kirchhoff 
�� � ����� and symmetric right Cauchy-Green strain tensor	�� � ����. 

Notice that the definition of configurational forces is similar to mechanical forces in the 
classical (deformational) finite element formulation. In this case, instead of the physical stress 
the integral is over shape function derivatives and the Eshelby’s stress tensor. 

� � ���� ��     �̂ � � ��� �� (4) 

As said, configurational forces indicate the direction in which nodes should be 
configurationally moved (original coordinates changed) in order to decrease the overall 
domain elastic energy, and eventually reach the minimal energy configuration.  On the basis 
of that, an r-adaptivity method has been implemented. It is an iterative process which consists 
of changing nodal location until material forces vanish. The change of location for each 
iteration is calculated via Eq.(5), using a small value for constant � multiplying the 
configurational forces with minus sign (logical, since being those forces the gradient of the 
energy, their positive direction would indicate energy increase): 

X� � X��� � ������ (5) 

In this equation, X are the nodal coordinates, �� the configurational forces and subindex � 
indicates the current configurational iteration. 

The r-adaptivity procedure provides energetically optimized meshes, where number of 
elements remains constant and connectivity as well. These may be great advantages in 
comparison to other more complex methods such as h-adaptivity methods [7]. 

3 NUMERICAL EXAMPLES 

3.1 Example 1
This example has been often used in configurational mechanics papers [4]. It consists on a 

homogeneous block (E=1085.7 MPa and ν =0.3571) with a constrained tensile displacement 
on the top side and fixed on the bottom (Figure 1a). It is discretized with a structured mesh of 
16 regular quadrilateral elements as shown in Figure 1b, where the solid nodes also indicate 
the nodes that are “configurationally fixed” (i.e. those that will not be allowed to move even if 
configurational forces are applied on them), while the hollow ones are “configurationally 
free” to change location through configurational iterations.   

In this problem, configurational forces (with minus sign) are concentrated on the boundary 
nodes that are configurationally fixed (Figure 2a), with such proportion that if scale is 
adjusted to those, the forces on inner nodes cannot be even visualized. Physically this means 
that, if domain dimensions would be increased slightly (but final node positions would remain 
constant), total energy would decrease. To explain this, one has to take into account two 
counteracting effects. On one side, tensile deformations would be lower (because initial and 
final positions of nodes would be closer) and therefore volumetric energy density would be 
lower, but on the other side total volume would be larger. Out of those effects, the decrease of 
specific energy would be dominant because is a quadratic relation. From the r-adaptivity 
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method itself, it makes sense to fix configurational movements on the boundary so that 
domain dimensions will not change and only internal configurational forces (Figure 2b) are 
allowed to change the material configuration, and therefore node relocations will reflect only 
the mesh rearrangement to reach an energy minimum 

 

 

(a) (b) 

Figure 1: (a) Boundary conditions of example 1 (b) Finite element discretization, with indication of 
nodes that are “configurationally fixed” (solid) and “configurationally free” (hollow).   

 
 
 
 
 

 

(a) (b) 

Figure 2: (a) Configurational forces (with minus sign) on all nodes of the mesh, at the scale dictated by 
larger forces on the boundary nodes, (b) same only for internal nodes, at a larger scale in which forces on 

those nodes would be represented. 

800



L.Crusat and I.Carol 

 5

Finally, applying equation (5) in various steps with an appropriate value of  leads to the 
optimized mesh. As Figure 3a shows, nodes with larger configurational forces exhibit larger 
position changes. Since this optimal corresponds, not to a real geometry change of the domain 
but to the optimization of the FE discretization error, this solution turns out not trivial and 
might be different for other meshes or element types. Figure 3b depicts the total energy of the 
mesh as a function of the y-coordinate position of the most relevant node in this example, and 
Figure 3c the norm of the configurational forces of internal nodes, also as a function of the 
same vertical position of the relevant node. It can be seen as the node approaches it optimal 
position, energy comes to a minimum and forces are reduced to zero norm. 

(a)

(b) (c) 

Figure 3: (a) Optimal mesh configuration. (b) Total mesh energy with respect to relevant node vertical position, 
and (c) norm of configurational forces with respect to relevant node vertical position. 

3.2 Example 2

The second example is a notched beam with a prescribed displacement on the top. In this 
case the point where displacement is imposed is not aligned with the notch, in order to 
observe the path followed by the central top node of the notch (Figure 4). Material properties 
are   (Lamé Constants, which correspond to E=1085.7 MPa and ν 
=0.3571) and plane strain is assumed.  
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Figure 4: Notched beam on two supports with a punctual displacement imposed on the top. 

The mesh discretization used to analyze path evolution in vertical and horizontal direction 
is shown in Figure 5, there are six quadrangular elements. The advantage of using that simple 
structure is is that only one node is not configurationally fixed, and therefore it is easier to 
understand energy distribution and configurational force effects depending on its position. 

 

Figure 5: Finite element mesh used on example 2. 

As the interactive procedure starts, configurational forces drive the central node 
progressively to its optimal energetic position. As it is represented in Figure 8a, the optimal 
position is at the point of coordinates  and , which is the application point of 
the imposed displacement. Figures 6, 7 and 8 confirm that solution because there is a 
minimum of energy and the norm of configurational forces are near zero at the point  
and . 

Figure 6: Total domain energy as a function of the central node position. 
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Figure 7: Configurational force norm as a function of the central node position. 
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(d) (e) 
Figure 8: (a) Optimal mesh distribution, the path is represented in red. (b) Total energy with respect to the 

relevant node horizontal position. (c) Norm of configurational forces with respect to the relevant node 
horizontal position. (d) Total energy with respect to the relevant node vertical position. (e) Norm of 

configurational forces with respect to the relevant node vertical position. 
 

4 CONCLUDING REMARKS 
In this article the application of configurational mechanics to FE meshes has been 

introduced. Configurational forces are used to know the direction in which the nodes original 
positions would have to be moved, in order to decrease the total domain energy and 
eventually reach the minimum energy configuration. Using this concept as an r-adaptive 
strategy, nodal coordinates may be modified leading to the optimal mesh (in the energy 
sense). From a physical point of view, configurational forces may also be used to indicate the 
direction of crack tip propagation for minimal energy and therefore help predict the most 
probable path on crack trajectories. In example 1, a simple mesh optimization was performed 
reaching the minimum total energy for some non-trivial configuration. On the other hand, the 
second example was useful to illustrate how configurational forces can be applied to evaluate 
optimal crack paths. Note that in this academic example the notch was allowed to move (and 
therefore the crack could grow) without restrictions or energy consumption, only driven by 
configurational forces exclusively, that is only responding to the direction of crack extension 
that will reduce more effectively the total energy of the domain. This is why, the minimum is 
reached for zero total energy, when the crack tip arrives to the point of prescribed 
displacement, configuration that actually corresponds to a hinge mechanism. But physically, 
crack extension requires energy consumption. And this is precisely one of the focus of on-
going work, complementing configurational mechanics with the restrictions imposed by the 
principles of fracture mechanics that dictate the balance between energy released from the 
structure and energy consumption required for crack propagation.  
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Abstract: In this research, lifecycle assessment (LCA) and finite element analysis (FEA) are 
applied in raised access floor product design. LCA is conducted to assess the product’s 
sustainable features, while the FEA is carried out to ensure that the product meets the required 
strength. The materials used to develop the floor panel is Sheet Moulding Compound (SMC) 
with 30% glass fibres. The product is modelled in SolidWorks software package. Based on the 
CAD model of the product, the LCA and FEA are then conducted. The LCA results revealed 
that the materials contribute significant impacts in the four environmental impact categories: 
84% in carbon footprint, 91% in total energy consumed, 73% in air acidification, and 66% in 
water eutrophication. The LCA evaluation results not only clarify the optimized design targets, 
but also enable to benchmark values for design iterations. According to the FEA, the 
deformation values are less than 2.5 mm with 3000 N loading forces on the central of the panel 
and stringer, which meet the flooring product’s deformation criteria of Class A, as defined by 
the British Standards. 
 
 
1 INTRODUCTION 

A typical raised access floor comprises of load bearing floor panels laid in a horizontal grid 
supported by adjustable vertical pedestals, which provides an underfloor space for the housing 
and distribution of services in a building. The floors generally consist of 600mm X 600mm  
panel supported at each corner by pedestal jacks, each jack locating and supporting the corners 
of four adjacent panels. A raised access floor product system is shown in Figure 1. The floor 
panels are readily removable to allow quick access to the underfloor services.  The adopting 
raised floor products provide flexibility in the design and layout of telephone, electrical, 
electronic communication cables and air-conditioning systems, which are easily routed below 
the floor panels.  

The materials to make the floor panel normally includes particle board, plywood, aluminium, 
steel, or a combination of metal and non-metal. The particle board or plywood panels are 
usually covered with thin sheet steel or aluminium for implementation of fire protection.  In 
some cases the steel is in the form of a tray, depending on the bonding adhesive used between 
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the wood product and the steel, it can increase the structural strength of the panel. SMC (Sheet 
Moulding Compound) materials are used for producing the floor panel in this project, because 
of its strong performance in mechanical properties, fire resistance, and stiffness. The physical 
properties of the selected SMC material are presented in Table 1.  

This paper presents a computational approach to develop this floor product system. The 
approach include 3D CAD modelling, lifecycle assessment (LCA) and finite element analysis 
of the product (FEA). 

 

 
Figure 1: A generic raised access floor product system [1] 

Table 1: SMC physical properties 

properties values 

Density of the selected SMC   1800 kg/m3 
Flexural modules 1.3 GPa 
Poisson’s ratio 0.3 
Yield strength 250 MPa 
Tensile strength 150 MPa 

 
 
2 INITIAL DESIGN AND MODELLING 

The modelling of the raised access floor system involves the design of a floor panel and 
pedestals, as shown in Figure 2. The standard size (600 mm x 600 mm x 40 mm) is applied for 
the raised access floor panel in this project. The dimensions of the design prototype are 
presented in Table 2, which meet the criteria of the British Standard 12825 [5]. The pedestal 
design prevents excessive movement of the panel, by which the stability of the raised access 
floor system is enhanced.   

Table 2: Dimensions for the initial design 

Component dimensions of raised flooring product 

items values 

Height of pedestal  100 mm 
Square base plate 100 mm x 100 mm 
Diameter of circular plate at the top 90 mm 
Size of the floor panel  600 mm x 600 mm x 40 mm 
Weight of the floor panel 25.92 kg 
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Figure 2: Initial design for the pedestal unit (left) and the raised access floor system (right) 

 

 
Figure 3: The LCA results by applying CML methodology in SolidWorks 2015 

 
The weight of the floor panel is 25.92 kg, which is obtained by calculating the design 

dimensions and SMC density. This is much over the weight, 11 kg, of the existing product in 
the market with the same size and made of chip board covered by metal sheets. And hence re-
design has to be considered in order to reduce the weight. 

CML and TRACI are LCA based methodologies, which are embedded in the sustainability 
package of SolidWorks 2105. The CML method is applied in this phase, and the results show 
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that the materials contribute major negative impacts in the four environmental impact 
categories: 84% in Carbon Footprint, 91% in Total Energy Consumed, 73% in Air 
Acidification, and 66% in Water Eutrophication. The pie chart of the LCA analytic results are 
presented in Figure 3.  
 
3 RE-DESIGN 

According to the initial design, the floor panel is over-weight. Therefore, reducing the 
weight of the floor panel is the prioritized task in this phrase. In addition, necessary LCA and 
FEA have to be conducted in order to ensure the product meets the required functions. 

3.1 Refinement of the raised access floor system 
In order to achieve an effective design, the floor panel requires strong outer edges with the 

side of the panels connected by ribs, hence, the strategy of designing ribs for the floor panel is 
confirmed. The optimum design of the floor panel has same size squares with 3 mm ribs 
between them, and the layout and dimensions of these squares are shown in Figure 4 and Table 
3, respectively.  

 
Table 3: Main components’ dimensions and weight in detail design phrase 

Component dimensions and weight in detail design 

Items Values 

Square 94.7 mm X 94.7 mm x 94.7  mm 

Thickness of ribs  3 mm 

Thickness of the floor panel 30 mm 

Size of the stringer  600 mm x 600 mm x 37 mm 

Thickness of the string edge and beam 3 mm 

Component weight for detailed design 

Items Values 

Floor panel   3.52 kg 

Stringer  3.55 kg  

Pedestal unit  0.99 kg  

Total mass  8.06 kg 
 

The thickness of the floor panel is cut from 40 mm to 12 mm in the design comprising 
rectangles’ size and ribs’ thickness, therefore the strength performance of the floor panel is 
reduced. The solution of placing a steel stringer under the floor panel is employed, as this 
design not only sustains the strength performance of the floor system, but also provides the 
facility of recycle or reuse for the steel stringer. The stringer design is shown in Figure 4, and 
its dimensions are shown in Table 3. With this optimum design, the total weight of this raised 
access floor system has been reduced to 8.06 kg, which is lighter than the average weight of a 
raised access flooring product. The refinement of the raised access floor system is presented in 
Figure 4.  
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Figure 4: The design of the floor panel (left) and stringer (right) in detail design phrase 

3.2 LCA of the raised access floor system 
LCA is conducted in order to assess the product’s sustainability, and, in particular, to 

identify the environmental impacts of materials and manufacturing processes, which will 
enable to set up optimization strategies for design and production process optimisation.   

3.2.1 LCA modelling 
Considering the available data and objectives of this research, the examined life cycle 

processes of the raised access floor system include: Materials, Production, Distribution and 
End of Life, which are described as follows: 

Materials: The main ingredients of SMC are glass fibre and polymers. The pedestal unit and 
stringer are manufactured with normal steel. The floor panel is packaged with wood pallets and 
PVC films 

Production: The examined processes of producing SMC include: heating of resin and 
moulding, which follows the information of the SMC product specification [2]. The examined 
processes of producing the floor panel include: heating, cutting ribs and edges. The examined 
processes of producing the pedestal unit and stringer include: extrusion of steel, and steel 
turning. The main process not covered in this phrase is the production of glass fibre, which 
usually include raw material extraction, glass melting and refining, and fibre forming and 
finishing [3]. 

Transportation: The examined distribution scenarios are from manufacturing site to retailers 
or construction sites in England, and this distance is an average of 200 km (suggested by the 
floor panel prototype manufacturer). The neglected distribution scenarios are the delivery of 
SMC ingredients from suppliers to manufacturers, and the delivery of packaging materials from 
suppliers to flooring product manufactures.   

End of Life: This study refers for the waste treatment and management figures in England 
that are provided by the UK DEFRA [4].  

3.2.2 Lifecycle impact assessment (LCIA) results 
The environmental impact assessment of the raised access floor system is carried out using 

SolidWorks 2015 with CML method. The assessment results are shown in Figure 5. 
 As revealed in Figure 5, within the total impacts, the major negative impacts are generated 

by the Materials (80.6%) and the Manufacturing (13.6%). The Transportation and End of Life 
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share the 0.6% negative environmental impacts within the Carbon Footprint impact.  Within 
the Total Energy Consumed, Materials cause 74.5% energy consumption, and Manufacturing 
steps have 25% consumptions, and the Transportation and End of Life total share 0.048% 
consumptions. Within Air Acidification impact, the Materials have the major impacts (59.2%), 
and Manufacturing cause 37.9% impacts. The impacts caused by the Transportation and End 
of Life are 2.79%. Within Water Eutrophication impact, Materials, Manufacturing , and 
Transportation and End of Life cause 68.7% , 9%, 3% and 17% impacts, respectively.  

Compared with the environmental performance evaluation results between initial design and 
re-design, the four environmental impacts with CML methodology, Carbon Footprint (10.2%), 
Total Energy Consumed (29.2%), Air Acidification (67.2%), and Water Eutrophication (31.9%) 
have been improved. This shows the optimum design have achieved, which performs improved 
environmental impacts while meets the quality and requirements of the floor product standards.  

 
 

 
Figure 5: The LCA results by applying CML methodology in SolidWorks 2015 for the improved design 

3.2.3 Analysis of the results 
As the End of Life and Distribution share relatively small negative impacts in the life cycle 

of the raised access floor system, the target of design improvement should be placed at the 
Materials and manufacturing. The following strategies are proposed to achieve this objective 
through exploring the findings of the LCIA.  

The mass of negative impacts caused by the main flows within the three environmental 
impact categories, which could be used as benchmarking values in the next iterations of design. 
For example, in the case of investigating alternative main materials, the total mass of negative 
impacts can be used as the key benchmarking value to examine the potential material’s 
environmental performance.  

The Materials has the most negative impacts, and the Distribution stage has the smallest 
negative impacts, which proves the design improvement strategy on reducing the mass of 
materials is correct, and in order to achieve further design improvement, the design on the ribs 
and rectangles of floor panel could be elaborated, for example, reducing the thickness of ribs, 
or increasing the depth of each rectangles.  
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The Injection moulding process causes the highest negative impacts among all the 
production processes, so an improvement strategy would be to cutting the overall moulding 
cycle time, and improve the mould speed.   

 

4 PROTOTYPING AND TESTING 

4.1 The prototype 
In this phase, the prototype of the raised access floor system is manufactured and analysed 

to confirm that the product meets the required environmental impact and strength. The 
prototype of the raised access floor system is shown in Figure 6. The fire safety test must be 
conducted under controlled conditions, and by an external fire safety test company, which is 
not reported in this paper. The following section is to report the Finite Element Analysis for 
the floor product prototype.   

4.2 Finite element analysis 
Finite element analysis module of SolidWorks 2015 is used to assess the strength of the 

product in this phrase. With the FEA results, the relationship between the force and deflection 
of the floor system can be identified.  
 

  
Figure 6: The prototype of the raised access floor product system (Left) and the back of the floor panel (right) 

Two key indicators for FEA are maximum yielding stress (von Mises stress) and maximum 
deformation. According to the Fourth Strength theory of material mechanics, the flooring 
product starts to yield at a location when the maximum yielding stress becomes equal to the 
yielding strength, which is the upper limit of yielding stress. For the flooring product developed 
by this project, the yielding strength is obtained utilising the physical properties of the floor 
panel and stringer. The maximum yielding stresses of the panel and stringer are required to be 
less than 94MPa and 250MPa respectively, while the maximum deformation of the panel and 
stringer should be lower than 2.5mm. According to the requirements of British Standards 
BSEN 12825:2001 [5] and Platform Floors (Raised Access Floors) Performance Specification 
[6], 3000 N working loads are required to place at the centre of the floor panel.  

As Figure 7 shows, the deformation values are less than 2.5 mm with 3000 N loading forces 
on the central of the panel and stringer, which satisfy the flooring product’s deformation criteria 
of Class A, as defined by the British Standard requirements. Therefore, under 300 N of working 
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loads, the designed flooring product is able to work properly within the scope of elastic 
deformation.  

 

 
 

Figure 7: Max deformation for the floor panel and stringer with loading 3000N forces at the centre panel 
 

5 CONCLUSIONS 
A new type of raised flooring product is developed, which consists of a rib-supported floor 

panel made of SMC materials, a metal stringer and pedestals. 3D CAD modelling, LCA and 
FEA were conducted. The assessment results confirm that the product meets required LCA and 
FEA performance. 

The floor panel has achieved 44% weight reduction compared with the traditional raised 
access floor panel. The prototype passed the strength test and met the environmental 
requirements stipulated by the regulations and standards on manufacturing floor products in 
the EU and UK market. CML methodology and SolidWorks software are applied to evaluate 
the life cycle environmental performance of the flooring product, the results show that the 
major environmental impacts are related to the SMC material and manufacturing process. 
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Abstract. In the present work a return mapping algorithm is discussed for small strain
elastoplasticity boundary value problems with an exact closed form solution of the local
constitutive equations. Nonlinear kinematic hardening rules are adopted in modelling
kinematic hardening behavior of ductile materials. The local solution of the constitu-
tive equations is expressed by only one nonlinear scalar equation which is subsequently
reduced to a single variable algebraic equation. Due to the straightforward form of the
nonlinear scalar equation the analytical solution of the algebraic equation is found in
exact closed form. A remarkable advantage of the present approach is that no iterative
solution method is used to solve the local constitutive equations in three-dimensional
elastoplasticity. Numerical applications and computational results are reported in order
to illustrate the robustness and effectiveness of the proposed algorithmic procedure.

1 INTRODUCTION

In the present work a return mapping algorithm is discussed for small strain elastoplas-
ticity boundary value problems with an exact closed form solution of the local constitutive
equations, see De Angelis and Taylor [1]. Nonlinear kinematic hardening rules are adopted
in modelling kinematic hardening behavior of ductile materials, see e.g. Armstrong and
Frederick [2]. In fact, saturation hardening rules of the exponential type do not properly
represent nonlinear kinematic hardening behavior since upon unloading and reloading
the simulation does not suitably reproduce the material behavior in which it is exhibited
renewed plasticity prior to the state at which unloading occurred.

1
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One of the advantages of the present algorithmic procedure is to reduce the local solu-
tion of the constitutive equations to only one nonlinear scalar equation. In the literature
other proposals have been presented which reduce the local constitutive equations to one
nonlinear scalar equation. However in the present work a particularly simple form of
nonlinear scalar equation is derived. In fact, herein the local constitutive equations are
reduced to a single variable algebraic (polynomial) equation. Moreover, in the present
approach due to the straightforward form of the nonlinear scalar equation the analytical
solution of the algebraic equation is found in exact closed form. Accordingly, a remarkable
advantage of the present approach is that no iterative solution method is used to solve
the local constitutive equations in three-dimensional elastoplasticity.

The consistent tangent operator associated to the proposed formulation is derived for
elastoplasticity models, thus ensuring a quadratic rate of asymptotic convergence when
used with the Newton Raphson iterative method for the global solution procedure of the
structural problem, see e.g. Zienkiewicz Taylor and Fox [3] and Simo and Hughes [4].

Numerical applications and computational results for cyclic loading conditions are fi-
nally reported in order to illustrate the robustness and effectiveness of the proposed al-
gorithmic scheme. Accordingly, the robustness and effectiveness of the proposed compu-
tational procedure is illustrated with specific numerical examples.

2 THE CONTINUUM MODEL

We assume the body B in the reference configuration Ω ⊂ ℜn, with 1 ≤ n ≤ 3, and we
denote with T ⊂ ℜ+ the time interval of interest and with V the space of displacements,
D the strain space and S the dual stress space. Let us also indicate with u : Ω×T → V
the displacement and with σ : Ω×T → S the stress tensor. The compatible strain tensor
is defined as ε = ∇su : Ω × T → D, where ∇s is the symmetric part of the gradient
operator. We consider the stress tensor as additively decomposed into a deviatoric and

a spherical part so that σ = s + p1, where s
def
= devσ = σ − p1 is the stress deviator,

p
def
= 1

3
tr(σ) is the pressure of the spherical part p1 and 1 is the rank two identity

tensor. The strain tensor is similarly decomposed into the deviatoric and volumetric

parts ε = e + 1
3
θ 1, where e

def
= devε = ε − 1

3
θ 1 is the strain deviator and θ

def
= tr(ε)

is the change in volume. The relation between the spherical part of the stress and the
volumetric part of the strain is described by p = K θ, where K is the bulk modulus.

The linear elastic relation between the stress deviator and the elastic deviatoric strain
is expressed by

s = 2G ee = 2G[e− ep], (1)

in which G is the shear modulus, and the deviatoric part of the total strain has been
additively decomposed into an elastic and a plastic part e = ee + ep. The relative stress
Σ is also expressed by

Σ = s−α, (2)

where α represents the deviatoric back stress.
A J2 material behavior is assumed herein. Accordingly, a von Mises yield criterion is
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adopted in the form

f (σ,α, κ) = ∥devσ −α∥ − κ(χiso) = ∥s−α∥ −
√

2
3
(σyo + χiso) ≤ 0, (3)

where κ(χiso) =
√

2
3
σy =

√
2
3
(σyo + χiso) is the current radius of the yield surface in the

deviatoric plane and σyo is the uniaxial yield stress of the virgin material. The static
internal variable for isotropic hardening is specified by χiso = Hisoe

p, where Hiso is the

isotropic hardening modulus and where we assumed χiso
def
= R, being R the increment

of the yield stress with respect to the uniaxial yield stress of the virgin material and ep

representing the equivalent (accumulated) plastic strain ep
def
=

∫ t

0

√
2
3
∥ėp∥d t. For a finer

representation of the isotropic hardening it is often assumed

χiso = Hiso(e
p)m, or R = R∞(1− e−b ep), (4)

where m, R∞ and b are material parameters.
The evolutive flow law for the deviatoric plastic strain rate is expressed by

ėp = γ̇
∂f

∂σ
= γ̇

∂f

∂Σ
= γ̇ n, (5)

where γ̇ is the plastic rate multiplier and n
def
=

Σ

∥Σ∥
is the normal to the yield surface.

Consequently, the equivalent plastic strain rate is supplied by ė
p
=

√
2
3
γ̇.

The rate of the back stress can be expressed by the Prager law [5]

α̇ = 2
3
Hkin ė

p, (6)

where Hkin is the kinematic hardening modulus. For a nonlinear kinematic hardening
behavior it is often adopted the model proposed by Armstrong and Frederick [2]

α̇ = 2
3
Hkin ė

p −Hnl ė
p
α, (7)

where Hnl is a non-dimensional material dependent parameter. The second term of equa-
tion (7) is a recall term and Hnl = 0 stands for a linear kinematic hardening behavior.
For a better approximation several models can be added with different recall constants
(see e.g. [6])

α =
M∑
i=1

αi, α̇i =
2
3
Hkin,i ė

p −Hnl,i ė
p
αi. (8)

The Kuhn-Tucker optimality conditions

γ̇ ≥ 0, f (σ,α, κ) ≤ 0, γ̇f (σ,α, κ) = 0, (9)

represent the loading-unloading conditions and they complete the evolutive model in
plasticity, see e.g. [3] and [4].
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3 Algorithmic formulation

In the finite element formulation we adopt a strain driven approach. Accordingly, by
knowing the strain and the solution at time tn, represented by the set (sn, en, e

p
n, e

p
n,αn),

we need to determine the solution at time tn+1 represented by the set (s, e, ep, ep,α). By
adopting a backward Euler integration scheme, the evolutive equation for the deviatoric
plastic strain rate (5) and the equivalent plastic strain rate are given respectively by

ep = epn + λn, ep = epn +
√

2
3
λ, (10)

where we have set λ
def
= ∆γn+1 = γ̇n+1∆t.

The discrete form of the evolution law for the back stress is given by

α−αn = 2
3
Hkinλn−Hnl

√
2
3
λα, (11)

which can be expressed as
α = T λαn +

2
3
HkinT

λλn, (12)

where we have set

Rλ = (1 +
√

2
3
Hnlλ), T λ =

1

Rλ
=

1

(1 +
√

2
3
Hnlλ)

. (13)

In the above expressions we have adopted the superscript λ to denote a dependence on
the increment of the plastic rate multiplier in the step tn → tn+1.

Taking into account equation (10)1 the deviatoric stress is given by

s = 2G[e− epn]− 2Gλn, (14)

and, by considering equation (12), the relative stress is expressed by

Σ = s−α = 2G[e− epn]− T λαn − Uλn, (15)

where we have set

Uλ = [2G+ 2
3

Hkin

Rλ
]λ = [2G+ 2

3
HkinT

λ]λ. (16)

An elastic predictor-plastic corrector scheme is adopted by means of a return mapping
algorithm. By enforcing the satisfaction of the limit equations at time tn+1 the increment
λ of the plastic rate parameter is computed. The variables are then updated according
to the equations 



ep = ep, TR + λn

ep = ep, TR +
√

2
3
λ

α = T λαTR + 2
3
HkinT

λλn

s = sTR − 2Gλn

Σ = sTR − T λαTR − Uλn.

(17)
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The relative stress (17)5 is also expressed by

Σ = ΣTR + (1− T λ)αTR − Uλn, (18)

where ΣTR def
= sTR − αTR is the trial value of the relative stress typically adopted in

plasticity with linear kinematic hardening.
In the proposed approach for plasticity with nonlinear kinematic hardening rules we

find useful to introduce a trial-like value of the relative stress

Σλ
NLK

def
= sTR − T λαTR (19)

Accordingly, equation (18) can be expressed by

Σ = Σλ
NLK − Uλn, (20)

Herein, we emphasize that for plasticity with nonlinear kinematic hardening the trial-
like value Σλ

NLK depends upon λ, whereas the conventional trial value ΣTR adopted in
plasticity with linear kinematic hardening is independent of λ. The second rank tensor n
is expressed by

n =
∂f

∂σ
=

∂f

∂Σ

∂Σ

∂σ
=

∂f

∂Σ

∂(devσ −α)

∂σ
=

∂∥Σ∥
∂Σ

Idev =
Σ

∥Σ∥
Idev =

Σ

∥Σ∥
, (21)

where Idev = I− 1
3
(1⊗1). Given the expressions (19) and (20), the tensor n also depends

upon λ. This is at variance with respect to plasticity with linear kinematic hardening,
where n is independent from λ. Accordingly, the algorithmic procedure for plasticity with
nonlinear kinematic hardening is more complex.

We note from equation (21) that Σ is collinear with n. From equation (20) we also de-
rive that Σλ

NLK must be collinear with n, and therefore Σλ
NLK = ∥Σλ

NLK∥n. Accordingly,
we observe that in plasticity with nonlinear kinematic hardening it results

n(λ) =
Σ(λ)

∥Σ(λ)∥
=

Σλ
NLK(λ)

∥Σλ
NLK(λ)∥

. (22)

Consequently, the present approach to plasticity with nonlinear kinematic hardening has
the advantage that the equation (20) preserves a nonlinear scalar equation in λ

∥Σ∥ = ∥Σλ
NLK∥ − Uλ. (23)

As shown in the following section the above equation represents an algebraic (polyno-
mial) equation in the single variable λ. Once the increment λ of the plastic rate parameter
is determined the variables are updated at time tn+1 by considering equations (17) and
taking into account equation (22).
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4 Nonlinear scalar equation in λ

Equation (23) yields the novel expression of the nonlinear scalar equation which is
solved for determining the increment λ of the plastic rate parameter. Accordingly, in
the present approach the local solution of the constitutive equations reduces to only one
nonlinear scalar equation. In the literature other proposals have been presented in which
the constitutive equations are reduced to a nonlinear scalar equation, see e.g. Hartmann
Luhrs and Haupt [7] and Kobayashi and Ohno [8]. With respect to such proposals, the
present approach has the advantage that the constitutive equations are reduced to only
one single variable algebraic (quartic) equation which is a particularly simple form of non-
linear scalar equation. Remarkably, in the present approach no numerical procedures are
required to accelerate convergence for the solution of the nonlinear scalar equation, such
as for instance the Aitken’s process adopted in [8]. In fact, in the proposed formulation
the search for the analytical solutions of the nonlinear scalar equation is pursued in exact
closed form, i.e. with no recourse to iterative methods. This particular feature ensures
efficiency and robustness to the overall computational procedure.

The limit function (3) is expressed as ∥Σ∥ −
√

2
3
σy = 0. Accordingly, the equation (23)

supplies

∥Σλ
NLK∥ − Uλ −

√
2
3
σy = 0, (24)

and by setting
Sss = sTR . sTR = ∥sTR∥2

Ssα = sTR . αTR

Sαα = αTR . αTR = ∥αTR∥2,

(25)

after some algebra (see De Angelis and Taylor [1]) we obtain the quartic algebraic equation

g(λ) = C1λ
4 + C2λ

3 + C3λ
2 + C4λ+ C5 = 0, (26)

where the coefficients of the quartic equation are given by De Angelis and Taylor [1].
For more details see De Angelis and Taylor [1] and De Angelis and Taylor [9] where a
comprehensive treatment of the present approach is illustrated.

The present form of nonlinear scalar equation is at variance from the nonlinear scalar
equation presented by Auricchio and Taylor [10] since it is generated by a different al-
gorithmic scheme. Further, in [10] the solution of the nonlinerar scalar equation was
performed by a Newton’s iterative method, which for complex constitutive equations and
highly nonlinear scalar equations sometimes experiences failures due to the occurring high
gradients and the resulting round-off errors. One of the advantages of the present algo-
rithmic scheme is that the local constitutive equations condense in a particularly simple
form of nonlinear scalar equation, that is a quartic algebraic equation. Consequently, in
the present approach the solutions of the quartic algebraic equation are determined in
exact closed form, see among others Abramowitz [11], Beyer [12], and Hacke [13], and
no iterative procedure is required to solve the local constitutive problem. Accordingly,
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the increment λ of the plastic rate parameter in the step tn → tn+1 is evaluated as the
smallest positive real root of the quartic algebraic equation (26).

For more details see De Angelis and Taylor [1]. An alternative formulation resulting in
a different algorithmic scheme associated to a different algorithmic form of the consistency
condition and a different consistent tangent operator has also been presented by De Angelis
and Taylor [9].

5 Consistent tangent operator

In the present section we illustrate the expression of the consistent tangent operator
associated to the present algorithmic scheme which ensures a fast and robust numerical
solution procedure for the iterative solution of the structural problem in elastoplasticity.
The proposed numerical scheme ensures a quadratic rate of asymptotic convergence to
the Newton Raphson iterative method for the solution of the global structural problem.

The linearization of the discrete forms of the evolutive equations for the stress deviator
and the back stress yields a consistent tangent operator expressed by

Ddiscr =
{
K(1⊗ 1) + [2G (1− CNLK

discr )] Idev + [2G (CNLK
discr − ANLK

discr )

+BNLK
discr (n . α)](n⊗ n)− BNLK

discr (α⊗ n)
}
,

(27)

where we have set

a =
2Gλ

∥Σ∥
, b = 2

3

Hkinλ

∥Σ∥
,

Rλ = (1 +
√

2
3
Hnlλ), T λ =

1

Rλ
, W λ = b+Rλ + aRλ,

ANLK
discr =

2G

[2G+ 2
3
Hiso +

2
3
HkinT λ −

√
2
3
HnlT λ(n . α)]

,

BNLK
discr = ANLK

discr T
λCNLK

discr

√
2
3
Hnl, CNLK

discr = a
Rλ

W λ
.

(28)

The expression of the consistent tangent operator results to be non-symmetric due to
the last term of equation (27), as is typically in elastoplasticity with nonlinear kinematic
hardening rules. For more details on the development of the consistent tangent operator
see De Angelis and Taylor [1].

For the derivation of the consistent tangent operator associated to the algorithmic pro-
cedure it is necessary to perform matrix inversions. At variance with respect to such usual
approach, an alternative algorithmic formulation which is able to provide a consistent tan-
gent operator without the necessity to perform matrix inversions has been presented by
De Angelis and Taylor [9].

Other various algorithmic formulations have been presented e.g. by Nukala [14], Artioli
Auricchio and Beirao da Veiga [15], De Angelis and Cancellara [16], De Angelis and Taylor
[17], Artioli and Bisegna [18], Artioli Castellazzi and Krysl [19], Castellazzi Artioli and
Krysl [20].
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Figure 1: Perforated strip. Geometry and finite element mesh.

6 Computational results

The algorithmic formulation illustrated in the present work may be used for any 2-d
or 3-d element which accepts a strain-driven approach. In our analysis we use 4-node
quadrilateral elements with 2×2 Gaussian quadrature and the mixed approach described
in Sec. 2.6.2 of Zienkiewicz Taylor and Fox [3]. The numerical scheme is implemented
into the Finite Element Analysis Program (FEAP), see Zienkiewicz Taylor and Fox [3],
and Taylor [21].

6.1 Numerical example: perforated strip

In the numerical example we consider the problem of an infinitely long rectangular strip
with a circular hole in its axial direction, subject to increasing extension in a direction
perpendicular to the axis of the strip and parallel to one of its sides. The geometry of the
problem is illustrated in Fig. 1. For symmetry reasons only 1/4 of the strip needs to be
considered. The dimensions of the rectangular section containing 1/4 of the strip are 18
mm for the long side and 10 mm for the short side. The radius of the circular hole is 5
mm. The adopted mesh consists of 91 nodes and 72 elements.

The mechanical properties of the material are: elastic modulus E = 208000 MPa,
Poisson’s ratio ν = 0.3, yield limit σyo = 170 MPa, kinematic hardening modulus Hkin =
41080 MPa, nonlinear kinematic hardening parameter Hnl = 525, isotropic hardening
modulus H iso = 2100 MPa. The prescribed displacement at the top boundary is uo =
0.0025 mm. The evolution with time of the proportional load coefficient p(t) amplifies
the prescribed displacement and illustrates the loading history according to equation
u(t) = p(t)uo.

In the numerical example we consider a cyclic loading program in tension with increas-
ing mean value of the loading. The assumed loading program is illustrated in Fig. 2. For

8
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Figure 2: Cyclic loading program in tension with increasing mean value of the loading.
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Figure 3: Average end stress versus average strain for the cyclic loading program given in Fig. 2. In
the analysis a doubled time increment ∆ t = 2 has been adopted with tmax = 260.

9

823



Fabio De Angelis and Robert L. Taylor

-3.40E+02
-2.72E+02
-2.04E+02
-1.36E+02
-6.80E+01
 0.00E+00
 6.80E+01
 1.36E+02
 2.04E+02
 2.72E+02
 3.40E+02
 5.36E+02

-1.89E+01

_________________ S T R E S S   2 

Time = 2.60E+02Time = 2.60E+02

Figure 4: Contour plot of vertical stress in the strip for tmax = 260. Cyclic loading program in tension
with loading program given in Fig. 2.

this loading program the average end stress versus the average strain is illustrated in Fig.
3. Herein the stress is averaged as the sum of the reactions on the boundary upper edge
over the related area, the strain is averaged as the displacement at the boundary upper
edge over the height. By exploiting symmetry properties, the final contour plot of the
vertical stress in the strip is illustrated in Fig. 4 for tmax = 260.

The computational analysis of the Newton Raphson iterative procedure for the global
structural problem shows a quadratic rate of asymptotic convergence. For more details
on the convergence properties of the proposed algorithmic scheme, see De Angelis and
Taylor [1] where a comprehensive treatment is presented.

7 CONCLUSIONS

In this work we presented an exact closed form solution of the return mapping algo-
rithm in elastoplasticity with nonlinear kinematic hardening behavior, see also De Angelis
and Taylor [1]. Nonlinear kinematic hardening rules have been adopted for modelling
kinematic hardening behavior of ductile materials, see e.g. [2].

One of the advantages of the proposed formulation is to reduce the local constitu-
tive equations of three-dimensional elastoplasticity problems to only one nonlinear scalar
equation which ultimately condenses in a quartic algebraic equation. The formulation
allows to find the analytical solution of the algebraic equation in exact closed form and,
consequently, no iterative method is required to solve the local constitutive equations
in three-dimensional elastoplasticity. The consistent tangent operator associated to the
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proposed algorithmic scheme has been derived. The algorithmic formulation ensures a
quadratic rate of asymptotic convergence for the global structural problem in elastoplas-
ticity. The effectiveness of the proposed algorithmic scheme has been suitably illustrated
by reporting numerical applications and computational results for complex and cyclic
loading conditions.
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Abstract. Geometry of ballasted railways track is a major concern in railroads safety and
efficiency. Settlement of railways ballast has been studied to help railway infrastructure
managers to keep infrastructures in shape and to prevent accidents.

In this paper, we present an innovative numerical approach to study railways ballast
settlement. Commonly used models representing a moving load need huge computation
time. On the other hand, assuming static cyclic loading representation leads to discre-
pancies. Indeed, it does not conceder particularities of moving load. With this new model
we want to avoid the drawbacks of previously developed methods.

We developed a steady state algorithm to compute plastic strain in geomaterials and
to study behaviour of ballasted railways track with an Eulerian approach. This way we
improved model efficiency by drastically reducing computation time while considering
mobile load specificities.

1 INTRODUCTION

Railway tracks are usually composed of rails, sleepers and ballast. Rails support and
guide the train, sleepers maintain rails and transmit load to the ballast, and ballast keeps
sleepers in place, distributes load over the ground, and maintains all geometric aspects
of the tracks. Geometry of tracks is a major concern in railways safety. A deviation of
some millimetres with the normative prescription could lead to derailment and potential
accidents.
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In this paper we study railways settlement via a continuous approach, computing plastic
strain in ballast layer under train traffic. The purpose of this paper is to evaluate the pros
and cons of different numerical computational methods.

We chose to study impact of a moving load on the structure in opposition with other
classical methods which use a static load, varying in sinusoidal cycles for example. Those
simplified load cycle representations hides particular yielding condition due to load mo-
vement. This could lead to major discrepancies during computation.

We developed two different algorithms, using two different methods to represent load
movement. First, a classical Step-by-Step method, representing movement with many
small incremental displacements. And secondly, an innovative Steady-Sate method, using
Eulerian assumption and representing continuous flow movement.

We tested both algorithm on the same railways model to be able to compare the results
in the same conditions, especially the computation time.

2 RAILWAYS BALLAST BEHAVIOUR

Although ballast is composed of a multitude of smalls blocks, we focus on global be-
haviour. The ballast layers are modelled using a continuous materials assumptions and
studied with Finites Element Methods (FEM) which is easier to implement and needs less
computational time than Discrete Elements Methods (DEM). The continuous approach is
useful to study structure deformation as an accumulation of plastic strain. This approach
has already been used to study ballasted track in different works [1, 2, 3]

2.1 Elastic-Plastic behaviour

We suppose infinitesimal strain which means additive decomposition between elastic
and plastic strain tensor (equation 1).

ε = εe + εp (1)

Relation between elastic strain εe and stress tensor σ 1 are supposed to be isotropic
linear elastic behaviour, described with Hooke’s equation. Young’s Modulus and Poisson
coefficient are taken from Profillidis study [4], i.e. E = 110MPa and ν = 0.2.

Plastic strain εp evolution is described using plastic criterion written as a yield function
f(σ) (f(σ) < 0 stress state is acceptable ; f(σ) = 0 plastic strain can grow ; stress state is
not acceptable f(σ) > 0). For simplification reason, we consider ballast with a "standard"
bahaviour, i.e. flow rule is described as a gradient of the yield function :

ε̇p = λ
∂f(σ)

∂σ
(2)

1. Sign convention : Traction are positive, and principal stresses are ordered as follows : σI ≥ σII ≥
σIII

2
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2.2 Commonly used criteria

Geomaterial behaviour description commonly uses dedicated criteria such as the Mohr-
Coulomb criterion, the Matsuoka-Nakai criterion[5] and the Drucker-Prager criterion[6]
(Figure 1).

σIσII

σIII

(a) Mohr-Coulomb criterion

σIσII

σIII

(b) Drucker-Prager Crite-
rion compression fitted on
Mohr-Coulonb

σIσII

σIII

(c) Matsuka-Nakain crite-
rion fitted on Mohr-Coulomb

Figure 1: Commonly used Criteria represented din Pi-plane

The Mohr-Coulomb criterion is the most commonly used criterion in geo-technical
engineering. Its parameters (cohesion C and internal friction angle φ) are easy to deduce
from laboratory tests and meaningful for engineers. They are commonly used to describe
material and Fitting parameter can be described to use other criterion

The Drucker-Prager criterion is the simplest geo-technical criterion, with a circular
conical yield surface. It allow direct computation of plastic strain using radial return[7, 8].

The Matsuoka-Nakai criterion is a more complex criterion, with a smooth conical yield
surface. It avoids angular problem during flow rule computation in opposition with Mohr-
Coulomb . Moreover, this criterion seems to excellently fit to real tri-axial tests [5]. This
criterion easily fits on Mohr-Coulomb (see figure 1(c)).

In previous works [9, 10, 11] we compared those three criteria. Firstly, Drucker-Prager
improve computation speed of plastic strain. Secondly, despite its induced mist-estimated
resistance of materials, a wisely chosen Drucker-Prager fitting keeps discrepancies to an
acceptable level. For this reason we use the compression fitted Drucker-Prager criterion
(figure 1(b)). We use yield function from equation (3) with mean stress σm and deviatoric
stress amplitude J2. Fitting parameters are gives in equation (4).

For this study we will use φ = 40̊ [12] and C = 5Pa 2.

f(σ) = 3α(σm −H) +
√

J2 (3)

α =
2 sinφ√

3(3 + sinφ)
and H =

C

tanφ
(4)

2. The ballast is supposed to be cohesion-less but we take a negligible C value to avoid zero division
issues during the computation process.

3
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3 COMPUTATIONAL METHODS

Computation of εp depends on stress path followed by particles during load cycle. Many
classical cyclic loading models commonly use 2D or 3D structure with a static sinusoidal
loading which induces increasing and decreasing stress path following a determined way.
Mobile load, such as train on railways, induce a particular strain path witch has a major
importance for plastic strain determination.

Here, we propose here two different methods to compute plastic strain under a mobile
load.

For following part we will suppose that our structure is a �x axial structure and the
load move downstream on the structure. i.e. load speed is �V = −V �x, constant.

3.1 Step-by-Step Computation Methods and Algorithms

The step-by-step algorithm is a classical method to compute influence of a mobile load
on a structure based on an incremental displacement of the load (see figure 3(a)).

We focus on a central part of the structure. Before loading cycle, initial plastic strain
are taken from previous load passing or are induced by the weight of the structure itself.
We start by locating the load before the considered section of the structure, on abscissa
X0, and we compute elastic-plastic strain state on the entire structure.

At time t the structure is on a εp
t

plastic strain state, and abscissa of the load is Xt. At
the next step, time is t + ∆t, the load is now at abscissa Xt+δt = Xt − V · δt (see figure
3(a)). For the new configuration, we compute plastic strain εp

T+δt
taking account previous

plastic strain εp
t
. (Equation 5)

εp
t+δt

= εp
t
+ λ

∂f(σ)

∂σ
(5)

On each Gauss point the plastic strain are searched by closest point projection process[13,
7] until stress state are acceptable. When stress-strain state for the time t are validated,
we move the load decreasing abscissa from Xt to Xt+1.

The load moves this way from before to after the studied part of the structure on T
different steps. After the T computation phases we stop the computational process and
we consider that stress-strain state of the studied element (usually central elements) is
representative of the global stress-strain state of the entire structure after the loading
cycle.

This method is limited because of the non continuous loading of the structure. To
ensure a correct stress path description we need to use small δt steps which multiply the
number of steps. Remembering that the entire strain state has to be computed on each
step, computational time is also multiplied and can be huge.

3.2 Steady-State Computation

The steady-state is an Eulerian methods which allows stress-strain state computation
of a structure under a moving load. This method is based on the works of Nguyen and

4
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εp
i

t
= εp

t−1
+ λ∂f

∂σ

> δ

f(σ
t
)

≤ δ

Kut = F
t
− Fp

t

σ
t
= Lεel

t
+ σ0

i = 0 ; t = 1

F p
t = F p0

εp
t
= εp

0

i++

εp
i

t
integration
F p

t = F pi

t

t

t<T

i = 0 ; t++

F p
t = F p

t−1
εp
t−1

t=T
end

Figure 2: Step-By-Step Algorithm

Rahimian [14](1981) and Dang Van et al. [15](1985) who described the theoretical frame-
work and first applications of the method. It has been used to various problems involving
moving loads, such as the impact of rolling on rail heads [16], interaction between rock
and cutting tool [17], automotive brake disk [18], tunnelling [19, 20]. But it as been never
used to study ballast behaviour under train traffic.

3.2.1 Basic Concept

The method is based on a load point of view focus, the structure is then seen as material
flow that goes under the load (see figure 3(b)). Primary, the method supposes that the
structure is continuous and invariant along �x axis. It also supposes that the load speed �V
and the load intensity are constant during a passage.

t+ δt t t− δt

(a) Step-by-Step computation methods

�v

(b) Steady-State computational methods

Figure 3: Difference between Step-by-Step and Steady-State

It is possible to use a modified algorithm to compute non constant load or load at
non constant speed. The TRC algorithm (Transitoire dans le Repère de Chargement)

5
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developed by Nguyen-Tajan [21](2002) allows such particularities. In case of an periodic
structure, such as railways tracks using sleepers, we can use another modified steady state
algorithm. This particular aspect is not the purpose of this paper, it will be the subject
of future work.

3.2.2 Computational Methods

Under a moving load the time derivative of a tonsorial quantity A can be written as
equation (6) from the structure point of view, and be rewritten as equation (7) from a
load point of view.

Ȧ =
∂A

∂t
+ �V · �gradA (6)

Ȧ = V
∂A

∂x
(7)

In a steady-state method the plastic flow rules can be rewritten :

ε̇p = λ
∂f

∂σ
(8)

With λ · f = 0, λ · ḟ = 0, λ ≥ 0 and f ≤ 0.

∂εp

∂x
= Λ

∂f

∂σ
(9)

With Λ > 0 if f = 0 and ∂f
∂x

= 0 or Λ = 0 otherwise.

Steady state methods consider that stress path during the loading cycle can be des-
cribed by following the stress state on a line parallel to the structure axis. Plastic strain
are then computed on the integrations points (Gauss points) which are lined because of
quadrilateral mesh construction.

Gauss points are then noted and sorted on many parallels lines along the structure.
To compute the plastic strain at point n we use the plastic strain state on the previous
Gauss point n− 1, because we assume the continuous yielding during the movement (see
figure 4). Equation (10) is used to compute the plastic strain in point n.

εp
n
= εp

n−1
+ Λ

∂f

∂σ
(10)

3.2.3 Steady-State Algorithm

For the steady state algorithm we consider a central load over the structure that does
not move. Before the loading cycle, initial plastic strain are taken from the previous load
passes or are those induced by the weight of the structure itself.

6
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n n+1

�v

x

Figure 4: Plastic strain computation process on Gauss point

The plastic strain are then computed and integrated along each of Gauss points line
flowing the particular computation process of Steady-State algorithm. The plastic strain
are searched by the closest point projection process [13, 7] until stress state are acceptable
all along the line. If it’s not, the plastic strain integration is started over on the entire
line.

εp
i

n
= εp

i

n−1
+ Λ∂f

∂σ

> δ

f(σ)
≤ δ

end

Ku = F − F p

σ = Lεel + σ0

i = 0

F p = F p0

εp = εp
0

i++

εp
i integration
F p = F pi

Figure 5: Steady-State Algorithm

At the end of the process, i.e. when stress state is acceptable on the entire structure,
we identify the final plastic strain at the end of the structure, we consider that this
stress-strain state is representative of the global stress-strain state of the entire structure.

For a multi-cycle loading computation, the process is repeated N times for the N
loading cycles needed.

4 RAILWAYS MODELLING

We will illustrate the different computation methods using a 3D model of a Railways
track. The Model is build in COMSOL Multiphysics FEM software and the computation
is led with a Matlab routine. The two softwares communicated using Matlab LiveLink
tools of COMSOL’s software.

7
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4.1 3D Model

The 3D model represent half of a symmetric 15m long railways track. The 2D trans-
versal shape represent a 50cm hight ballast layers. Over it, a 25cm height and 1.1m wide
half single block sleeper is disposed. On the side a 50cm shoulders, and die down slope
with a 2/3 ratio are made. (See figure 6)

(a) 2D transversal shape (b) Full model

Figure 6: 3D Model of half a railway track

We focus on plastic strain under the sleepers, i.e. only in the 50cm bottom layer. Plastic
strain are not significant in the rest of the structure and are not computed.

4.2 Meshing

The meshing use quadrilateral elements along the structure. The elements are built
lined due to the steady-state computation assumption. Mesh element has to be smaller
near the load to correctly describe stress repartition. Because the structure can be loaded
on multiple spots, the Step-by-step model uses equally dense mesh. The Steady-state
model uses a gradually dense mesh, denser in the middle of the structure, to limit the
number of elements and improve computation time. Here we use three time fewer elements.

4.3 Load

Before any loading, the structure stability is computed supporting its own weight. The
gravity will continue to affect the entire structure during all computation.

For this work the main load will correspond to a classical maximal load for our half
track model. Because our model does not feature rail or sleepers, we will use an equivalent
load continuously applied on the top of the bottom layers of ballast. The load repartition
is taken from Profillidis work [4], and is interpolated to build a continuous loading (see
figure 7). The total load is 10t, (20t for full axle load).

The load is placed on the middle of the structure for the Steady-State computed model,
or can be moved along the structure with a parametrised position for the Step-by-Step
de computed model.

For the Step-by-Step method we describe 57 steps equally distant from 20cm to ensure
load zone covering step after step.

8
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Figure 7: Load reparation on sleepers [4]

5 RESULT AND DISCUSSION

In the following part we will plot and compare plastic strain magnitude define as
εp = Tr(εp · εp). Comparison of other measure of plastic strain has led to same conclusion
and will not be presented.

5.1 Longitudinal representation

On figure 8, we represent plastic strain magnitude in the centre of a longitudinal slice
of the model, for the Steady-State method and for the last steps of the Step-by-Step
method. Those representations give us information on computation process accuracy and
plastic strain distribution.

The steady-state algorithm figure shows plastic strain evolution from before to after the
load passing. It also shows perfectly a regular and continuous plastic strain distribution
after the load.

In opposition the step-by-step figure does not show us plastic strain evolution. To do
so, we have to study plastic strain repartition on each step of the computation process. It
also shows us an irregular and not continuous repartition of plastic strain. This is due to
the jumping representation of load movement. The irregularities are not critical for the
study but show a limitation of this methods.

(a) Steady-State (b) Step-by-Step

Figure 8: Longitudinal repartition of plastic Strain for both methods

9
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5.2 Transversal representation

On figure 9, we represent the transversal repartition of plastic strain magnitude in the
representatives zones. Shape of the figure and measured values of plastic strain are totally
comparable. For example, maximal magnitudes are εp = 6.76E−4 for steady-state and
εp = 6.52E−4 for step-by-step, i.e. less than 5% discrepancies.

Both methods can be used to study plastic strain in railway ballast under train load.
Small advantage for the Steady-State method who provide cleaner results and more in-
formations.

(a) Steady-State (b) Step-by-Step

Figure 9: Longitudinal repartition of plastic Strain for both methods

5.3 Computation time

For this model the step-by-step computation process had run for 395015s (4d, 13h and
43min), the steady-state had run for 1940s (32min) 3. This huge difference remain logical
and can be explained as follow :

On one hand, the steady-state process correspond to a single full computation step of
24 iterations and both iteration takes about 80s.

On the other hand, the step-by-step process correspond to 57 full computation steps.
Each step needs about 24 iterations and each iteration takes about 260s.

Those number are logical, by construction the Step-by-Step needs the same amount of
computation on each steps as a full steady-state. Moreover, because of the 3 times denser
meshing each iteration of a Step-by-Step need 3 times more time than a Steady-State
iteration.

The same result was found with other tested model, independently from the different
models and parameters.

Finally, the comparison of the computational time give a huge advantage to the Steady-
State process over the Step-by-Step process.

3. These numbers may vary depending on the software and the computer, there are given to illustrate
the comparison using same tools and conditions.
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6 CONCLUSIONS

In this paper we studied possibilities of using the Steady-State computational methods
for studying ballasted track settlement with a continuous approach. Considering the major
importance of accurate moving load representation, we have looked for plastic strain
computation methods under train circulation.

In that purpose we developed two algorithms using COMSOL Multiphysics and Live-
link for Matlab. The first algorithm uses a classical computational method, Step-By-step
methods, based on the movement representation via multiples small incremental displa-
cements. The second algorithm uses an innovative Eulerian method, the Seady-State me-
thod, based on a load centred point of view and assuring the continuous yielding of the
structure.

Using and comparing both methods showed minor differences between the results,
with a small advantage for the Steady-State methods which provide homogeneous result.
More importantly, comparing computational times showed a strong advantage for Eulerian
method over the incremental method with a drastic computation time reducing, which let
us see great potential for the Steady-State algorithms. Moreover, because our examples
and models are quite simple, this advantage could be even more important for more
complex model, including viscous-plastic behaviour for example.

The Steady-State algorithm give us many others potential advantage, including pre-
cise plastic strain and plastic work study during cycle, or cyclic structure study. Those
improvements will be subject of further work and development in near future.
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Abstract. The paper presents the flexibility of approximation in PIES applied for solving 
elastoplastic boundary value problems. Three various approaches to approximation of plastic 
strains have been tested. The first one bases on the globally applied Lagrange polynomial. 
The two remaining are local: inverse distance weighting (IDW) method and approximation in 
different zones by locally applied Lagrange polynomials. Some examples are solved and 
results obtained are compared with analytical solutions. Conclusions on the effectiveness of 
presented approaches have been drawn.  

 
 
1 INTRODUCTION 

The main issue of solving boundary value problems by the finite element method (FEM) 
[1,2] and the boundary element method (BEM) [3,4] is discretization. The approach called 
parametric integral equation system (PIES)[5] has been developed as an alternative to 
mentioned methods. It is characterized by analytical incorporation of curves and surfaces into 
the integral equation, which results in separation of approximations: the shape from the 
solutions. It means that more effective methods for both approximations can be applied. PIES 
with mentioned advantages has been applied for solving various problems e.g. acoustic [6], 
elastic [7,8] or lately elasto-plastic [9].  

Solving elasto-plastic problems, in PIES like in BEM, only the plastic region has to be 
modelled. It is defined globally using surface patches known from computer graphics [10,11]. 
In most cases only single surface is enough. For this reason also approximation of plastic 
strains is done globally using various polynomials (e.g. the Lagrange polynomial). Such an 
approach has pros and cons. Advantageous is simple global integration with a bit more 
number of weights in the quadrature and without the necessity of calculating integrals over 
small regular areas and summing them. The second benefit is flexibility of obtaining plastic 
strains at any point of the considered domain, because it is done continuously using only one 
formula. On the other hand, it is known that plastic strains occur locally. Even if the defined 
surface covers only the estimated plastic zone, a part of it is characterized by a zero plastic 
deformations. Using global approximation every calculated value is more or less affected by 
values from all interpolation nodes. It means that there is no possibility to obtain exactly zero 
at nodes which are not plastic, but only a value that oscillates around zero. The accuracy of 
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 2 

the results obtained using the global approach depends on the number of interpolation nodes. 
The more interpolation nodes with zero plastic strains, the more accurate results in the vicinity 
of zero can be obtained between them. When a lot of nodes have to be taken in order to 
guarantee appropriate accuracy, a local approximation should be considered. However, in 
order not to lose the main advantage of PIES, local approximation cannot be associated with 
shape discretization. 

The main aim of this paper is to develop and test various methods of local approximation 
without the necessity of dividing the domain into elements or cells. At the beginning, 
approximation is separated into two or more zones depending on the distribution of plastic 
strains. This division is done only on the interpolation nodes level. However, there are also 
problems that require totally local approach around the considered node only. The inverse 
distance weighting (IDW) method is an example of the method using this approach and it can 
be easily adapted to PIES. Some examples are solved using both approaches. The results 
obtained confirm the effectiveness of proposed methods of approximation. 

2 PIES AND THE INTEGRAL IDENTITY FOR STRESSES 
The parametric integral equation system (PIES) in the initial-strain approach was derived 

and presented in [9]. The resulting form of PIES is given by 
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where ,, 11 jjll ssssss   dddd wwwvvv   11 , . Variable n  is the number of segments that 
built a boundary, while m  is the number of surfaces that built a domain, therefore nl ,.....2,1  
and md ,.....,2,1 . 

As is stated in the introduction, boundary segments in PIES can be defined by any curves 
)(sjΓ  (e.g. Bézier, Hermite, B-spline or NURBS curves) and 1ls  and 1js  correspond to the 

beginning of l th and j th segments, while ls  and js  to the end of these segments. 
Consequently, a domain in PIES can be defined by surface patches (e.g. Bézier surface 
patches) and dddd wwvv ,,, 11   are respectively the beginning and the end of the domain of d th 
surface. For the sake of simplicity, it should be remembered that the domain of the surface is a 
unit square ]1,0[]1,0[  . Mapping integral intervals require introduction of scaling factors 
(Jacobians), which can be presented as follows 
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where functions      wvAwvAwvA ,,,,, 321  represent the combination of the partial derivatives of 
mathematical functions that describe surfaces [10,11].  
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Functions )(),( ss jj up   from (1) are parametric boundary functions defined or searched on 
each segment of the boundary, while ),( wvpε are plastic strains. Since PIES is solved using the 
collocation method, s  stands for a collocation point. 

Equation (1) contains three kernels. The first kernel ),(* ssljU  for the plane strain case is 
presented in the following matrix form [9] 
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a shear modulus. 
The next kernel ),( sslj

P  in (1) can be presented by the expression [9] 
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and )(1 sn  and )(2 sn  are the direction cosines of the external normal to jth segment of the 
boundary.  

Both kernels (4) and (5) take into account (in their mathematical formalism) the shape of 
the boundary defined by any parametric curves )(sΓ . The shape of the domain defined by any 
parametric surfaces ),( wvB  is integrated into the integrand ),,(* wvslσ  from (1). For the plane 
strain case that function can be presented as follows [9] 
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Formula (1) allows obtaining displacements and forces on the boundary. To determine 
other quantities within the domain the integral identity is required. In order to calculate 
stresses the following expression has to be used 
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Kernels ),(ˆ * sj xD , ),(ˆ * sj xS , ),,(ˆ * wvxΣ  and also a free term are given in explicit form in [9].  

3 DEFINING THE DOMAIN 
As is stated in section 2, the domain in the proposed method is modeled globally using 

surface patches [10,11]. Till now only Bézier surfaces were applied, but the approach gives 
flexibility in choosing the type of patch. In PIES, like in BEM, only the yield region is 
defined, because the domain integrals are zero elsewhere. In order to show the way of 
modeling in PIES two different shapes are considered. The first domain is polygonal, the 
second curvilinear and both of them are presented in [12]. Figure 1 and 2 present them 
discretized in BEM and defined in PIES. White circles ○ represent nodes required to define 
the boundary, while black ● are those which are necessary for the yield region modeling. 
 

      
 a) b) 

Figure 1: Modeling a cantilever beam in: a) BEM, b) PIES 

 

    
 a) b) 

Figure 2: Modeling a circular hole in an infinite domain in: a) BEM, b) PIES 
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As can be seen in Fig. 1a and 2a, the discretization requires division of yield region into 
cells. They model the geometry, but also their number and type are responsible for the 
accuracy of obtained solutions. Therefore, even if the shape can be modeled using smaller 
number of cells, sometimes (or even very often) they have to be multiplied in order to 
maintain satisfactory level of results. Thus, the yield region in the cantilever beam (Fig. 1a) in 
BEM is defined by 12 linear cells and 21 nodes, while in fact it can be modeled using only 
one bilinear surface and 4 corner points (Fig. 1b). The same situation is when the curved 
shape is defined. In BEM there is the necessity of applying 6 linear cells (Fig. 2a), while PIES 
requires only one bicubic surface (Fig. 2b).  

Concluding, the number of data required for modeling the domain in PIES depends only on 
the complexity of a shape. The accuracy of approximation is guaranteed by the number of 
expressions in approximation series presented in the next section. Proposed method solves 
also another complication occurring in BEM. The extent of the yield region is not known a 
priori, therefore very often generous proportion of it are assumed initially. For this reason the 
greater number of cells has to be defined. In PIES that problem does not exists, because as it 
is presented in Fig.1b using the same number of nodes even entire domain can be modeled as 
an initial yield region. Thus, it is more effective to assume quite large proportions than 
performing pilot studies. 

4 APPROXIMATION OF PLASTIC STRAINS 

4.1 Global approximation using Lagrange polynomials 
As is mentioned in section 3, approximations of the shape and solutions in PIES are 

performed independently. Therefore, the domain can be modeled globally using only minimal 
number of data needed for accurate definition of the shape. A consequence of the global 
modeling of the plastic zone is the possibility of global approximation of plastic strains. For 
this purpose any 2D method can be used. Till now I have applied the approximation series 
with Chebyshev basis functions and Lagrange polynomials. The first approach has one 
disadvantage i.e. it requires solving of the system of equations. This feature can be 
unfavorable especially when the system is ill-conditioned. The second way is not 
characterized by this defect, and therefore is more efficient.  

Using the Lagrange polynomials the plastic strains )(xε p  can be approximated by the 
following approximation series 
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and 21 RRN   is the given number of interpolation nodes, while )(, xε rwp  is the value of plastic 
strain at the node ),( 21 wr xx .  

One of the most crucial elements of the approximation is arrangement of interpolation 
nodes. Taking into account the domain of approximation – a unit square – it is very easy to 
distribute nodes in any order. Some orders that were previously successfully used are: 
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uniform and at zeros of Chebyshev polynomial. Using the first method and quite large 
number of interpolation nodes Runge's phenomenon may occur. Therefore, the most efficient 
and safe is the second proposition. Nodes placed in the unit square have to be transformed 
into the actual domain in order to obtain values of plastic strains for approximation. This is 
also simple, because each surface is described by some formulas, which translate coordinates 
from the parametric domain of the surface to Cartesian coordinate system.  

After substituting formula (8) into (1) and using approximating series for the boundary 
functions (presented in [9]) we obtain approximating form of PIES for elastoplastic problems 
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As can be seen in (9), the domain integral is calculated on the basis of values returned by 
the formula (8), which is used globally (one formula for the whole surface). The advantage of 
the approach is that we have only one polynomial by which plastic strains at arbitrary points 
of the plastic region can be obtained. On the other hand, this approach may not reflect the 
local character of strains. It means that every point which does not yield has plastic strains 
only around zero, but not exactly zero. It comes from the fact, that all interpolation nodes 
have influence on searched values. Therefore, maybe it is reasonable to separate 
approximation into two or more zones depending on the distribution of plastic strains. 

4.2 Local approximation 

4.2.1 Different Lagrange polynomials in different zones 
In PURC separation of approximations is very easy, because approximation of the domain 

and approximation of the plastic strains are independent. Thus, the shape still is modeled by 
the surface, interpolation nodes are generated in its domain (the unit square) and 
approximation is done by manipulating these nodes. Such an approach allows to separate two 
sets of nodes and for approximation of strains to use two approximation polynomials. Most 
expected division is the one, which separates zone with nonzero plastic strains from that 
where they are zero. The example of such a division for the Lame problem is presented in Fig. 
3. The analytical solution for this problem is known, therefore the boundary of the division is 
drawn as the boundary between elastic and plastic regions.  
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 a) b) 
 

Figure 3: a) An arrangement of interpolation nodes, b) split into two sets of nodes 

Each point for which plastic strains are required has to be assigned to one of the 
approximation zones and depending on the choice its value should be approximated with the 
appropriate polynomial. Zone boundaries can be arbitrarily chosen, however, it seems 
intuitively that it should divide the domain evenly between the extreme nodes of the 
designated sets of nodes. Dividing a plastic region into zones is straightforward in the 
proposed method, since approximation takes place in the unit square, which is a domain of the 
surface. An example of division into zones of influence of individual approximation 
polynomials is shown in Fig. 4. 

 

 
 

Figure 4: Two zones for which are used different approximation series 

As can be seen in Fig. 4, for all points included in the red and blue zones different 
polynomials have to be used. 

The PIES approximation form described by (9) has to be modified, and the last term of the 
equation 
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where 21,TT  are numbers of interpolation points assigned to the corresponding Lagrange 
polynomial. Considering the example presented in Fig.4 the first polynomial is characterized 
by 31 T  and 72 T , while the second by 41 T  and 72 T . Which of the polynomials will be 
used to approximate ),( wvpε  in (10) depends on the location of point x .  

Similar modifications should also be made to the last element of the approximation form of 
the integral identity for stress (7). The situation is a little more complicated here, because the 
integral over the domain is strongly singular. In [9], the algorithm described in [13] was used 
for its determination. It consists in transforming the singular integral into two 
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The first integral is weakly singular and can be evaluated by subdivision technique, while 
the second has been transformed into a boundary integral with no singularity. In both integrals 
it is necessary to use the approximation series (8) twice to calculate the plastic strains at the 
point x  and for all points ),( wv . And again like in (10), one should use polynomials that 
correspond to positions of both points. 

The advantage of the proposed strategy is that the number of interpolation nodes in a 
polynomial can be quite effectively controlled. For example, if one of the polynomials is used 
to approximate strains where most of them are zero, it can be built with smaller number of 
nodes. An example of the strategy is presented in Fig. 5. 

 

 
 

Figure 5. Interpolation nodes used in two approximation series 

As shown in Fig. 5, green nodes have been used in one of the polynomials, while in the 
second is considered only every second row of nodes marked by orange.  

The strategy described in this section, despite being based on globally generated nodes and 
a globally modeled plastic region, is zonally local. However, there are issues that require 
approximation to be completely local to the selected point. There are many local 
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approximation algorithms, most of which can be easily adapted to PIES. One of the simplest 
examples is the inverse distance weighting (IDW) method. 

4.2.2 Inverse distance weighting 
Inverse distance weighting (IDW), also known as the Shepard method, is used for 

interpolation with an irregularly-spaced interpolation nodes [14]. Unknown values are 
calculated with a weighted average of the values available at the known nodes. A general 
form of finding an interpolated value )(xε p  at a given point x  based on plastic strains )( r

p xε   
( Rr ,...1,0 ) at R  interpolation points using IDW is  
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where 
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x  , (13) 

is a simple IDW weighting function, d  is a given distance from the known point rx  to the 
unknown point x  and p  is a positive real number, called the power parameter. 

The main idea of IDW is that things that are close to one another are more alike than those 
that are farther apart. To predict a value for any unmeasured location, IDW uses the measured 
values surrounding the prediction location (from so-called neighborhood of influence). It is 
known that using such an approach the accuracy depends on the arrangement of interpolation 
nodes and the way of determination of the mentioned neighborhood. In the simplest case the 
neighborhood of influence can be specified using maximal distance from point of interest and 
it is just a spatially fixed shape e.g. circle. Selection of interpolation nodes could be much 
more complex, but also more effective especially in cases with highly nonregularly distributed 
nodes [15].  

In the paper, the simplest method of determining the neighborhood of influence is used. 
Fig. 6 presents nodes used for approximation of plastic strain at point x . 
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Figure 6: Neighborhood determines nodes for approximation at points x  

Another factor affecting the accuracy of the approximation in IDW is the power parameter 
p . Greater values of p  assign greater influence to values closest to the approximated point.  

5 RESULTS 

5.1 Different Lagrange polynomials in different zones 
 
The first example concerns a thick-walled cylinder subjected to internal pressure under 

plain strain conditions. The radius of inner face is 100a , while outer face is 200b . The 
whole domain is defined by one bicubic Bézier surface. The Von-Mises yield criterion with 
perfect plasticity and the following material constants MPaY 30 , MPaE 21000 , 3.0v  are 
assumed.  

Initially, the problem was solved using global approach with 25 and 36 interpolation nodes 
placed at roots of Chebyshev polynomials. For those two cases, radial and circumferential 
stress distribution for a specific ( MPap 9.20 ) internal pressure were calculated. Values 
obtained at 100 internal points are used to calculate a norm 2L  
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where w
r  represents radial stresses obtained by PIES at 100 interior points, while w

r  are 
exact solutions [16]. Values of norm for two assumed numbers of interpolation nodes are 
presented in Table 1. 
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Table 1: Norms for radial and circumferential stress distribution – global approximation 

 25 36 

r

e


 0.4432 0.1923 

q

e


 2.4478 1.4653 

 
As can be seen in Table 1 value of norm is smaller for higher number of interpolation 

nodes, but it still can be better (especially for q ). For this reason the first technique described 
in section 4.2.1 is applied. Three different cases are considered: two of them with 36 and one 
with 25 interpolation nodes. Figure 7 presents nodes used to create two approximation 
polynomials and also the division of the domain into zones for which different polynomials 
have to be applied.  

 

     
 a) b) c) 

Figure 7: Different approaches for zonally local approximation 

Figure 7a present arrangement of 36 interpolation nodes, which are divided into two 
groups for two approximation polynomials. In both of polynomials 31 T  and 62 T . Values of 
plastic strains at points from the zone with outer face with 145r  are calculated using the first 
polynomial, while the rest using the second one. In the case presented in Fig. 7b the first zone 
of influence is reduced to favor the other ( 139r ). This test is to check whether the maximum 
reduction of the zone with non-zero plastic strains affects the final results. The last from 
presented cases concerns approximation with 25 nodes. The first polynomial has 31 T  and 

52 T , while the second 21 T  and 52 T . Zones of influence of individual polynomials are 
defined by the radius 160r . 

For the individual cases described above, the value of norm (14) has been determined. The 
results are presented in Table 2. 

Table 2: Norms for radial and circumferential stress distribution – local approximation 

 25,r=160 36, r=145 36,r=139 

r

e


 0.3235 0.1561 0.1613 
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q

e


 1.5861 1.0146 0.9195 

 
Comparing the results presented in Tables 1 and 2, the following conclusions can be 

drawn: 
a) the norm for radial stress reduces its value by 27%, while for circumferential stress by 

35% when dividing into two polynomials and using totally 25 interpolation nodes, 
b) for 36 nodes and the boundary between zones in 145r  norms are reduced by 19% and 

30% respectively for radial and circumferential stress (comparing to the global approach),  
c) moving the boundary to 139r  only affects the improvement of the norm for 

circumferential stress (in comparison to values obtained for 145r ). 
As can be seen, there is an improvement in the results after dividing the domain into two 

approximating zones. Another important benefit is the shortening of calculation time. Thus, 
the calculations for 25 interpolation node divided into two polynomials is about 2.5 times 
shorter than for the global case. Taking into account the 36 interpolation nodes, the time is 
even shorter by 3.5 times. 

 

5.2 Inverse distance weighting 
Second example concerns the cantilever beam presented in Fig. 8. The beam is end-loaded 

and is considered as plane stress. The material parameters for this example are: PaE 1110*2  
and 25.0v . The Von Mises yield criterion is assumed to apply with PaY 20  and 0' H . 

 
Figure 8: The considered cantilever beam 

In the proposed method, like in BEM, only the plastic region is modeled. The considered 
example is described by the analytical solution, therefore the spread of that region is known a 
priori. Thus, not the whole domain must be defined, only its part presented in Fig. 8 (filled 
with gray). This requires only one Bézier bilinear surface with four corner points.  

In [17] analytical formulas for elastic-plastic boundary and tip deflection are presented. In 
order to obtain those quantities using PIES 64 interpolation nodes are placed at roots of 
Chebyshev polynomials. Two methods of approximation are applied: the global 
approximation using Lagrange polynomial and IDW method. The power parameter is 
assumed as 2p , while the radius of the neighborhood of influence are 3.0  and 0.4 (they are 
marked in Fig. 8 by green and red circles respectively). Of course it should be remembered 
that both radii are defined in the basic unit area. Obtained force-deflection values are 
presented in Fig. 9. 
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Figure 9: Force-deflection values for the cantilever beam 

As can be seen in Fig. 9 solutions obtained by IDW with larger radius of neighborhood are 
slightly more accurate than those with a smaller radius. Both of them are more closer to 
analytical than those generated using global approximation with Lagrange polynomial. The 
latter reflect those obtained by FEM in [17]. 

Taking into account that slightly better results are obtained using larger radius of 
neighborhood in IDW method, the elastic-plastic boundary is determined using only this 
configuration. The boundary of the plastic zone determined analytically in comparison to 
plastified points obtained by PIES is presented in Fig. 10. 

 

 
Figure 10: Comparison of plastic zones obtained by various method of approximation 

As presented in Fig. 10, the spread of the plastic zone obtained by PIES with IDW method 
overlaps with analytical results. Having in mind also values of deflection shown above, it can 
be stated that the local approximation used in PIES method is very promising alternative to 
global approximation by various polynomials (e.g. Lagrange like in this paper). 
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6 CONCLUSIONS 
The paper presents various methods of approximation of plastic strains in PIES. The PIES 

method is characterized by the global modeling of the plastic region, what gives the flexibility 
in application different approaches to approximation of solutions. Therefore, in the paper 
global and two local methods of approximation have been used. The first is zonally local, 
while the second takes into account only the influence of neighboring nodes.  

Two examples were solved and results obtained were compared with analytical solutions. 
Moreover, numerical results obtained in the global manner are compared with the local one 
using different parameters.  

It can be stated that using more than one approximation polynomial zonally is beneficial, 
because solutions obtained are more accurate. There was an improvement in accuracy up to 
35%. Moreover, the time of calculations has decreased significantly (up to 3.5 times). 
Considering the IDW method applied to cantilever beam it is also shown that solutions 
obtained by local approach are more accurate than those received using global approximation.  
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Abstract. DEM simulations are originally made for spherical particles only. But most
of real particles are anything but not spherical. Due to this problem, the multi-sphere
method was invented. It provides the possibility to clump several spheres together to
create complex shape structures. The proposed algorithm offers a novel method to create
multi-sphere clumps for the given arbitrary shapes. Especially the use of modern cluster-
ing algorithms, from the field of computational intelligence, achieve satisfactory results.
The clustering is embedded into an optimisation algorithm which uses a pre-defined cri-
terion. A mostly unaided algorithm with only a few input and hyperparameters is able
to approximate arbitrary shapes.

1 INTRODUCTION

Modern Discrete Element Method (DEM) simulation tools provide the use of multi-
spheres instead of only spherical particles to approximate the shape of real material more
precisely. The use of multi-spheres is a method of clumping several spheres together. The
total number of spheres, positions, radii and overlapping between spheres in a clump can
be adjusted to obtain a broad range of arbitrary shapes. Some modern simulation tools
offer inherent functions to create custom clumps or present a range of several different
templates. Also, the use of super-quadrics instead of multi-spheres is another way to ob-
tain non-spherical particles which are available in some DEM tools. To be not restricted
by vendors specifications, e.g. LIGGGHTS [1] offers the possibility to include user-defined
clumps. These clumps are saved in files which only consists of the local Cartesian coor-
dinates and the radius of each sphere of the multi-sphere clump. A creation of these
files by approximate desired shapes and transfer them into sphere constellations needs an
appropriate algorithm. This algorithm requires several different steps to create proper
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approximations. It begins with analysing the given shape, initial filling of these shape
with random spheres, efficient clustering and observing the obtained result. Generally,
there are three objectives which have to be fulfilled within the approximation. To save
computation time in DEM simulations, a sufficient approximation of desired shapes by
using a minimum number of spheres per clump is required. Secondly, the number of
spheres must be large enough to achieve an adequate surface representation. And finally,
the applicability of this algorithm for expected shapes and an acceptable algorithm cycle
time is to be ensured. A user-friendly functioning along with a minimum number of pos-
sible adjustments and mostly automatic algorithm is desired. The complete algorithm is
currently based on a MATLAB script, but generally translatable to other programming
languages.

2 MULTI-SPHERE APPROXIMATION

Often real shapes are given as 3D surface representation by using laser scan technol-
ogy or stereo photogrammetry. The stereolithography (STL) file format is the standard
presentation form in this context and represents the shape as complete mesh consisting
of a distinct number of triangles. Also, standard CAD tools are usually able to translate
drawings into this file format. Due to possible complex shape structures, appropriate
algorithms are required to define and place single spheres converging to a multi-sphere
clump. In general, there a three approaches to fill 3D shapes. Phillips et al. explain
that in a two-dimensional space, by using either mono-disperse or poly-disperse disks, an
approximation of shapes is possible by packing, covering or filling [2]. These approaches
can also be converted into the three-dimensional space. Packing does not allow an over-
lapping of spheres and protruding the surface of the shape, covering allows overlapping
as well as protruding to cover the complete surface and filling only allows overlapping of
spheres but no protruding of the surface edges. Due to the fact that overlapping is not
possible, packing usually requires a much higher amount of spheres to reach the desired
approximation instead of using overlapping spheres. Only covering and filling provide the
performance for modern approximation algorithms.
The general approach to approximate shapes and generate spheres starts with placing dis-
tinct or randomly chosen spheres within the shape’s volume. Afterwards, an optimisation
problem defines different criteria which are used to cluster and reduce afterwards the total
number of spheres. Some algorithms have to consider the inertia and centre of gravity
during the creation of the resulting clumps. Deviations in these properties from the origi-
nal body and clump can significantly change the clump behaviour in the DEM simulation
itself. The DEM tool LIGGGHTS offers, therefore, the opportunity to set these proper-
ties independently from the clump shape. This reduces the effort enormously during the
approximation. Most attention is thus on the exact surface and volume representation.

2.1 Related work

A current clump generation tool developed by Price et al. is made with randomised
sphere positions to fill initially thousands of spheres into a shape. The spheres are placed
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assuming that it needs exactly four random points of the shape, nodes of the mesh, to
form a distinct sphere with the centre position and radius. This filling yields finally to
the issue, that most of the spheres are deleted afterwards because their centre is often
outside the shape. So the post processing starts first with deleting of unnecessary spheres
and then starts clustering the spheres [3]. The algorithm by [4], uses only three different
parameters, the minimum distance between surface nodes and spheres, the minimum radii
of spheres, the percentage number of nodes which are covered and uses thus no need of post
processed clustering at all. Clustering methods in recent works are often based on heuristic
algorithms, [5, 6] present their clustering as flow chart algorithms which use individual
conditions to cluster the spheres to appropriate clumps. One way of validating the results
is the off-volume criterion. This criterion, which is also used by [7], compares the original
shape volume with the approximated volume of the final clump representation.
The algorithms often need a relatively large number of spheres per clump for proper
approximation results. It depends on the one hand on the optimisation indicators or the
possible hyperparameters and on the other hand on the clustering methodologies how
much spheres per clump are computed. Particularly the clustering methods offer space
for optimisation. But also the prior steps, filling and observing of the given mesh, up
to the quality analysis have the potential for improvements. A complete algorithm for
arbitrary shapes, which uses only a minimum of spheres for the approximation is not
developed yet.

2.2 Problem Statement

The presented algorithms offer different ways to approximate shapes into multi-sphere
clumps for DEM simulations. Creation of multi-sphere clumps is always a compromise
between accuracy of approximation and the total number of spheres per clump. With in-
creasing approximation quality the number of spheres increases as well. The quality of an
approximation can be assumed as a grade of similarity to the original shape. With an in-
finite number of spheres an identical approximation can be achieved. With fewer spheres,
a good approximation is performed when the dimensions of the shape are completely
filled and the roughness of the obtaining sphere constellation is relatively smooth. How
much spheres are needed for a proper approximation always depends on the complexity of
the desired shape and the allowed multi-sphere method, overlapping or non-overlapping
method. To reduce the computation time of DEM simulations there is basically the idea
of minimising the number of spheres in complete DEM simulation. Increasing number
of spheres always extend the total computation time. Due to the simulation purposes,
the desired approximation quality varies significantly. A general rule is that with a ris-
ing number of clumps within one simulation run in the DEM simulation, the quality of
the approximation, respectively number of sphere per clumps is negligible reduced. But
otherwise, when the degree of approximation is of particular importance, the shape ap-
proximation requires more spheres per clump, hence the total number of clumps in DEM
is there relatively small.
Summarised there are four requirements defined which have to be fulfilled by the improved
approximation algorithm:
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• Minimum number of spheres per clump to achieve short DEM simulation time

• Approximation for arbitrary shapes with overlapping multi-spheres with sufficient
approximation quality

• Minimised number of possible input parameters - highly autonomous approximation

3 FILLING

The improved algorithm presented in this paper is based on the filling approach. The
spheres of the multi-sphere clump may protrude the shapes surface or other spheres. These
overlaps to other spheres increase, compared to non-overlapping spheres, the accuracy and
smoothness of the surface representation as well as decreases the total number of spheres
by the same roughness.The initial filling is made generally with random spheres. There
it is also ensured that all of these sphere’s centres are within the surface of the shape.
Compared to the algorithm of [3], it is not necessary to delete unfitting spheres. Each
sphere with its centre and radius covers or is in contact with at least one node. When
a prior defined number of nodes is covered with spheres, is the filling process ended.
Depending on the quality of the mesh and the total number of nodes in it, the number
of the filled spheres may very significantly. This node based filling ensures compared to
a distinct number of initial spheres that the mesh is appropriately filled. A variation
of the percentage nodes which are covered is adjustable to reach optimal filling with a
sufficient number of spheres by using arbitrary shapes. A restriction of too close centres
is not required because of the clustering afterwards and the different radii of each sphere.
The radii of all initial spheres, where each radius is defined as the minimum distance
to next available node of the shapes mesh, are computed. This distance is defined as
the euclidean distance in the three-dimensional space, for each centre to its closest node,
which is defined as:

d(n, c) =
3∑

i=1

√
(ni − ci)2. (1)

To find the minimum distance and thus the closest node, each sphere compares the
distances to all nodes iteratively. These smallest distances are now set as radii. Figure 1
shows a randomly set sphere inside a STL mesh, which radius is adapted to the distance
D to the closest node. This sphere covers not only the contacted node but surrounding
nodes as well. Depending on the shapes structure and the meshing quality it makes sense
to increase the radius with a particular offset to ensure that most of the nodes are covered.
When the desired number of nodes is covered with spheres, the filling process usually ends
with up to several thousand spheres.
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Figure 1: Define radius of initial sphere

The complete filling of the given shape by using this large number of spheres close to
optimal. Figure 2a shows the original shape of a common piece of stone. This shape
consists of close to 400 nodes, and thus moderate accuracy or quality. The few thousands
of spheres in 2b are in the next step clustered and the total number reduced by using an
optimisation algorithm and the off-volume criterion. To run the optimisation algorithm
and thus the clustering properly, it is necessary to calculate or estimate the resulting
volume of the clump in each optimisation step.

(a) Original shape (b) Randomly filled clump

Figure 2: Initial filling

4 OPTIMISATION

Considering only two circles which are overlapping, calculating the entire volume of
this resulting shape is trivially done by adding the volume of both circles and subtract
once the intersection sector. This methodology can be also transferred into the three-
dimensional space by using spheres instead of circles. But this analytical calculation is
only possible with the intersection of maximum two spheres. When n spheres overlap
together in one intersection, only a numerical volume estimation is possible . A recent
methodology is the use of a Monte Carlo estimation by using random numbers. Another
possibility is a discretized scan of the clump area into sufficiently small pieces with a
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regular grid, which eliminates the uncertain factor of random numbers but needs more
computation time. Depending on the dimensions of the shape, it is ensured that the grid
is precise enough to compute the resulting volume sufficiently accurate.
One option to define the quality of an approximation is to observe the accuracy of the
volume representation. The volume criterion, in general, does not give any information
about the clump’s roughness or surface quality. But when the resulting volume of multiple
spheres reaches as close as possible the original volume, particularly when the dimensions
of the spheres protrude the original mesh, the surface quality is also sufficient. The volume
criterion is following defined as the ratio between the calculated off-volume of the resulting
clump and the original volume of the input shape,

Cvol(n) =
Voff (n)

VOriginal

, (2)

where the off-volume changes with the total number of spheres n in the clump. This
volume criterion or off-volume ratio is used as optimisation hyperparameter. The optimum
is found when the ratio between off-volume and original volume is exactly one. It can be
assumed that, as closer this ratio becomes to one, the quality of the approximation rises.
The original volume, if unless not already available, is either read out with appropriate
CAD software tools or computed with a convex hull of the mesh in the MATLAB script
itself. Depending on the allowed protruding and on the complexity of the given shape, an
off-volume ratio between 0.85− 1 yields to sufficient approximations.
The optimisation reduces the number of spheres by clustering them. As already said the
volume criterion is used as hyperparameter for this optimisation. When the resulting
clump grows up to the prior defined off-volume ratio, the clustering stops and outputs the
final clump. Hence, this optimisation starts with a low number of clusters and increases
them iteratively.

5 CLUSTERING

After the initial filling process, the shape approximation is made with several thousand
spheres. Often the spheres centres are very close to each other, create dense areas, or the
spheres overlap for the most part. In these cases, an exchange of these spheres against
one single sphere, which represents a similar extension, is an advantage. These grouping
of spheres, or data sets, is called clustering.
In the field of computational intelligence or machine learning, clustering belongs to the
subfield of unsupervised learning. Instead of supervised learning, unsupervised learn-
ing considers only the input data without any consideration of the output information.
Clustering always uses input data sets with n dimensions as vectors x1, ..., xn. In this
application, the centre xc, yc, zc and the radius r of each sphere are used as the input
vector. The resulting clusters then also consist of a centroid with an appropriate radius.
The most common and simplest clustering algorithm is the k-means clustering. As firstly
explained by [8], this algorithm uses k numbers of clusters. To start the algorithm the
total amount of k clusters and its centroids are priorly defined in the data set space.
With every optimisation step, the input sets are assigned to nearest centroid by calculat-
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ing the euclidean distance between them. After the assignment is done for all sets, the
centroids position is updated according to the arithmetic mean of all assigned sets. This
cost function is defined in the following equation:

J =
k∑

i=1

∑
xj∈Si

||xj − µi||2, (3)

where J is the objective function which should be minimised with the sum of squares from
each cluster k with its mean µk to every data point of Si [8]. Due to this, it is clear that
this clustering needs a prior defined number of different clusters. Because the clusters also
define the number and positions of the spheres in the clump afterwards, a prediction of
the number of spheres which are necessary for an arbitrary shape needs to be performed.
But this prediction, especially for very complex structures, cannot be done easily. With
different numbers of spheres, the expected volume and surface roughens changes. So,
an overall optimisation, which increases the number of spheres iteratively and checks at
each iteration the volume criterion is assigned to it. A major disadvantage of k-means
clustering to obtain spheres properties for multi-sphere approximation is that the resulting
clusters do not overlap at all. Each input data set is only assigned to one distinct cluster.
And non-overlapping clump requires significantly more spheres to reach the same volume
instead of overlapping clumps which is not feasible with k-means clustering. Therefore,
for an optimal approximation, another clustering method is recommended.

5.1 Fuzzy clustering

Fuzzy clustering or fuzzy c-means clustering is an enhanced version of the conventional
k-means clustering, developed first by [9]. This clustering algorithm extends the hard
clustering k-means by a soft, fuzzy, attribute. Instead of a distinct assignment of each
input data set to only one cluster, fuzzy c-means clustering allows an assignment to several
clusters at the same time. How much percent one input set belongs to different clusters is
defined as membership degree. Generally, the algorithm works similar to k-means, with
defining a number of clusters, in this case, c, place them initially and optimise the mean
of assigned sets, but with the enhancement of degree of membership and results following
as

J =
C∑
i=1

N∑
j=1

µm
ij ||xi − cj||2, (4)

where for each cluster, the membership degree is defined as uik between 0 and 1, but the
sum of all membership degrees is always 1 [9]. The partition matrix m can be set between
1 and ∞ and defines the degree of memberships. When m equals to 1, it represents hard
clustering and the results are identical to k-means, if it is close to infinity the membership
degree for all sets becomes equal. An adjustment of the m parameter defines the grade of
membership or overlapping [9]. The grade of overlapping can be used afterwards to define
how close the different centroids are placed and how much spheres per clump fit to the
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volume criterion. It has been shown that values of m between 1.5 to 3.0 yield an optimal
approximation. Compared to k-means clustering, fuzzy c-means clustering requires more
computation time, especially when the partition matrix is also iteratively optimised.

6 APPROXIMATION PROCESS

The described improved approximation algorithm of arbitrary shapes with the over-
lapping multi-sphere method can be analysed in four steps. The first step analyses the
desired shape, observes its nodes and defines its volume. The second step fills the shape’s
dimension with random spheres. These spheres are defined to cover almost one node of
the shape’s mesh and the radii are equal to the distance to the closest node. The filling
stops when a distinct percentage of nodes is covered by spheres. Thirdly runs the opti-
misation with fuzzy clustering which reduces the total number of spheres rapidly. The
fuzzy c-means clustering is implemented, due to the fact that overlapping of spheres can
be represented by a partition matrix which fits perfectly for the creation of multi-spheres.
By changing the value of the membership degree the grade of overlapping can be set. The
partition matrix is changed iteratively to find a sufficient overlapping. When the desired
volume criterion is reached, the optimisation stops automatically. The complete algorithm
is shown as pseudo code in algorithm 1. There it is also shown that the resulting clump,
with all necessary information, is stored afterwards in a file which fits the requirements
of the LIGGGHTS DEM simulation tool.

Algorithm 1 Shape Approximation

1: Input Shape as STL file
2: Create Bounding Box
3: VOriginal = V olume(STL)
4: while NodesCovered <= NodesPercentage do
5: i = 0
6: SphereCentre(i) = Random(BoundingBox) � Centre in Bounding Box
7: if inhull = (SphereCentre(i), STL) then � Centre inside STL mesh
8: SphereRadius(i) = EuclideanDistance(SphereCentre(i), STL)

9: NodesCovered = Cover(SphereCentre(i), SphereRadius(i), STL)
10: i++

11: clusters = 1
12: while V olumeCriterion >= VOff/VOriginal do � Optimisation with volume criterion
13: for m = 1.5 to m = 3.0 do
14: Cluster(Centre, Radius) = Fuzzy(SphereCentre, SphereRadius,m, clusters)
15: Voff = V olume(Cluster)

16: clusters++

17: WriteMultiSphere(Clusters) � Create Multi-Sphere file

8

861



Fabian Westbrink and Andreas Schwung

7 RESULTS

The approximation algorithm is generally made for every arbitrary shape, which is
available as STL files. Shapes with other file formats are previously to export in binary
or ASCII STL format. It starts with a random placement of spheres inside the mesh until
the particular percentage of all node is covered with spheres. The given shapes as STL
mesh can be arbitrary, but for a huge number of nodes in the mesh, the computational
time significantly increases. Therefore, in some cases, the mesh has to be simplified and
the number of nodes to be reduced.

It is shown in figure 3 that different arbitrary shapes can be approximated appropriately
by using a different number of overlapping spheres. Especially the approximations in
figures 3b and 3c, with very complex meshes, are well approximated with only a few
spheres. A prior adjustment of the approximation can be done by defining, on the one
hand, the percentage of nodes which are covered with spheres in the initial phase and on
the other hand the value of the off-volume criterion. Also, it is possible to let the spheres
protrude out of the shape to decrease the surface roughness. The approximation in figure
3 is made with 90% covered nodes of the original mesh and an off-volume criterion of 90%.
Be defining only these three parameters it is possible to get sufficient approximations for
nearly each shape by considering the inherent inaccuracies of the multi-sphere method
itself. The number of resulting sphere per clump is an appropriate range to simulate
multi-spheres in DEM simulation shortly, also with a large number of clumps. Figure 4
shows how the number of spheres per clump varies with the different off-volume criteria.

A shape approximation of < 0.7 off-volume ratio often gives poor results and is useless
for appropriate DEM simulations. The quality increases noticeably in the range between
0.7 − 0.9 and the number of spheres is an adequate range. In the range of 0.95 − 1, the
number of spheres is significantly high and the approximation benefits are hardly present.
Furthermore, the computation time of the approximation algorithm itself and later the
DEM simulation becomes comparatively too high. After satisfactory results from the
clustering algorithm, the spheres properties are stored in an input file for the DEM simu-
lation. The clustering algorithm creates the Cartesian coordinates as the position of the
spheres in the clump. Finally, the information about the centre coordinates with their
radii is stored in a file which is readable in LIGGGHTS. As specified in section 2, informa-
tion about the centre of mass or inertia tensor could be additional set in the LIGGGHTS
input script. LIGGGHTS changes internally the density of each sphere in the clump to
fit these mechanical properties.

To employ the algorithm for other DEM tools is not a tedious task. The multi-sphere
file is modifiable for all necessary data types and thus usable for other DEM tools.
The computation time of the approximation depends on several criteria. Firstly, the
quality of the shape, the complexity and the accuracy or resolution of the mesh influences
the computation time. Also, the desired off-volume ration, which is mostly responsible
for the number of spheres in the clump, is a factor for computation time. For arbitrary
shapes, the default parameter values create sufficient results, but for well-known shapes,
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(a) Light bulb; n = 12spheres

(b) Nut; n = 36spheres

(c) Stone; n = 37spheres

Figure 3: Shape approximations
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Figure 4: Changing number of spheres with volume criterion

the parameters can be improved to obtain faster computation time and better results.

8 CONCLUSIONS

The presented algorithm offers the ability to approximate arbitrary shapes with a low
number of spheres. An optimisation with the volume criteria shows good results not only
for the complete filling of the desired shape but also a smooth surface roughness. The
upcoming need of arbitrary shapes in DEM simulation reasons rising effort of improved
approximation algorithms. Especially the use of fuzzy c-means clustering performs inher-
ent good results for overlapping multi-sphere representations.

Further improvements shall translate the MATLAB script into a LIGGGHTS in-build
function. This would offer the possibility to call the desired shape as STL mesh within the
LIGGGHTS input script and an approximation runs inside the DEM simulation. Also,
other clustering algorithms like density bases clustering are under observation. Espe-
cially improvements in the roughness quality of the approximation and reducing of the
computation time of the algorithm are foreseen.
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Abstract. The contribution is focused on solution of the kinematic limit analysis problem
within associative perfect plasticity. It is a constrained minimization problem describing
a collapse state of an investigated body. Two different penalization methods are presented
and interpreted as the truncation method and the indirect incremental method, respec-
tively. It is shown that both methods are meaningful even within the continuous setting
of the problem. Convergence with respect to penalty and discretization parameters is
discussed. The indirect incremental method can be simply implemented within current
elastoplastic codes.

1 Introduction

Existence of the limit load is a feature of elastic-perfectly problems. It is well-known
that an investigated body collapses when the limit value of a load parameter is exceeded
[4, 16]. Strip-footing collapse or slope stability are traditional geotechnical applications,
where the limit load analysis is important (see, e.g., [3, 5, 10]). We focus only on asso-
ciative perfect plasticity, although the limit analysis is also meaningful for nonassociative
elastoplastic models with internal variables [10, 17].

The collapse state can be described by a special variational problem, the so-called limit
analysis problem [4, 16, 17]. It leads to a minimization of a convex functional subject to
various constraints, when the kinematic approach is considered. The constraints depend
on a prescribed yield function and they can cause locking phenomena. Therefore, mixed
finite elements are often used for solution of such problems [1, 4].

In order to suppress the constraints, we introduce two different penalization methods for
the kinematic limit analysis problem. These methods can be interpreted as the truncation
method and the indirect incremental method, respectively. Both methods have been
analyzed in recent papers [2, 7, 8, 15, 14], can be used for various yield criteria and lead
to simple numerical techniques. Here, we recapitulate main results of these papers and
slightly generalize the indirect method of incremental limit analysis.
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The rest of the contribution is organized as follows. In Section 2, evolution variational
formulations of the associative elastic-perfectly plastic problem with an abstract yield
criterion are summarized. The implicit Euler discretization of the problem is introduced
in Section 3. In Section 4, the static and kinematic limit analysis problems are formulated.
In Section 5, the truncation and indirect incremental methods are derived by penalization
of the kinematic limit analysis problem. The finite element approximation is discussed. In
Section 6, the indirect method of incremental limit analysis is combined with Newton-like
method.

2 Associative elastic-perfectly plastic problem

Assume that the investigated body occupies a bounded domain Ω ⊂ R3 with the
Lipschitz continuous boundary ∂Ω = Γ̄f ∪ Γ̄u where Γf , Γu are open in ∂Ω, mutually
disjoint and Γu �= ∅. On Γf , Γu, we prescribe the Neumann and the homogeneous Dirichlet
boundary conditions, respectively.

We denote R3×3
sym as the space of symmetric second order tensors. The biscalar product

and the corresponding norm in R3×3
sym will be denoted by e : η = eijηij and |e|2 = e : e for

any e,η ∈ R3×3
sym, respectively. Let

V = {v ∈ W 1,2(Ω;R3) | v|Γu = 0} and Q = L2(Ω;R3×3
sym) (1)

be the spaces of for displacement and stress (strain) fields with respect to the space variable
x ∈ Ω. Suitable functional spaces with respect to the pseudo-time variable t ∈ (0, T ) can
be found e.g. in [6].

We use the standard notation σ, ε, εp, u for a stress tensor, a strain tensor, a plastic
strain tensor, and a displacement vector, respectively, and assume that these unknown
quantities depend on x ∈ Ω and t ∈ (0, T ). Under the small strain assumption, we arrive
at ε := ε(u), where ε(v) = 1

2
(∇v+(∇v)T ) for any v ∈ V . Further, we consider the linear

relation between the stress and the elastic strain: σ = C(ε − εp), where C denotes the
fourth order elastic tensor representing the Hooke law.

The load functional

�t(v) =

∫

Ω

F · v dx+

∫

Γf

f · v ds, v ∈ V, t ∈ (0, T ),

consists of the volume forces F := F (x, t) and the surface forces f := f(x, t) applied on
the part Γf of the boundary ∂Ω. Then the weak formulation of the equilibrium equation
reads as ∫

Ω

σ : ε(v) dx = �t(v) ∀v ∈ V, ∀t ∈ (0, T ). (2)

In order to introduce the plastic flow rule, we define at first the set

B = {τ ∈ R3×3
sym | ϕ(τ ) ≤ 0}, (3)

of plastically admissible stress tensors. We let the function ϕ : R3×3
sym → R in an abstract

form and assume that ϕ is convex and satisfies ϕ(0) < 0. Using the principle of maximum
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plastic dissipation, the plastic flow rule reads as

ε̇p : (τ − σ) ≤ 0 ∀τ ∈ B, ∀t ∈ (0, T ). (4)

Notice that the flow rule can also be defined in literature by different ways. For example,
one can use the Karush-Kuhn-Tucker conditions and write [5, 12, 13]:

ε̇p ∈ λ̇∂ϕ(σ), λ̇ ≥ 0, ϕ(σ) ≤ 0, λ̇ϕ(σ) = 0,

where ∂ϕ(σ) denotes the subdifferential of ϕ at σ and λ̇ is the plastic multiplier. Making
use of the convex duality, one can also write the flow rule as follows [6]:

−σ : (q − ε̇p) + I∗B(q)− I∗B(ε̇
p) ≥ 0 ∀q ∈ R3×3, (5)

where
I∗B(q) := sup

τ∈B
τ : q (6)

denotes the dissipation potential and simultaneously, the dual function to the indicator
function IB of the set B.

To complete the model, we consider the following initial conditions:

u(0) = u0, εp(0) = εp0, ε(0) = ε(u0), σ(0) = C(ε(u0)− εp0) in Ω. (7)

The elastoplastic problem in terms of stresses leads to the following evolution varia-
tional inequality:

{
find σ := σ(t) ∈ Λt ∩ P :

∫
Ω
C−1σ̇ : (τ − σ) dx ≥ 0 ∀τ ∈ Λt ∩ P, ∀t ∈ (0, T ),

Λt = {τ ∈ Q |
∫
Ω
τ : ε(v) dx = �t(v) ∀v ∈ V }, P = {τ ∈ Q | τ (x) ∈ B, ∀x ∈ Ω}.

(8)
Notice that problem (8) can be derived inserting ε̇p = C−1σ̇ − ε(u̇) to the flow rule
(4), integrating over Ω and using the definition of Λt. One can analyze existence and
uniqueness of the solution to (8) under the assumption on the save load condition [6]:

∀t ∈ (0, T ) ∃τ ∈ Λt ∩ P. (9)

As we will see, the verification of (9) is closely related to the limit load analysis.
The problem can also be formulated in terms of displacements and plastic strains by

using the dual flow rule (5) and inserting σ = C(ε(u)− εp) to (2) and (5):

∫

Ω

C(ε(u)−εp) : [ε(v− u̇)− (q− ε̇p)] dx+

∫

Ω

I∗B(q) dx−
∫

Ω

I∗B(ε̇
p) dx ≥ �t(v− u̇), (10)

for any (v, q) ∈ V × Q and any t ∈ (0, T ). It is well-known that (10) is a dual problem
to (8) and its solvability cannot be studied on the Sobolev space V but on BD-spaces
with bounded deformations [16] similarly as other problems formulated below in terms of
displacements.
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3 Implicit discretization of the quasistatic problem

As we shall see, the limit analysis problem presented in Section 4 is independent of
the pseudo-time parameter t. Despite this fact, we introduce a time discretization of the
problem since it will be useful for an interpretation a penalty method studied in Section
5.

Consider a partition 0 = t0 < t1 < . . . < tN = T of the interval [0,T] and approximate
the plastic strain rate by the implicit Euler scheme:

ε̇p(tk) ≈
εpk − εpk−1

tk − tk−1

, εpk := εp(tk), k = 1, 2, . . . , N.

It is well-known that discrete counterparts of problems (8) and (10) can be arranged as
the following minimization problems, respectively [6]:

{
given σk−1 ∈ Q, find σk ∈ Λk ∩ P : J ∗

k (σk) ≤ J ∗
k (τ ) ∀τ ∈ Λk ∩ P,

J ∗
k (τ ) =

1
2

∫
Ω
C−1τ : τ dx−

∫
Ω
C−1σk−1 : τ dx, Λk ≡ Λtk ,

(11)

{
given εpk−1 ∈ Q, find (uk, ε

p
k) ∈ V ×Q : Ik(uk, ε

p
k) ≤ Ik(v, q) ∀(v, q) ∈ V ×Q,

Ik(v, q) =
1
2

∫
Ω
C(ε(v)− q) : (ε(v)− q) dx+

∫
Ω
I∗B(q − εpk−1) dx− �k(v).

(12)
Unlike the evolution problem, the discretized problem can also be formulated only in

terms of displacements. To this end, we introduce the mapping ΠB : R3×3
sym → B such that

ΠB : e �→ σ, (e− C−1σ) : (τ − σ) ≤ 0 ∀τ ∈ B. (13)

It is easy to see that ΠB(e) represents the closest projection of Ce onto B with respect
to the scalar product C−1τ : e in R3×3

sym. Comparing (13) with (4), the discrete flow rule
can be written as follows:

σk = ΠB(ε(uk)− εpk−1). (14)

Inserting (14) to the equilibrium equation (2), we arrive at the following problem:

given εpk−1 ∈ Q, find uk ∈ V :

∫

Ω

ΠB(ε(uk)− εpk−1) : ε(v) dx = �k(v) ∀v ∈ V. (15)

Further, it is well-known that there exists the potential to ΠB (see, e.g., [11]):

ΨB(e) = sup
τ∈B

{τ : e− 1

2
C−1τ : τ}, e ∈ R3×3

sym, (16)

i.e., ∂ΨB(e)/∂e = ΠB(e). Hence, problem (17) can be equivalently rewritten as the
minimization problem

Jk(uk) ≤ Jk(v) ∀v ∈ V, Jk(v) =

∫

Ω

ΨB(ε(uk)− εpk−1) dx− �k(v). (17)

Notice that the functionals Ik and Jk are related as follows:

min
q∈Q

Ik(v, q) = Jk(v) ∀v ∈ V, ∀k = 0, 1, 2, . . .

4
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4 Limit load analysis

From now on, we consider the load functional in the form

�t(v) = L0(v) + tL(v), v ∈ V, (18)

where the functionals L0 and L1 are independent of t and satisfy:

∃τ 0 ∈ P :

∫

Ω

τ 0 : ε(v) dx = L0(v) ∀v ∈ V, (19)

∃v̂ ∈ V : L(v̂) �= 0. (20)

Under the assumption (19), the following implication holds:

if ΛT ∩ P �= ∅ then Λt ∩ P �= ∅ ∀t ∈ (0, T ). (21)

Hence, ΛT ∩ P �= ∅ is a sufficient condition for the save load (9).
Within the limit analysis, the fixed value T is not prescribed. Instead of this, the limit

value t∗ of the parameter t is searched:

t∗ = sup{t ≥ 0 | Λt ∩ P �= ∅} = sup
τ∈P

inf
v∈V

L(v)=1

{∫

Ω

τ : ε(v) dx− L0(v)

}
. (22)

The problem (22) is known as the static principle of the limit analysis. The kinematic
principle is dual to the static one and leads to the following minimization problem:

t̄ = inf
v∈V

L(v)=1

sup
τ∈P

{∫

Ω

τ : ε(v) dx− L0(v)

}
= inf

v∈V
L(v)=1

{∫

Ω

I∗B(ε(v)) dx− L0(v)

}
, (23)

where I∗B is defined by (6). From the duality, it follows that

t∗ ≤ t̄, (24)

i.e., t̄ is an upper bound of t∗. Nevertheless, the equality in (24) was shown for bounded
sets B (see [8]) and some unbounded ones representing, e.g., by the von Mises, Tresca
[16, 4] or Drucker-Prager yield criteria [9]. Further, it is readily seen that problems (22)
and (23) are independent of the time variable and thus the same problems can also be
introduced for the discretized problem defined in Section 3 or for the generalized Hencky
problem [16, 4, 7, 8]. The limit analysis problems are also independent of the elastic
tensor C and describe the collapse state of the body.

The kinematic limit analysis problem defined by (23) contains the linear equality con-
straint on the load L and other eventual constraints depending on the set B as follows
from the definition of I∗B. We introduce two examples of B for illustration (see, e.g.,
[8, 14]).
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1. If the von Mises yield criterion is considered then B =
{
τ ∈ R3×3

sym | |τD| ≤ γ
}
,

where τD denotes the deviatoric part of τ and γ > 0 represents the initial yield
stress. The related limit analysis problem reads:

t̄ = inf
v∈V, div v=0

L(v)=1

{∫

Ω

γ|ε(v)| dx− L0(v)

}
, div v = trace ε(v). (25)

2. If the Drucker-Prager yield criterion is considered then

B =
{
τ ∈ R3×3

sym | a

3
trace τ + |τD| ≤ γ

}
, a, γ > 0.

The related limit analysis problem reads:

t̄ = inf
v∈V, L(v)=1
div v≥a|εD(v)|

{∫

Ω

γ

a
div v dx− L0(v)

}
. (26)

5 Penalization of the kinematic limit analysis problem

We have illustrated that the kinematic limit analysis problem can contain very difficult
constraints at each point of Ω causing locking phenomena. To eliminate these constraints,
we introduce two possible ways of penalization to the problem (23).

5.1 Truncation method

The first penalization is based on replacing unbounded B by its bounded, convex subset
Bm and thus can be interpreted as the truncation method. Notice that the function I∗Bm

is real-valued for any τ ∈ R3×3
sym and thus the penalized problem

t̄m = inf
v∈V

L(v)=1

{∫

Ω

I∗Bm
(ε(v)) dx− L0(v)

}
, (27)

contains only the basic constraint on L. Let t∗m denote the static limit load parameter
from (22), where Bm is used instead of B. Then the following relations hold [8, 14]:

t∗m = t̄m ≤ t∗ ≤ t̄. (28)

We see that the penalized limit load parameters t̄m and t∗m coincide and that they are
lower bounds of t∗ and t̄.

For the bounded set Bm, we have also stronger convergence results with respect to the
(space) discretization parameter than for unbounded B, see [7, 8, 14]. Denote Vh as a
finite element approximation of V and assume that the system {Vh}h is limit dense in
V . Then t̄m,h → t̄m as h → 0+, where t̄m,h denotes the the discrete limit load parameter
obtained by the finite element approximation of problem (27).

The discrete counterpart to problem (27) can be solved, e.g., by the indirect incremental
method presented below. We refer to [7, 8, 14] for some illustrative numerical examples.
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5.2 Indirect incremental method

The indirect method of incremental limit analysis was originally introduced in [15, 2] for
the discretized Hencky problem containing the von Mises yield criterion. Their extension
for continuous setting of the Hencky problem and an abstract yield criterion was done
in [7, 8]. This method was interpreted as the penalization method to the limit analysis
problem in [14]. Here, we generalize the method for L0 �= 0 and relate it to the problem
(17).

This penalization is based on the following relations between the functions I∗B and ΨB:

lim
α→+∞

1

α
ΨB(αe− η) = I∗B(e) ∀e,η ∈ R3×3

sym,
1

α
ΨB(αe) ≤ I∗B(e) ∀α > 0. (29)

To be in accordance with Section 3, we choose η = εpk−1 in (29) and define the following
penalization of problem (23):




given α > 0, εpk−1 ∈ Q, find uα
k ∈ V, L(uα

k ) = 1 :

J α
k (u

α
k ) ≤ J α

k (v) ∀v ∈ V, L(v) = 1,

J α
k (v) =

∫
Ω

1
α
ΨB(αe− εpk−1) dx− L0(v).

(30)

Enforcing the constraint L(v) = 1 by a Lagrange multiplier and using the differentiability
of ΨB, we arrive from (30) at the following saddle point system:




given α > 0, εpk−1 ∈ Q, find tk := tk(α), u
α
k ∈ V :∫

Ω
ΠB(ε(αu

α
k )− εpk−1) : ε(v) dx = L0(v) + tkL(v) ∀v ∈ V,

L(uα
k ) = 1.

(31)

Recalling �k = L0 + tkL and comparing (31) with (17), we observe that the following
statements hold. If (tk,u

α
k ) ∈ R+ × V is a solution to (31) then uk = αuα

k solves (17)
for tk := tk(α). Conversely, if uk ∈ V is a solution to (17) satisfying L(uk) > 0 for given
tk > 0 then (tk,u

α
k ), where uα

k = uk/L(uk), solves (31) for α = L(uk).
The direct method of incremental limit analysis is based on an adaptive construction

of the sequence
0 < t0 < t1 < . . . < tk < . . . < t∗

depending on the solvability of problem (17). Within the indirect method, an unbounded
sequence

α0 < α1 < . . . < αk < . . .

is constructed and the corresponding sequence {tk} of solutions to (31) is computed. One
can expect that the sequence {tk} is nondecreasing and tending to t∗ as k → +∞. This
was shown in [7] under the following simplified assumptions:

L0 = 0 and εpk−1 = 0, k = 1, 2, . . . . (32)
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Moreover, (32) and (21) imply that the mapping α �→ tk(α) ≡ t(α) is uniquely defined,
continuous and t(α) → 0 as α → 0 from above [7].

As above, consider the system {Vh}h of finite element approximations of the space V .
Then the discrete counterpart th := th(α) has analogous properties as t := t(α). Moreover,
the following pointwise convergence holds for any α > 0: th(α) → t(α) as h → 0+.

In order to extend these results to nontrivial L0, it seems to be sufficient to assume
that there exists u0 ∈ V satisfying

∫

Ω

ΠB(ε(u0)) : ε(v) dx = L0(v) ∀v ∈ V and L(u0) ≥ 0. (33)

Notice that (33)1 implies the assumption (19) while (33)2, ensures t(α) → 0 as α → 0.

6 Newton-like method for the indirect incremental method

The finite element approximation of problem (31) leads to the following algebraic sys-
tem:

given αk > 0, find (uk, tk) ∈ Rn × R+ :

{
F k(uk) = l0 + tkl,

lTuk = 1.
(34)

Notice that the nonlinear function F k : Rn → Rn is assembled using the operators ΠB

at each integration point and depends on the solution from the previous step tk−1 and the
given value αk. Since ΠB is not smooth everywhere, the same also holds for F k. On the
other hand, one can study the semismoothness of ΠB or F k, and introduce generalized
derivatives of these functions [11, 12, 13]. The generalized derivative of ΠB is known as
the consistent tangent operator in literature. Using this operator, one can assemble the
generalized derivative of F k, which is represented by a mapping Kk : Rn → Rn×n.

A nonsmooth (or semismooth) version of the Newton method to problem (34) leads to
the following algorithm:

Algorithm 1 (ALG-α)

1: initialization: u0
k, t

0
k

2: for i = 0, 1, 2, . . . do

3: find vi, wi ∈ V : Kk(u
i
k)v

i = l0 + tikl− F k(u
i
k), Kk(u

i
k)w

i = l

4: compute δti = [1− lT (ui
k + vi)]/lTwi

5: compute δui = vi + δtiwi

6: set ui+1
k = ui

k + δui, ti+1
k = tik + δti

7: if ‖δui‖/(‖ui+1
k ‖+ ‖ui

k‖) ≤ εNewton then stop

8: end for

9: set uk = ui+1
k , tk = ti+1

k .

8
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Further, we initialize ALG-α using the linear extrapolation of the solutions from two
previous steps k − 2 and k − 1, k ≥ 2 [13]:

u0
k = uk−1 +

αk − αk−1

αk−1 − αk−2

(uk−1 − uk−2), t0k = tk−1 +
αk − αk−1

αk−1 − αk−2

(tk−1 − tk−2).

We observe that this initialization is more convenient than u0
k = uk−1, t

0
k = tk−1.

Local superlinear convergence of ALG-α was analyzed in [2]. There was also proposed
some modifications of the algorithm in order to receive global convergence results.

We refer to [2, 7, 8, 14, 13] for some illustrative numerical examples on the indirect
method of the incremental limit analysis. For unbounded B, we observe that it is more
convenient to use higher order finite elements. In the case of P1 or Q1 elements, we
recommend to combine the indirect incremental method with the truncation method to
reduce expected locking phenomena.
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Abstract. The paper treats the formulation of the shakedown problem and, as special
case, of the limit analysis problem, using solid shell models and ES-FEM discratization
technology. In this proposal the Discrete shear gap method is applied to alleviate the
shear locking phenomenon.

1 INTRODUCTION

Shakedown analysis plays an important role in assessing the safety of structures in
presence of many independent load combinations [1] against plastic collapse, loss in func-
tionality due to excessive deformation (ratcheting) or collapse due to low cycle fatigue.

Nowadays, due to the growing attention of the scientific community, solid-shell elements
have reached a high level of efficiency and accuracy. It has been shown that solid-shell
finite elements give some advantages in linear and nonlinear context of analysis [2]. When
compared to shell elements, solid-shell formulations present a simpler structure since only
displacement degrees-of-freedom are employed. They can automatically account for 3D
constitutive relations and are able to model through the thickness behaviours more ac-
curately without the need to resort plane-stress assumptions, which often occurs in shell
elements including rotation degrees-of-freedom. Solid-shell formulations also present im-
portant advantages when considering double-sided contact situations and in treating large
deformations, since no rotation degrees-of-freedom are involved. However in addition to
the classical shear, membrane and volumetric lockings, in the solid-shell exhibits thickness
and trapezoidal locking. The latter is typical only of low order FEM. Assumed Natural
Strain, Enhanced Assumed Strain and mixed (hybrid) formulations have been proposed
for resolving these locking phenomena. In the context of triangular grids, the Assumed
Natural Strain doesn’t solve at all the shear locking [3] and a good alternative seems
to be the so-called Discrete Shear Gap method [4]. Particularly for these models, to be
competitive, it is better to improve the behaviour of lower-order finite elements due to
its low computational cost when moderately fine meshes are required. To this aim linear
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triangular (T3) discretization [5] is highly suitable for describing complicated data and
shows little sensitivity to the mesh distortion.

In order to alleviate the overstiffness of lower order FEMs various solutions have been
proposed in the literature and smoothed finite element methods (SFEM) represent a
a quite recent and effective numerical strategy. It is based on the idea of defining a
smoothing domain through the discretization with different patterns, i.e. cells, nodes,
edges or faces of a background mesh. More recently, the smoothing concept has been
extended to elements with higher order shape functions [6, 7] simply obtained by using a
mixed method. For an exhaustive description of the S-FEM method and a complete list
of references, the authorship can find in [8].

Obviating the need to perform a cumbersome incremental elasto-plastic analysis [9, 10,
11], direct methods has been proved to be one of the most powerful tools to estimate the
shakedown safety load of practical engineering structures.

The aim of this paper is to present a mixed shakedown (limit) analysis formulation
for solid-shells. The proposed mixed element is based on a Edge Smoothed represen-
tation of the displacement field and piece-wise constant description of the stress field.
The mixed nature of the element gives coherent equilibrium equations suitable for the
simple application to the shakedown analysis and prevents volumetric locking problem.
The assumed piece-wise constant description of the stress field allows the discontinuities
inherent in the plastic solution. Furthermore, the model is particularly simple and easy
to implement while providing accurate solutions of the plastic collapse analysis. Among
other benefits the proposed MES-FEM model resolves also the dependency of state-of-art
triangular solid shell elements on the adaptation of the cross-diagonal mesh. It is con-
structed by using a mixed format as described in [6, 7], and is suitable to perform well
also in geometrically nonlinear context [12, 2, 13].

The yield criteria are borrowed from classical shell shear deformable shell models rewrit-
ten in terms of the variables used in defining the solid shell model used.

Another FEM model based on the so-called composite concept [14, 15, 16] is derived
and compared with the ES-FEM ancestor.

2 THE SOLID-SHELL FINITE ELEMENT

In this section we briefly recall the kinematics of solid-shell finite element following the
description of Sze et al. [17, 3].

2.1 Kinematics in convective frame

The convective coordinates ζ = {ξ, η, ζ} are used to express the FE interpolation. A po-
sition vector in the initial or current configuration are denoted byX[ζ] ≡ {X1[ζ],X2[ζ],X3[ζ]}
andY[ζ] ≡ {Y1[ζ],Y2[ζ],Y3[ζ]} respectively and are linked by the displacement field d[ζ]

Y[ζ] = X[ζ] + d[ζ] (1)

Adopting the convention of summing on repeated indexes, the covariant Green-Lagrange

2
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Figure 1: Linear triangular based solid-shell element

strain measure components are

ε̄ij =
1

2
(X,i ·d,j +d,i ·X,j +d,i ·d,j ) with i, j = ξ, η, ζ (2)

where a comma followed by k denotes the derivative with respect to kth component of ζ
and (·) denotes the scalar product.

The shell, with constant thickness, is conveniently described using a bi-dimensional
frame

X[ζ] = X0[ξ, η] + ζXn[ξ, η] = Nd[ζ]Xe, d[ζ] = d0[ξ, η] + ζdn[ξ, η] = Nd[ζ]de (3)

where vectors de and Xe collect the element nodal displacements and coordinates. The
matrix Nd[ζ] collects the interpolation functions

Nd[ζ] ≡
[
N, ζN

]
= Nd0 + ζNdn (4)

where ζ ∈ [−1,+1], Nd0 = [N[r, ξ, η],0] andNdn = [0,N[r, ξ, η]] that for linear triangular
grids, the bi-dimensional shape functions N ≡

[
N1, N2, N3

]
are as usual

N1 = r = 1− ξ − η, N2 = ξ, N3 = η (5)

Adopting a Voigt notation the infinitesimal covariant strain components in Eq.(2) are
collected in vector ε̄ ≡ [ε̄ξξ, ε̄ηη, 2ε̄ξη, ε̄ζζ , 2ε̄ηζ , 2ε̄ξζ ]

T that, exploiting Eq.(3), becomes

ε̄ ≡




XT
e Nd,

T
ξ Nd,ξ

XT
e Nd,

T
η Nd,η

XT
e (Nd,

T
ξ Nd,η +Nd,

T
η Nd,ξ )

XT
e Nd,

T
ζ Nd,ζ

XT
e (Nd,

T
ζ Nd,η +Nd,

T
η Nd,ζ )

XT
e (Nd,

T
ξ Nd,ζ +Nd,

T
ζ Nd,ξ )



de, (6)
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The covariant strains can be conveniently linearized with respect to ζ in the following
form

ε̄ ≈



ē[ξ, η] + ζ χ̄[ξ, η]

ε̄ζζ [ξ, η]
γ̄[ξ, η]


 (7)

and collected in the vector ρ̄[ζ] = ρ̄[ξ, η] ≡ [ē, ε̄ζζ , χ̄, γ̄]
T

where

ē[ξ, η] ≡



ε̄ξξ
ε̄ηη
2ε̄ξη


 χ̄[ξ, η] ≡



ε̄ξξ,ζ
ε̄ηη,ζ
2ε̄ξη,ζ


 γ̄[ξ, η] ≡

[
2ε̄ηζ
2ε̄ξζ

]

By partitioning the vectors de = [d0e,den]
T and de = [Xe0,Xne]

T the components of
generalized covariant strains (7) have the following form

ē1 = XT
e Q

m
ξξde, ē2 = XT

e Q
m
ηηde, ē3 = XT

e Q
m
ξηde

χ̄1 = XT
e Q

b
ξξde, χ̄2 = XT

e Q
b
ηηde, χ̄1 = XT

e Q
b
ξηde

ε̄ζζ = XT
e Qζζde, 2ε̄ξζ = XT

e Qξζde, 2ε̄ηζ = XT
e Qηζde

(8)

It can be shown that the operators involved in previous equations are of compact shape.

2.2 Remedies for shear and trapeziodal locking

A way of resolving shear locking is the Assumed Natural Strain method in which the
natural transverse shear strains are sampled at some discrete element points and then
interpolated. As shown in [3, 18] also after this treatment triangular elements based on
ANS still have a moderate chance of exhibiting shear locking.

The so-called Discrete Shear Gap method [4] that can be classified as an ANS method
is another effective strategy of resolving shear locking gives some advantage. The element
formulation is automatic for any kind of element, regardless of shape and polynomial
order, there is no need to choose an interpolation for the shear strains or to specify
any sampling points. The process to construct DSG is similar for both triangles and
quadrangles whereas in applying the ANS to triangles a proper choice of feasible sampling
points proves to be more problematic than for rectangles [4].

The DSG algorithm is employed in this finite element formulation

• Evaluation of the discrete shear gaps by integrating the transverse shear strains, or
equivalently the corresponding matrices Qs (8)

∆γ1
ξz = 0, ∆γ2

ξz =

∫ ξ2

ξ1

Q̄ξζdξ, ∆γ3
ξz =

∫ ξ3

ξ1

Q̄ξζdξ

∆γ1
ηz = 0, ∆γ2

ηz =

∫ η2

η1

Q̄ηζdη, ∆γ3
ηz =

∫ η3

η1

Q̄ηζdη

(9)

Q̄ξζ and Q̄ηζ are obtained from compatibility relations (3). It is worth mentioning
that these integrals are carried out apriori analitically
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• Interpolation of the discrete shear gaps across the element in order to obtain the
suitable discrete form

Qξζ =
∂N2

∂ξ
∆γ2

ξz +
∂N3

∂ξ
∆γ3

ξz

Qηζ =
∂N2

∂η
∆γ2

ηz +
∂N3

∂η
∆γ3

ηz

(10)

Similarly to shear locking, the excessive number of sampled thickness strains lead to
trapezoidal locking. It can be reduced in the system level by sampling the strain along
the element edges [19], namely

Qζζ = rQ̄
∣∣
ξ=0,η=0

+ ξQ̄
∣∣
r=0,η=0

+ ηQ̄
∣∣
ξ=0,r=0

(11)

In this way the element is free from trapezoidal locking and is immune to shear locking
as the other standard three-node degenerated shell elements [18, 20]

2.3 Dual variables of generalized strain components

Once the kinematic model is assumed (or vice versa) the related stress variables are
automatically given by assuring the invariance of the internal work. By collecting the
contravariant stress components σ̄ ≡ [σ̄ξξ, σ̄ηη, 2σ̄ξη, σ̄ζζ , 2σ̄ηζ , 2σ̄ξζ ]

T the work conjugate
variables with ρ̄ are obtained by

W =

∫

V

ε̄T σ̄dV =

∫

Ω

(
N̄ T ē+ M̄T χ̄+ s̄ζζ ε̄ζζ + T̄ T γ̄

)
(12)

The generalized contravariant stresses are then

N̄ ≡ 1

2

∫ 1

−1

σpdζ M̄ ≡ 1

2

∫ 1

−1

ζσpdζ s̄ζζ ≡ 1

2

∫ 1

−1

σζζdζT̄ ≡ 1

2

∫ 1

−1

τdζ (13)

with

σ̄p =



σ̄ξξ

σ̄ηη

σ̄ξη


 τ̄ =

[
σ̄ξζ

σ̄ηζ

]
and t̄ ≡

[
N̄ , s̄ζζ ,M̄, T̄

]T

The way of performing the integral
∫
Ω
(· · · ) defines the finite element formulation.

2.4 The mapping to physical coordinates

A physical coordinate system is used to describe the material properties that can be
different for each patch (subdomain) in which the domain may be partitioned. It is
assumed that x− y plane is coincident with the mid-plane of the shell (ζ = 0, ζ parallel
to z). With these assumptions the generalized Cartesian strain and stresses are obtained
from the natural ones as

t =Tσ t̄

ρ =Tερ̄ = T−T
σ ρ̄

with Tσ =



Tp 0 0 0
0 Tz 0 0
0 0 Tp 0
0 0 0 Tt


 (14)
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where Tz = z2,ζ =
h2

4
and where h is the thickness of the shell and

Tp =




x2
,ξ y2,η 2x,ξx,η

y2,ξ y2,η 2y,ξy,η
x,ξy,ξ x,ηy,η x,ξy,η + x,ηy,ξ




Tt = z,ζ

[
x,ξ x,η

y,ξ y,η

] (15)

and xξ = RX0,ξ, xη = RX0,η. The matrix R = [iTx , i
T
y , i

T
z ]

T collects by row the unit
vectors along the axis of the local Cartesian coordinates

ix =
X0,ξ

‖X0,ξ‖
or provided as input, iy =

X0,η

‖X0,η‖
, iz = ix × iy

Being the Jacobian matrix J

J0[ξ, η] =
[
X0,ξ X0,η X0,ζ

]
=



x,ξ y,ξ 0
x,η y,η 0
0 0 h/2


 (16)

constant with ζ its determinant can be evaluated as det(J) = Ah where 2A = x,ξy,η−y,ξx,η

2.5 Edge smoothed element topology

The solid shell model is based on a description of a bi-dimensional domain using three-
dimensional strain measure. Many advantages in employing Smoothed FEM (S-FEM)
have been proven [8, 21] but standard formulation still show some drawback. Is the
authors opinion that the generation of the mesh for S-FEM-type elements, including
edge imbricate FEM (EI-FEM) [22] is not trivial. Recently in [23] a nice method for an
automatic mesh generation for S-FEM have been developed. It is also the authors opinion
also that the simplest, automatic and costless way to describe the S-FEM models based
on first order grids (T3 or Q4) is to use a quadratic grids and stress assumption [6] instead
of strain assumptions. In this way the method can be easily generalized to higher shape
functions and the preprocessing is simple.

Similarly to ES-FEM, we start from a geometrical discretization of the two-dimensional
domain (grid), by means of three node triangles (parts). Each part can be subdivided
into three triangular subparts identified by each edge and the centroid of the part. On
this grid the element is defined by the union of the subparts adjacent to each edge of the
grid (see [6]). The union of all the elements defines the mesh. Each part contributes to
the elements corresponding to its sides, so the mesh (of the elements) is not coincident
with the grid (of the parts).

To obtain the numerical model in each part the stress components are collected as

te = [t1e, t
3
e, t

3
e] with ti =

[
N i, siζζ ,Mi, T i

]T
, where superscripts denote each triangle

subpart, and the displacement parameters are collected as

de = [u1...u3,v1...v3,w1...w3,un1...,un3,vn1...,vn3,wn1...,wn3]
T (17)

where subscripts 1, 2, 3 denote the vertex of the triangular part. With the same shape is
assumed the vector Xe

6
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3 CONSTITUTIVE EQUATIONS AND YIELD CRITERIA

The perfectly-plastic material assumption restrains the stress σ to belong to a fix
admissible domain

E ≡ {σ : f [σ] ≤ 0,withf [0] < 0} (18)

where the function f [σ] is a convex yield function. Exploiting its convexity the constitutive
relation follows

ε̇p = µ̇
∂f [σ]

∂σ

∣∣
f(σ)=0 (19)

due to Drucker condition
(σy − σ)Tε̇p ≥ 0 ∀σ ∈ E

3.1 Von Mises yield criterion

The classical H. V. Mises yield criterion for metal shells, generalized in terms of stress
resultants (13) can be expressed as [24]

1

2
tTPet ≤ σ2

y (20)

where

Pe =




2 −1 · −1 · · · · ·
−1 2 · −1 · · · · ·
· · 6 · · · · · ·
−1 −1 · 2 · · · · ·
· · · · 2h2 −h2 · · ·
· · · · −h2 2h2 · · ·
· · · · · · 6h2 · ·
· · · · · · · 3h2

2
·

· · · · · · · · 3h2

2




, (21)

Note that the terms of 3h2

2
in the matrix P are the transverse shear components.

4 SHAKEDOWN ANALYISIS

We refer to the analysis of a body subjected to volume forces ∂Ω and tractions f, both
increasing with the same load multiplier λ.

The proncipal virtual work equation becomes

W [σ,u] =

∫

Ω

σTDu dΩ−
∫

Ω

bTu dΩ−
∫ T

Γ

u dΓ (22)

where D is the compatibility operator. By introducing the interpolation the part contri-
bution to the

We[βe,de] = βT
e Dede − dT

e pe (23)
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and De is the discrete compatibility operator, pe is the load vector furnished by the
integration of the external load components weighted with the shape functions of the
displacement interpolations.

The global compatibility operator Q and load vector p are obtained by assembling the
element contributions through the element incidence operators for displacements ue =
Tuq and stresses βe = Tββ, where β is the global stress vector and q is the global
displacement vector.

The material is assumed to be elastic-perfectly plastic, therefore the stress field is con-
strained to satisfy plastic admissibility inequalities which are independent of the plastic
strain. The shakedown analysis can be solved using an evolutive analysis through the
solution of a sequence of incremental elasto-plastic problems [9] and the shakedown mul-
tiplier λs is evaluated as the limit value for the equilibrium path. The shakedown analysis
theorems offer an alternative way which is directly addressed to compute the lower and
upper approximations of the safety multiplier. In this case, following [9] the shakedown
multiplier is individuated as a solution of the nonlinear mathematical programming prob-
lem

maximize λ

subject to QTβ − λp = 0

φ[β] ≤ 0

(24)

where the equality constraints are represented by the equilibrium equations, described
through the global equilibrium operator QT and the load vector p collecting the body
forces and tractions. The plastic admissibility inequalities are expressed through the
vector φ, which collects the local restrictions imposed by the assumed yield condition
over the stress state ti of the Nr regions of the domain

φi[t
i, λ] ≤ 0, i = 1..Nr (25)

For more details in the formulation of the shakedown problem the reader is encouraged
to see [9].

5 NUMERICAL RESULTS

The performances of the proposed mixed finite element model in evaluating plastic
collapse states have been tested by the numerical experiments reported in the following
subsections.

5.1 Cook membrane

The well-known Cook’s membrane, depicted in Figure 2 is used to show some prelim-
inary results of the in-plane behaviour. The convergence of the numerical solution has
been tested by using three meshes obtained by successive refinements initiated by a coarse
mesh of 2 elements for each side.

Table 1 reports a comparison of the computed values of the plastic collapse multiplier.
The reference result [11] was obtained using a mesh having 1024 elements and 2178 dofs

8
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while the finest mesh used in the present analysis has 512 triangular elements and 1649
dofs.

Figure 2: Cook membrane data.

Table 1: Cook membrane. Plane stress limit analysis.

mesh 1 mesh 2 mesh 3
λ λ λ

Present 0.4151 0.4012 0.3970
N − S 0.3888 0.3883 0.3935
ref. [11] 0.3956

5.2 Square plate under uniform transverse load

The transverse performances are tested by exercising the simply supported (SS) and
clamped (CL) square plates as described in Fig. 3 subject to uniform transverse load
q = 1. Owing to its symmetry, only a quarter of the plate is modelled with respectively
8, 12 and 16 elements for each side. To appreciate the effectiveness in resolving the

shear locking, different ratios L/h are considered. A unitary yield moment my = σyh2

4
is

considered. The collapse multipliers are given normalized with respect the yield moment
divided by qL2 where q = 1 is the transversal uniform load.

Tables 2 and 3 compare the present results with those obtained in [25], showing good
agreement between solutions obtained by two methods.

6 CONCLUSIONS

The paper proposes an MES-FEM solid shell element for application in shakedown
and limit analysis. The model is adapt, simple and accurate, to solve the problem also

9
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Figure 3: Square plate data. L = 10.

Table 2: Clamped square plate: computed plastic collapse load using uniform meshes

L/t mesh 1 mesh 2 mesh 3
λ λ λ Uniform mesh [25]

1 9.29 9.09 9.00 9.02
4 32.03 31.11 30.64 31.46
10 44.81 43.16 42.37 43.37
40 49.43 47.35 46.41 46.57
50 49.69 47.50 46.54 -
100 50.73 47.90 46.78 46.84

in conic formulation of mathematical programs. The main features of the model are its
simplicity and easy implementation within existing computational tools. Nevertheless
fully capitalizes its features in the analysis of plastic problems. The piece-wise constant
description of the stress field address the discontinuities inherent in the plastic solution.

The numerical experiments show the good performance of the proposed model. It
is worth noting that the model proves to be able to furnish very accurate results by
employing moderately fine meshes using few variables and nonlinear constraints in the
formulation of the mathematical program used to perform the analysis, and this is of
great interest in technical applications.

The accurate results achieved in the evaluation of the collapse multiplier and in the
description of the collapse mechanism demonstrate that the element is able to approximate
well the discontinuous fields generated by the plastic behaviour without drawbacks and
locking phenomena also for small thickness.
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Abstract. The material point method (MPM) is one of the latest developments in particle in 
cell methods (PIC). The structure is discretized into a number of material points that hold all 
the state variables of the system [1] such as stress, strain, velocity, displacement etc. These 
properties are then mapped to a temporary background grid and the governing equations are 
solved. The momentum conservation equations (together with energy and mass conservation 
considerations) are solved at the grid nodes. The state variables of the particles are then updated 
by transferring the solutions from the grid nodes back to the material points. Since the 
background grid is used only to solve the governing equations at the end of each computational 
step it can be reset to its undistorted form and thus mesh distortion and element entanglement 
are avoided. 

In this work an explicit MPM accounting for elastoplastic material behavior with degradations 
is proposed. The stress tensor is decomposed into an elastic and a hysteretic – plastic part [5] 
where the hysteretic part of the stresses evolves according to a Bouc-Wen type hysteretic rule 
[2]. The inelastic constitutive material law provides a smooth transition from the elastic to the 
inelastic regime and accounts for the different phases during elastic loading, unloading, yielding 
and stiffness and strength degradation. Heaviside type functions are introduced that act as 
switches, incorporate the yield criterion and the terms for stiffness and strength degradation as 
in the Bouc-Wen model of hysteresis [2]. The resulting constitutive law relates stresses and 
strains with the use of the tangent modulus of elasticity, which now includes the Heaviside 
functions and gathers all of the governing inelastic degrading behavior. 

 
 
1 INTRODUCTION 

In the Material Point Method, the domain is discretized into a set of material points or 
particles.  Each particles represents a fraction of the volume of the material and carries all the 
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properties and the state of the material (mass, stress, density strain etc.). In addition to the 
material points a background grid is employed. This is in most cases structured, but it can also 
be arbitrary. The grid is static and does not deform and it is reset to its original form after each 
computational step. It is used to solve the governing equations of motion. The properties of the 
material points are mapped to the background grid using shape functions similar to FEM. After 
the solution is obtained in the background grid nodes, the updated quantities are mapped back 
to the material points. 

 
Figure 1: MPM discretization. 

In this work cubic B-Splines shape functions are used [3]. They have been shown to reduce 
quadrature errors and the grid crossing errors that occur when a material point crosses between 
two elements of the background grid if the gradients of the shape functions are discontinuous 
[4]. 

2 THE MATERIAL POINT METHOD 
In the MPM algorithm the following steps are considered: firstly, the element of the 

background grid that each material point lies in, is identified and the corresponding shape 
functions are evaluated. The material point masses pM and momenta  pMv   are mapped to the 
background grid and the nodal masses im  and momenta  imv  are calculated:  

   

1

1

p

p

N

i p i
p

N

ii p
p

m M N

mv Mv N












 (1) 

where iN  are the corresponding shape functions. The nodal internal forces int
iF  are calculated 

on the background grid based on the material point stresses and using the gradient of the shape 
functions: 

int

1

pN
p

i p i
p p

M
F N

p




    (2) 

where pp  is the density of the material point p. The total nodal force vector iF , on the 
background grid is calculated and the appropriate boundary conditions are applied: 
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intext
i i iF F F   (3) 

The momenta at the background grid nodes are updated: 

    ii imv mv Fdt   (4) 

The properties are mapped back to the material points and their positions and velocities are 
updated as follows: 

   

 
1

1

N
i i

p p
i i

N
ii

p p
i i

F Nv x v x dt
m

mv N
x x dt

m





 
   

 
 

   
 




 (5) 

The final step is to calculate the strain increments and from those the stress increments. Using 
the Modified Update Stress Last (MUSL), that has been shown to conserve energy better, the 
grid nodal momenta are recalculated based on the new particle velocities and the particle strain 
increments p  are calculated based on the new nodal velocities: 
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 (6) 

where  D  is the plane stress elasticity matrix: 
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 (7) 

3 PLASTICITY MODEL WITH DEGRADATIONS 
The mechanical analogue of the Bouc – Wen [2] hysteretic model for a Single Degree of 

Freedom system is presented in Figure 2.  
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Figure 2: Mechanical analogue of Bouc-Wen model. 

The model can be visualized as the parallel combination of two components, one being a 
linear spring with reduced stiffness ak , where a  is the ratio of the post yield stiffness to the 
initial elastic one. The second element consists of a linear spring and a slider that are connected 
in series. If the force that acts on the system is smaller than the yield force, then the system 
behaves elastically with its initial stiffness. If, however, the yield force is exceeded, then the 
force in the second element stays constant and equal to the yield force and the linear spring 
provides the additional hardening. 

The differential equations of the Bouc-Wen model for the single degree of freedom system 
are: 

 

 

1

1 sgn

el h

n

y

F F F Ku Kz

zz zu u
z

 

 

    

 
   
  

 (8) 

where z  is the hysteretic parameter, yz  is the maximum value of the hysteretic parameter, sgn  
is the signum function, K  is the stiffness of the spring and a  is the ratio of the post yield 
stiffness to the initial elastic one. The total force is uncoupled into an elastic one and a hysteretic 
one. 

The Bouc – Wen model as explained in the previous paragraph is generalized herein 
regarding the stress tensor which is now decomposed into an elastic a hysteretic part as: 

          e hI        (9) 

where  a  is a diagonal matrix that hold the ratio of the post yield stiffness to the elastic one 
and  I is the identity matrix. The elastic part of the stresses relates to the strains with the use 
of the classic constitutive matrix  D : 

    e D   (10) 

The hysteretic part of the stresses follows a Bouc-Wen type hysteretic rule and thus: 

         1 2
h D I H H R    (11) 
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where 1 2,H H  are Heaviside type functions and  R  is the interaction matrix. Its formulation 
stands from the theory of classical plasticity and can be found in [5] and [7] and contains no 
hardening related terms [6]. The Heaviside type functions are given as: 

    1 2
0

, 0.5 0.5
n

TH H sign  
  


 (12) 

where   is the yield criterion. These functions essentially smooth the transition from the elastic 
to the inelastic regime and control loading and unloading behaviour. The rate form of equation 
(9), using equation (11), can be written as: 

                 1 2D I D I H H R         (13) 

Two additional parameters are added into the model to account for stiffness degradation and 
strength deterioration. These parameters where first introduced by Baber and Wen [8] and 
equation (13) now becomes: 

                 1 2
1

s
s

D I D I v H H R
n

         (14) 

where: 

1

1

h
s n

h
s v

n c e
v c e
 

 
 (15) 

Regarding the parameters in the previous relations, nc  and vc  are the model parameters that 
need to be identified, while he  is the accumulated hysteretic energy due to plastic energy 
dissipation. It is calculated from the hysteretic stresses as: 

   h he d    (16) 

Finally, the constitutive equation can be written as: 

   

             1 2

,

1

t

t
s

s

E

E D I D I v H H R
n

 

 

   
 

       
 

 (17) 

where tE    can be considered as a tangent matrix effectively controlling the smooth transition 
from the elastic to the inelastic regime, loading and unloading, as well as accounting for 
stiffness and strength degradation. This matrix can now substitute the classic elasticity matrix 
in (6) and extend the MPM to account for plasticity and degradations. 

4 NUMERICAL EXAMPLES 
In order to verify the proposed model within the MPM framework a cantilever beam is 

considered. Material is steel with E=210GPa, and yield strength of sy=240MPa. The 
dimensions of the beam are 1m by 0.2m. In this analysis the beam was discretized with 320 
material points using 4 points per element. The discretized beam and the employed background 
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grid can be seen in Figure 3. A sinusoidal force is applied at the free end of the beam during a 
time of 5 secs with a maximum value ok 375kN and a period of 2π to simulate one full cycle. 
The results are plotted in Figure 4 regarding the stress strain diagram of the material point 
closest to fixed end both with and without degradations. In addition, the Von Mises stresses of 
the beam at its maximum displaced position are plotted in Figure 5. Results show that the 
formulation is able to capture accurately the main features of plasticity together with 
degradation phenomena. 

 
Figure 3: MPM discretization of the beam with 320 material points. 

 
Figure 4: Stress strain diagram for the material point closest to the fixed end. 
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Figure 5: Von Mises stresses. 

5 CONCLUSIONS 
- The Material Point Method is used in an explicit formulation scheme to model 

plasticity with degradation phenomena. 
- Use of higher order cubic B-Splines effectively minimizes the grid crossing errors and 

improves the accuracy of the MPM method. 
- The hysteretic - plasticity model for nonlinear analysis accounts for smooth transition 

from the elastic to the inelastic regime. 
- The model accounts for stiffness degradation and strength deterioration. and has been 

incorporated into the MPM framework by modifying the tangent modulus of elasticity. 
- Numerical examples are presented that verify the proposed model ability to simulate 

plastic and damage phenomena. 
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Abstract. This paper presents a family of finite elements for the nonlinear static and
dynamic analysis of cables based on a mixed variational formulation in curvilinear coor-
dinates and finite deformations. This formulation identifies stress measures, in the form
of axial forces, and conjugate deformation measures for the nonlinear catenary problem.
The continuity requirements lead to two distinct implementations: one with a continuous
axial force distribution and one with a discontinuous. Two examples from the literature
on nonlinear cable analysis are used to validate the proposed formulation for St Venant-
Kirchhoff elastic materials. These studies show that displacements and axial forces are
captured with high accuracy for both the static and the dynamic case.

1 INTRODUCTION

Cable structures are of great interest in many engineering applications because they
offer numerous advantages, such as high ultimate strength, light weight or prestressing
capabilities, among others. Nonetheless, a highly nonlinear behavior arises in this type of
structures because of their high flexibility. For analyzing cable structures, two families of
elements have traditionally been considered: truss elements and catenary elements.

For truss elements, the cable is discretized in a series of straight 2-node elements. In
this case, the geometric nonlinearity is often accounted for by a corotational formulation,
involving the transformation of the node kinematic variables under large displacements.
Truss elements suffer from excessive mesh refinement to obtain accurate results, especially
when assuming a constant axial force distribution in the element. Moreover, they may
exhibit snap-through instabilities at states of nearly singular stiffness.

Catenary elements use linear kinematics to discretize the cable into a series of curved
elements that satisfy the catenary equation. These elements solve the global balance of
linear momentum by explicit integration and assuming linear elasticity [1]. As a result,
loads are not adjusted with the cable elongation, so that these elements cannot be ex-
tended to nonlinear elasticity or inelasticity. Recently, the authors have proposed a general

1
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formulation for a catenary element in finite deformations and curvilinear coordinates [2]
that overcomes these limitations.

2 MIXED FORMULATION OF THE CATENARY PROBLEM

2.1 Kinematics

Fig. 1 shows the motion of a cable from a reference configuration P0 to a current
configuration P . Define an orthogonal frame {Gi}3i=1 with associated coordinates {ξi}3i=1

at any point P ∈ P0, such that

G1 =
dX

dξ1
; G1 ·G2 = 0 ; ‖G2‖ = 1 ; G3 =

G1 ×G2

‖G1 ×G2‖
(1)

where ξ1 is the parameter describing the curve. Under the motion x = χ(X), this frame
is convected to the orthogonal frame {gi}3i=1. Let upper case letters denote variables in
the reference configuration and lower case letters, variables in the current configuration.

Figure 1: Motion x = χ(X(ξ1)) of the cable C.

The relevant stretch and Green-Lagrange strain of the problem, in the g1 direction, are

λ =
‖g1‖
‖G1‖

; E =
1

2
(λ2 − 1)‖G1‖2 (2)

The displacement vector u depends only on the curvilinear coordinate ξ1,

u(X(ξ1)) = x(X(ξ1))−X(ξ1) = uA(ξ
1)EA (3)

Therefore, the relationship between the displacement field u and the relevant Green-
Lagrange strain E can be computed [2] as

E =
du

dξ1
·G1 +

1

2

∣∣∣∣
du

dξ1

∣∣∣∣
2

=
du

dξ1
·
(
G1 +

1

2

du

dξ1

)
=

1

2

du

dξ1
· (G1 + g1) (4)

2

897



Miquel Crusells-Girona, Filip C. Filippou and Robert L. Taylor

It is relevant to observe that the frame {Gi}3i=1 is orthogonal, but not orthornomal in
general. Indeed, the metric tensor Gij = Gi ·Gj is not necessarily the identity operator
and the Green-Lagrange strain E may not be physical. Nevertheless, one can construct
an orthonormal basis {ĜA}3A=1 = {Gi/‖Gi‖}3i=1 such that

E = EijG
i ⊗Gj = ÊABĜA ⊗ ĜB (5)

Hence, the components
ÊAB = Eij(ĜA ·Gi)(ĜB ·Gj) (6)

are physical quantities.

2.2 Equilibrium and principle of virtual work

For expressing the equilibrium equation of the cable in finite deformations, let n denote
the axial force in the current configuration, thus a Cauchy representation. Observe that
the first Piola-Kirchhoff and the Cauchy representations of the axial force coincide for the
problem in hand, which does not account for changes in the cross section dimensions.

The Cauchy axial force can be pulled back to the reference configuration to obtain
a second Piola-Kirchhoff representation of the axial force, N. It can be shown [2] that,
using the orthonormal basis in Eq. 5, namely with components n = n̂ĝ1 and N = N̂Ĝ1,

n̂ = λN̂ (7)

Denoting by s and S the arc-length coordinates in the current and reference configu-
rations, respectively, the cable distributed load can be described as

wds = ŴdS = Wdξ1 (8)

Then, global equilibrium for the cable in the current configuration P states

n(s)− n(0) +

∫ s

0

w ds =

∫ s

0

ρa ds (9)

where ρ is the material density in the current configuration and a, the total acceleration.
The corresponding local statement in the current configuration can be obtained with the
fundamental theorem of calculus and the localization theorem

d

ds
(ng1) +w = ρa (10)

or, in the reference configuration,

d

dS
(N̂

√
G11g1) + Ŵ = ρ0a (11)

where Gij = Gi ·Gj represents the dual metric tensor and ρ0 = λρ.

3
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In summary, if N̂ = Ψ(Ê) is a frame-indifferent constitutive relation between the phy-
sical Green-Lagrange strain Ê and the physical 2nd Piola-Kirchhoff axial force N̂, the pair
of fields (u, N̂) will be the solution of the cable problem, if and only if, they satisfy





G11 du

dξ1
·
(
G1 +

1

2

du

dξ1

)
− Ê = 0 in Ω = (0, L)

d

dS

(√
G11N̂g1

)
+ Ŵ = ρ0a in Ω = (0, L)

N̂−Ψ(Ê) = 0 in Ω = (0, L)

u = ū on Γu√
G11N̂g1 = T̄ on Γq

(12)

for 0 < S < L equivalent to ξ11 < ξ1 < ξ12 .
The corresponding two-field weak statement of Eq. 12 can be obtained by considering

any variation δu ∈ V , the space of displacement test functions, any variation δN̂ ∈ W ,
the space of axial force test functions, and integrating the equilibrium equation by parts,



∫ L

0

δN̂

{
G11 du

dξ1
·
(
G1 +

1

2

du

dξ1

)
− Ê

}
dS = 0

∫ L

0

d(δu)

dS
· N̂

√
G11g1 dS +

∫ L

0

δu · ρ0a dS =
[
δu · T̄

]
Γq

+

∫ L

0

δu · Ŵ dS

(13)

where the constitutive relation is imposed strongly. The spaces for the trial solutions of
the displacements and axial forces, S and N , respectively, are

S = {u ∈ H1(0, L) |u = ū on Γu}

N =
{
N̂ ∈ H0(0, L) | N̂ > 0, and N̂ = g11

√
G11T̄ · g1 on Γq

} (14)

Similarly, the spaces for the test functions of the displacements and the axial forces, V
and W , respectively, become

V = {δu ∈ H1(0, L) | δu = 0 on Γu}
W = {δN̂ ∈ H0(0, L) | δN̂ = 0 on Γq}

(15)

where Hk(Ω) is the Sobolev space for the k−th weak derivative in the L2(Ω) norm.
As a result, there are no continuity requirements for the axial force field N̂. This implies

the possibility of exploring cable finite elements with continuous or discontinuous axial
force distribution.

3 FINITE-ELEMENT IMPLEMENTATION

3.1 Discretization

The discretization of the governing equations requires interpolations for N̂(ξ1), u(ξ1)
and a(ξ1). Assume a k-th order Galerkin interpolation for the axial forces

N̂ = ϕtN̂ = N̂tϕ (16)

4
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and an l-th order Galerkin interpolation for the displacement and acceleration fields

u = φtû ; a = φtâ (17)

Then, using the same shape functions for the reference configuration, the current configu-
ration is obtained as

x = X+ u = φt(X̂+ û) = φtx̂ (18)

With these interpolation functions, one can discretize the weak statement in Eq. 13 for
a finite element Ωe and a time step n as





∫

Ωe

δN̂tϕ

{
G11ût

nφ
′
(
G1 +

1

2
(φ′)tûn

)
− Ê(N̂n)

}
dS = 0

∫

Ωe

δûtφ′G11ϕtN̂nĝn dS +

∫

Ωe

δûtρ0φφ
tân dS =

[
δûtφT̄n

]
∂Ωe

+

∫

Ωe

δûtφŴn dS

(19)
where (·)′ represents the derivative with respect to the curvilinear coordinate ξ1 and
ĝn = G1 + (φ′)tûn is the numerical counterpart to g1.

3.2 Time integration and consistent linearization

Once the discretization of the problem has been performed, the corresponding time-
dependent equations need to be solved. As stated before, one can consider cable finite
elements with a continuous or a discontinuous axial force field.

3.2.1 Mixed cable element with continuous axial force

For the element with continuous axial force distribution, the cable is subdivided into
e elements of k-th order in axial forces and l-th order in displacements. By defining the
expanded stress divergence term R = (R1,R2) with components

R1(N̂n, ûn) =

∫

Ωe

ϕ

(
G11ût

nφ
′
(
G1 +

1

2
(φ′)tûn

)
− Ê(N̂n)

)
dS

R2(N̂n, ûn) =

∫

Ωe

G11ϕtN̂n φ
′ĝn dS

(20)

and the mass matrix M as

M =

∫

Ωe

ρ0φφ
t dS (21)

one can rewrite Eq. 19 in an implicit scheme as

[
R1(N̂n+1, ûn+1)

R2(N̂n+1, ûn+1)

]
+

[
0

Mân+1

]
=

[
0

Fext,n+1

]
(22)

where Fext,n+1 refers to the external forces considered at the time step n+ 1.

5

900



Miquel Crusells-Girona, Filip C. Filippou and Robert L. Taylor

Introducing Newmark’s time integrator [3], one obtains the system of equations

1

β∆t2n

[
0

Mûn+1

]
+

[
R1(N̂n+1, ûn+1)

R2(N̂n+1, ûn+1)

]

=

[
0

Fext,n+1

]
+

1

β∆t2n

[
0

M(ûn +∆tnv̂n)

]
+

1− 2β

2β

[
0

Mân

] (23)

Hence the consistent linearization of the former equation, namely Φ(ûn+1, N̂n+1) = 0,
around a point V̄n+1 = (ûn+1, N̂n+1) and for the k-th iterate establishes

LΦ = Φ|(k)
V̄n+1

+
∂Φ

∂V̂n+1

∣∣∣∣
V̄

(k)
n+1

(V̂
(k+1)
n+1 − V̄

(k)
n+1)

︸ ︷︷ ︸
DΦ(V̄

(k)
n+1,∆Vn+1)

= 0 (24)

where the Fréchet derivative ∂Φ/∂V̂n+1|V̂(k)
n+1

corresponds to the dynamic stiffness K of

the problem, with components

KNN = −
∫

Ωe

ϕ
∂Ê

∂N̂n+1

dS = −
∫

Ωe

ϕ
∂Ê

∂N̂
ϕt dS

KNu =

∫

Ωe

G11ϕĝt
n+1(φ

′)tdS = Kt
uN

Ks
uu =

∫

Ωe

G11ϕtN̂n+1φ
′(φ′)tdS

Kd
uu =

1

β∆t2n
M+Ks

uu

(25)

in the form

K =
∂Φ

∂V̂n+1

∣∣∣∣
V̄

(k)
n+1

=

[
KNN KNu

KuN Kd
uu

]
(26)

In order to satisfy stability of the solution scheme, it is necessary [2] that

ker (KNN −KNu(K
s
uu)

−1Kt
Nu) = 0 (27)

3.2.2 Mixed cable element with discontinuous axial force

For the element with discontinuous axial force distribution, the cable is also subdivided
into e elements of k-th order in axial forces and l-th order in displacements. In this case,
however, the axial forces are treated as internal degrees of freedom, and are consequently
condensed out at the element level before assembly of the element response. This generates
a discontinuity in the axial forces, which is allowed by the condition N̂ ∈ H0(0, L). The
stress divergence term R(N̂n, ûn) is then understood as

R(N̂n(ûn), ûn) =

∫

Ωe

G11ϕtN̂n φ
′ĝn dS (28)

6
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and one can rewrite Eq. 19 in an implicit scheme as

R(ûn+1) +Mân+1 = Fext,n+1 (29)

Introducing Newmark’s time integrator [3], one obtains the system of equations

1

β∆t2n
Mûn+1 +R(ûn+1) = Fext,n+1 +

1

β∆t2n
M(ûn +∆tnv̂n) +

1− 2β

2β
Mân (30)

Hence the consistent linearization of the former equation, namely Φ(ûn+1) = 0, around
a point ūn+1 and for the k-th iterate establishes

LΦ = Φ|
ū
(k)
n+1

+
∂Φ

∂ûn+1

∣∣∣∣
ū
(k)
n+1

(û
(k+1)
n+1 − ū

(k)
n+1)

︸ ︷︷ ︸
DΦ(ū

(k)
n+1,∆un+1)

= 0 (31)

where the Fréchet derivative ∂Φ/∂ûn+1|ū(k)
n+1

corresponds to the condensed dynamic stiff-

ness K of the problem
K = Kd

uu −KuNK
−1
NNKNu (32)

with the components defined in Eq. 25.
The stability condition of the solution scheme reads [2] in this case as

ker (Ks
uu −KuNK

−1
NNKNu) = 0 (33)

4 NUMERICAL EXAMPLES

The proposed formulation is implemented in two cable elements with continuous and
discontinuous axial force distributions. The elements, deployed in the general purpose
finite element program FEAP [4] and Matlab toolbox FEDEASLab [5], use a linear ap-
proximation for the axial forces (k = 1) and a quadratic approximation for the displace-
ments (l = 2). The two-dimensional element results in eight degrees of freedom (DOFs),
six displacement DOFs and two axial force DOFs, while the three-dimensional element
results in eleven DOFs, nine displacement DOFs and two axial force DOFs.

Both elements are implemented with a St Venant - Kirchhoff elastic material model
with stored energy U in terms of the stretch λ and the generalized Young’s modulus E

U =
E

8
(λ2 − 1)2 (34)

Thus, if A is the area of the cross section and N̂0 the prestressing force,

N̂− N̂0 = (EA)Ê (35)

with constant material stiffness ∂N̂/∂Ê = EA.
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4.1 Example 1: Stability of a 3d pulley system

The first example investigates the stability of a 3d cable supported by a pulley that
was previously studied by Impollonia et al [6]. The structural model, whose geometric
and material properties are shown in Table 1, consists of a cable anchored at both ends
and supported by an intermediate roller. In this case, the inertia forces in Eq. 19 and
the mass term of the stiffness are not considered as the problem is analyzed in a static
manner.

Property Value

Cross-sectional area 805 mm2

Elastic modulus 16.0 kN/mm2

Cable self-weight 62.0679 N/m
Cable length 500 m

Table 1: Geometry and Material Properties for Example 1.

The objective of this example is to determine the equilibrium configurations of the cable
under the assumptions that the pulley is free to move horizontally and that the pulley
radius and friction are negligible. For the nonlinear analysis, the cable is subdivided into
two segments, one for each span, with the reference curvilinear coordinate ξ1 of the pulley
as problem unknown. This curvilinear coordinate ξ1 is used to construct the finite element
mesh in each iteration.

Following the form finding procedure by Argyris et al [2, 7], the analysis starts from a
straight reference configuration, and imposes a displacement u = (−200, 0, 50) m at the
right support and a pair of displacements u2 = 50 m and u3 = 100 m at the intermediate
roller. Because friction is not considered, the jump in the Cauchy axial force at the roller
support must be zero. As a result, the problem is solved by iterating over the curvilinear
coordinate ξ1 so that the jump in the Cauchy axial force at the pulley becomes zero.

Impollonia et al
[6]

Present work
(continuous)

Present work
(discontinuous)

ξ11 (m) 126.12 126.26 126.25
N1 (kN) 14.12 8.31-13.99 8.31-13.99

ξ12 (m) 219.98 219.46 219.47
N2 (kN) 10.79 4.02-10.68 4.02-10.68

ξ13 (m) 424.76 424.70 424.70
N3 (kN) 17.42 10.25-17.28 10.25-17.28

Table 2: Results for Example 1 from different studies.

Table 2 summarizes the results for the equilibrium configurations with ξ1i refering to
the curvilinear coordinate of the pulley and Ni, to the axial force. Because the study
by Impollonia et al [6] does not consider finite deformations, ξ1i and Ni correspond to

8
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infinitesimal deformations. For the present study, ξ1i corresponds to the reference confi-
guration and Ni, to the Cauchy axial force. While the values of the present study agree
well with those by Impollonia et al [6], it is worth noting the variation of the Cauchy
axial force that the current formulation captures, as indicated by the range of axial force
values in Table 2. In contrast, the model in [6] overestimates the axial force by reporting
a value corresponding to the maximum of the current formulation.

Three equilibrium states result from the analysis, as Fig. 2 shows: three stable confi-
gurations denoted with solid lines (C1 and C3), and one unstable configuration, denoted
with a dashed line (C2), as reflected in the change of direction for the horizontal component
of the reaction at the pulley. The x1 positions of the pulley for these equilibrium states
in Fig. 2 are x1

1 = 56.54/56.53 m, x2
1 = 134.00/134.01 m and x3

1 = 274.31/274.31 m for
the continuous and the discontinuous formulations, respectively.

Figure 2: Deformed shape (30 elements) of equilibrium states for Example 1.

4.2 Example 2: Free vibration in finite deformations

The second example studies the large-amplitude free vibration of two cables with diffe-
rent sag/span ratio that were investigated by Srinil et al [8]. The structural model consists
of a cable anchored at both ends and spanning 850 m in both cases. Table 3 summarizes
the geometric and material properties of the cables denoted by C1 and C2.

First, following the shape finding procedure by Argyris et al [7], the equilibrium confi-
guration and the first two natural modes of vibration around this configuration are ob-
tained for both cables by solving the standard eigenvalue problem

det[K(ueq)− w2M] = 0 (36)

9
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Property C1 C2

Cross-sectional area 0.1159 m2 0.1159 m2

Elastic modulus 17.94 GPa 17.94 GPa
Density 8337.9 kg/m3 8337.9 kg/m3

Cable length 840.48 m 870.51 m
Prestressing - 345 kN

Table 3: Geometry and Material Properties for Example 1.

where w is the angular frequency, ueq refers to the displacement field at the equilibrium
state, andK andM correspond to the static stiffness and mass matrices of the formulation
in Sec. 3.2. Both cables are discretized with a mesh of 14 elements. Results are presented
in Table 4, where the end tension is given in the Cauchy representation, and ”S” and
”A” refer to the symmetric and antisymmetric modes, respectively. Fig. 3 shows the
normalized first symmetric and antisymmetric modes of both cables. From this figure, it
is interesting to note that, when the sag/span ratio increases, the single extremum for the
symmetric mode divides into three because of increasing horizontal displacements.
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Figure 3: Normalized vertical eigenvectors for Example 2.

C1 C2
Present Srinil et al [8] Present Srinil et al [8]

Sag [m] 28.01 28.39 89.28 89.57
Sag/span [-] 1/30 1/30 1/9.5 1/9.5
End tension [kN] 30432 30000 10500 10500
Frequency (1st S) [Hz] 0.124 0.123 0.158 0.158
Frequency (1st A) [Hz] 0.208 0.206 0.112 0.112

Table 4: Results for equilibrium configurations and natural vibration in Example 2.

To evaluate the large-amplitude free vibration, an initial displacement field is imposed
corresponding to an amplified first symmetric mode, u0 = αum1, where um1 is the nor-
malized first symmetric mode. The parameters for Newmark’s method are β = 0.25,
γ = 0.5 and ∆t = 0.05 s. No differences are observed between the continuous and the
discontinuous formulations as the problem in hand is symmetric in geometry and loads.
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Fig. 4(a) shows the normalized vertical displacements and Cauchy axial forces for cable
C1 and α = 15. The evolution of the energy for this case is presented in Fig. 5(a). Like-
wise, Fig. 4(b) and Fig. 5(b) present the normalized vertical displacements and Cauchy
axial forces, and energy evolution, respectively, for cable C2 and α = 15. While cable C1
behaves linearly in displacements, cable C2 shows a high dependence on high-frequency
modes. Also, high-frequency contributions are observed in both cases for the axial force,
becoming more relevant for the large sag/span ratio, as observed by Srinil et al [6]. The
total energy is conserved for cable C1, whereas it shows minor oscillations for cable C2.
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Figure 4: Normalized vertical displacements and Cauchy axial forces for Example 2.
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Figure 5: Energy evolution for Example 2.
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5 CONCLUSIONS

The paper presents a general formulation of catenary elements based on finite deforma-
tions and curvilinear coordinates for the nonlinear static and dynamic analysis of cables.
From the weak statement of the problem, two implementations are derived: one with a
continuous axial force distribution and one with a discontinuous.

As demonstrated by the first example, the formulation is capable of determining equi-
librium configurations of three-dimensional cable arrangements with high accuracy, espe-
cially in axial forces, compared to other elements in the literature which do not distinguish
between Cauchy and 2nd PK axial forces. Furthermore, the second example shows that
the natural modes of vibration around equilibrium configurations can also be obtained
by the proposed formulation. Because the energy is conserved in the analyzed range of
sag/span ratios, Newmark’s implicit method can be used to solve the nonlinear dynamic
problem. Nevertheless, as observed in the literature, high-frequency contributions in the
axial force appear in the analysis, with their amplitude increasing with the sag/span ratio.

In conclusion, because of their consistency and versatility, the proposed catenary ele-
ments seem well suited for the nonlinear static and dynamic analysis of nonlinear elastic
cables under general loading.
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Abstract. Effective numerical models of induction heat treatment are developed. They 
include two-dimensional modeling of coupling electromagnetic and temperature fields in 
cylindrical systems for processing of tubes and rolls. Also thermal tension during heating and 
cooling of tubes and rolls are simulated. These data allow defining structure, hardness, the 
size of grain and other properties of the tubes and rolls. They allow optimizing design and a 
choice of equipment, a heat treatment mode for the purpose of achievement of the maximum 
quality and minimization of energy consumption. The developed two-dimensional models 
were used not only for the design of induction heat treatment systems of tubes and rolls, but 
also for a digital control of these complexes.  
 
1 INTRODUCTION 

The aim of induction hardening is to increase the hardness of the boundary layers of a 
workpiece by rapid heating and subsequent quenching. This heat treatment leads to a change 
in the microstructure, which produces the desired hardening effect. 

In the case of induction heating, a current in the induction coil induces eddy currents inside 
the workpiece. Eddy currents lead to an increase of the temperature in the boundary layers of 
the workpiece due to Joule and Skin effects. After that the current is switched off and the 
workpiece is quenched by spray-water cooling. 

In spite of the fact that induction hardening has successfully been applied in industry for 
many years, there is a growing demand in industry for a more precise process control. This 
circumstance is linked with the growing complexity of the quenched components, reduction 
of the workpiece thickness due to modern weight requirements, etc. Using of computer 
simulation is a powerful and necessary approach for solving these problems. From the 
physical point of view the induction hardening is a very complicated process (Figure 1). We 
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should include all the significant phenomena in the mathematical description to achieve an 
acceptable calculation result. Moreover, it is very important to understand that all phisical 
phenomena are linked with each other. 

It is obvious that induction hardening mathematical description should include the 
electromagnetic, thermal and phase transformations phenomena. But the resulting workpiece 
properties are strongly depend on stress-strain state (residual stress) due to summation stress 
effect with the external load. Moreover, stress is an additional driving force for the phase 
transformation (Figure 1). That’s why it is desirable to describe this phenomenon too. 

Electromagnetism

Eddy current
and hysteresis
losses

Temperature 
depended parameters

Thermal Analysis

Phase Transitions Mechanical Analysis

Transformation strain and plasticity
Phase fraction dependent parameters

Mechanical
dissipation

Transformation
kinetics

Latent heat, Phase 
fraction depended parameters

Phase transformation 
driving force

mechanical 

 
 

Figure 1. Heat treatment physical phenomena 
 

2 ELECTROMAGNETIC AND THERMAL ANALYSIS 
A simulation of the induction heating process includes a computation of electromagnetic 

and temperature fields. In the case of ferrous steel heating, some features should be taken into 
account because of very strong non-linearity in the system.  

Codes for the simulation of induction heating should provide the capability to solve the 
tightly coupled (inter-related) computations of electromagnetic and heat transfer phenomena. 
In order to create this feature, a special computational algorithm has been developed [1]. This 
algorithm is based on jointly solving a system of two non-linear differential equations, which 
describe the electromagnetic and temperature fields, and provides a reliable coupling of both 
phenomena. 

Electromagnetic field in the workpiece  can be described by the following equation 

        
t

H
rotHrot




 0 ,                   (1) 

where: 
H is the strength of magnetic field,   is the electrical resistivity of metals,   is the relative 

magnetic permeability, 0  is the permeability of free space. The electrical resistivity of a 
metal is temperature dependent. In addition, the relative magnetic permeability is a function 
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of two parameters: magnetic field intensity and temperature. 
It is important to note that common approach of using the first harmonic for the 

computation of the electromagnetic field in induction heating systems can result in a low 
accuracy in the ferrous workpiece heating analysis. For more accurate computations, equation 
(1) should be used for the simulation of a non-sinusoidal distribution of the electromagnetic 
field in a workpiece. Very strong dependence of magnetic permeability on temperature is very 
important for the simulation induction heating.  

Accurate data of this dependence are not readily available, though in many cases it could 
be approximated as follows: 

    ,111,





















n

cT

T
HT    cTT                                             (2) 

  ,1, HT             cTT   
 
where: 

cT - temperature of Curie, n - index. 
The most reliable data that is supported by experimental investigations correlate with an 

index n between 4 and 6. 
The transient heat transfer process in a steel tubes and rolls can be described by the 

nonlinear Fourier equation: 

wgradTdiv
t

T
vC  )(


 ,                  (3) 

where: 
T  is the temperature, vC  is the volume specific heat,   is thermal conductivity of the 

metal, and w  is the heat source density that is generated in the case of induction heating 
process. The thermal conductivity and specific heat of metal are each functions of 
temperature. 

The coupling algorithm jointly solves the system of two non-linear differential equations for 
the electromagnetic (1) and temperature fields (3) with either the Finite Element Method 
(FEM) or the Finite Difference Method (FDM). The algorithm calls for an iterative process 
consisting of an electromagnetic computation and followed by a re-calculation of the heat 
sources in order to make an updated heat transfer computation. This assumes that temperature 
variations are not significant in each time step that the material properties remain 
approximately the same, and the temperature fields can be computed without correcting the 
heat sources. The temperature distribution within the workpiece, obtained from the time-
stepped heat transfer computation, is used to update the values of specific heat and thermal 
conductivity in each time step. As soon as the heat source variations become significant (due 
to the variations of electrical conductivity; magnetic permeability, change of the current in the 
inductors, etc.) the convergence condition will no longer be satisfied and a re-calculation of 
the electromagnetic field and heat sources will take place. 
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In general case all the coefficients in (3) are depended on temperature. This circumstance 
leads to a non-linearity thermal analyses problem which should be solved by using one of the 
iteration numerical methods. 

Moreover, these coefficients are depended on instant phase mixture during the process of 
heating or cooling of the workpiece. Thus, it is desirable to use the temperature dependencies 
of the thermal coefficients for all the possible phases in coupling with additivity concept, 
which allow us to calculate the mean coefficient quantity. The experimental data for the 
thermal properties of each phase are absent in available reference-literature, but the modern 
state of computational material science allows us to use specialized for this purposes software 
like JMatPro [2]. 

 
3 PHASE TRANSITIONS 
 

Time-temperature-transformation (TTT) diagrams (Figure 2) are used for the description of 
experimental research in steel phase transformations. Continuous-cooling-transformation 
(CCT) diagram is built under the continuous cooling (or heating) conditions (Figure 2,a, 2,b). 
Isothermal-transformation (IT) diagram is built under the isothermal conditions (Figure 2,c). 

 
 

 

a) b) c) 
Figure 2. Examples of typical TTT-diagrams 

a – CCT diagram of heating; b – CCT digram of cooling; c – IT diagram of cooling 
 

Nowadays the experimental diagrams using is wide spread for the induction heat treatment 
process analysis and development. Most of the calculation approaches based on the 
combination of Scheil rule for the continuous conditions analysis and Avrami-type kinetics 
parametric equation [3]. In this case the model is based on the IT diagrams only. But there are 
several problems for this approach: 

 Scarce phase solubility data – necessity of thermodynamics using for the correct 
calculation of the ferrite, pearlite transformation. Moreover, the maximum volume 
fraction of bainite is complicated for calculation [4]. 

 Lack of the grain size kinetics influence information.  
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 Absence of the mechanical driving force influence information. 
 TTT diagrams do not reflect a simultaneous phase transformation. 

Thus, for solving these problems it would be suitable to develop a mathematical model 
which allows us to calculate of cooling or heating diagram for arbitrary steel, taking into 
account composition, microstructure and stress-strain station. It is possible to use a modern 
computational material science for these purposes [5]. These theories based on combination of 
thermodynamics and kinetics and could be used for the calculation of: 

 Incubation time for the certain phase. 
 Nucleation rate and the type of grain geometry. 
 Growth mechanism and rate. 
 Ac3, Ac1, Ms points. 

Usually these calculations are used in combination with thermodynamics theory and 
CALPHAD method [6]. There are several program tools which implements this method 
(MTDATA, ThermoCalc, etc). 

4 MECHANICAL ANALYSIS 
It is very important to analyze the residual stress 

because it is an additional component of loading during the 
exploitation of the part. Moreover, it is important to 
evaluate stresses during the induction heating 
technological process to avoid cracks and large 
deformations. 
The classification of the stresses based on the scale of 
continuity is shown on Figure 3: 
 Stresses of type I vary continuously over large 

distances (σMacro). 
 Type II (intergranular stresses) vary over the grain 

scale (σII). 
 Type III – atomic scale (σIII). 

We concentrate on analysis of type I stresses because their 
importance and direct influence on exploitation part properties. 

On the other hand the classification based on causes of stress is needed for the 
development of the valid mathematical model of stress-strain state. This type of classification 
could be done by the Figure 1. In compliance with it, there are three main sources of the 
residual stresses: 

 Thermal stresses. 
 Misfits in different phases density and their thermal expansion coefficients. 
 Transformation induced plasticity (TRIP). 

All of this sources cause the residual stress. One of the main problems in induction heating 
simulation by the general-purpose FEM programs is adequately calculation of the residual 
stress.  It is necessary to calculate phase transformation phenomenon for TRIP and phase 
transformation stresses analysis. 

 
Figure 3. Stress classification 

912



Victor B. Demidovich, Vedor V. Tchmilenko, Yuri Y. Privalov and Irina I. Rastvorova 

 6 

It is obvious that elastic solution of this problem is being of no favor because all of the 
interesting effects are linked with the plasticity. In case of the plasticity calculation it is 
necessary to determine the yield criterion. It is good idea to use von Mises criterion for the 
steels [7]. Besides that, we need to determine the type of hardening. Kinematic hardening is 
taking place during the cycle loading only. Moreover it is complicated to determine 
phenomenological coefficients for this type of hardening. We use the isotropic hardening rule. 

Thus, we have a mathematical description based on von Mises criterion and isotropic 
hardening rule. For solving this problem it is possible to use J2-plasticity model [8]. This 
algorithm does not require a difference approximation of partial differentials in tangential 
matrix. This circumstance reduces a computational complexity. 

5 CONCLUSIONS 
The effectiveness of induction heat treatment computation is related to the numerical 

methods which are used. In the most practical cases it is impossible to use a “general” method 
for all the phenomenon description. We have shown that it could be combination based on 
FEM,  thermodynamic analysis, etc. It is convenient and appropriate to use individual 
approach for all the physical phenomena in induction heat treatment process. 

 
The publication was carried out in the framework of the state work "Organization of Scientific 
Research" (assignment No.8.6037.2017 / VU Ministry of Education and Science of Russia). 
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Abstract. The numerical simulation of two-dimensional fracture processes of
quasi-brittle materials by means of the Embedded Finite Element Method is dealt
with. The attention is paid to the coupling with the global crack-tracking strategy
often used to ensure the crack path continuity. It has been proposed in the literature
in the form of a heat conduction-like problem. It turns out that the stiffness-like
matrix associated with this formulation is singular and a numerical perturbation
has to be introduced in order to overcome the ill-posedness of the problem. The sen-
sitivity of the solution on this parameter may represent a limitation for the global
tracking approach. In addition, it is found that if the root of each discontinuity
is not updated during an incremental analysis, a loss of continuity of the crack
path may appear when principal stress directions rotate. This contribution aims to
provide a solution to the aforementioned issues. A new interpretation of the math-
ematical problem based upon Navier-Stokes equations is proposed in order to link
the diffusive contribution to a characteristic mesh length. Furthermore, a modified
crack-tracking algorithm, considering the evolution of the root for the identification
of the crack path, is proposed. The numerical assessment of the proposed tracking
strategy is reported by means of benchmark tests at the structural level.

1 INTRODUCTION

In the last decade, the Embedded Finite Element Method (E-FEM) has gained
wide popularity for the description of cracking phenomena [1]. Due to the local
nature of the kinematic enrichment, this approach presents some advantages con-
cerning the computational effort with respect, for example, to the Extended Finite
Element Method (X-FEM) [2]. Indeed the additional degrees of freedom can be
statically condensed, since they are expressed at the element level in terms of crack
opening displacement components [3], thus leaving unchanged the dimension of the
global system of equations. As a counterpart, since no information is available in

1
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the vicinity of cracked elements, the continuity of the crack path is not intrinsically
guaranteed and a loss in objectivity may be encountered in numerical simulations.
For this reason, the E-FEM is usually associated with the adoption of tracking
algorithms leading to C0-continuous crack paths [4, 5]. Different crack-tracking
strategies can be found in the literature. In general, two families may be distin-
guished: local tracking and global tracking algorithms [6].

Local tracking relies on geometry-based or energy-based schemes, which are ap-
plied for each element able to crack. The main difference between the two strategies
stands in the evaluation of the direction of the propagating discontinuity. In case
of a geometrical approach, the crack orientation is given by the assumed failure
criterion, e.g. accordingly to Rankine it is supposed to be perpendicular to the
maximum tensile principal direction [7], whereas in case of an energetic approach,
it is computed from linear-elastic fracture mechanics (LEFM) by minimization of
the mechanical energy. From the knowledge of the root of each discontinuity, i.e.
the material point experiencing failure and not associated to any pre-existing crack
path, it is possible to make the input point of the crack inside an element match the
output point of the crack present in an adjacent element. Local tracking techniques
are able to reproduce continuous crack paths in a robust manner by exploiting the
informations of nearby elements. Nevertheless, their implementation in the case of
multiple crack problems may be cumbersome and this strategy can loose much of
its robustness.

Global tracking has been introduced to overcome the limits of local strategies
when dealing with multi-cracking modelling [3]. The main idea is to trace the
envelopes of the tangent vector field to the discontinuities as the isovalues of the
temperature field of a heat conduction-like problem in the case of steady state con-
ditions and no internal sources. Dirichlet and Neumann boundary conditions must
be prescribed on the respective portions of the boundary, in terms of fixed tem-
perature values and (null) heat flux. Once the assumed failure criterion is fulfilled
for the first time in a certain material point, the latter becomes the root of a new
discontinuity line, which can be traced as the isovalue passing through that point.
Numerical applications can be found in [8]. The main advantage of this approach
is the fact that no information from the neighbourhood of the cracked elements is
required to perform the analysis: indeed, since the isovalues are available at every
point of the domain, only root element coordinates shall be provided in order to
ensure a continuous crack path.

The finite element formulation of the heat conduction-like problem is straightfor-
ward. However, the stiffness-like matrix deduced from the anisotropic conductivity
tensor reveals to be singular and a user-defined perturbation (isotropic algorithmic
conductivity) is introduced in numerical simulations to circumvent this drawback.
The dependence of the solution on this parameter may then represents a limitation
for the application of global tracking, since its value changes for each specific struc-
tural problem. In addition, it is found out that the capability of the thermal-like
isovalues to envelop the vector tangent field is reduced as soon as cracking occurs.

2
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This fact, due to the rotation of the principal stress directions outside the region
crossed by the discontinuity, may lead to a loss of continuity of the crack path and,
in the worst case, to a wrong evaluation of the enriched shape functions whenever
the element domain is not decomposed properly. Such a circumstance becomes in-
creasingly critical as the evolution of the principal stress field is important.

The objective of this paper is to provide an alternative formulation of the global
crack-tracking strategy able to improve the performance of this technique with re-
spect to the aforementioned issues. This paper is organized as follows. In Section
2 a new physical interpretation of the problem is given in terms of Navier-Stokes
equations, where the concept of numerical diffusion is introduced in order provide a
stable and consistent solution of the initially ill-posed descrete problem. A revised
algorithm for ensuring continuous crack paths in case of step-by-step analysis is
presented in Section 3, considering the evolution of the root for the choice of the
isovalue enveloping the propagating discontinuity. Section 4 investigates the appli-
cation of the proposed model to the E-FEM by means of a structural case study.
Section 5 then concludes with a critical comparison between the proposed approach
and the original formulation.

2 GLOBAL EQUATIONS

The problem of tracing the envelopes of a vector field T(x) in a domain Ω is
dealt with. For the sake of simplicity, let us focus upon the bi-dimensional case.
If we indicate with N(x) the normal vector field to T(x), we can consider a scalar
function θ(x) whose gradient is parallel to N(x), i.e. such that:

N(x) =
∇θ(x)

‖∇θ(x)‖
, x ∈ Ω (1)

Hence, the following partial differential equation will hold in the domain Ω:

T(x) · ∇θ(x) = 0 (2)

Since the level contours of the function θ(x) are orthogonal to the gradient, the
envelope of the vector field T(x) passing through a generic point P can be defined
as:

ΓP = {x ∈ Ω|θ(x) = θP} (3)

The envelopes of the vector field T thus provide C0-continuous curves, which are
well-suited to model crack-paths within the framework of the E-FEM. From now
on the dependence of all the quantities on x will be omitted.

2.1 Heat conduction-like problem

Equation (2) can be manipulated by multiplying it by the vector field T. After
some analytical computations and using the same notations as in [4], the previ-
ous problem can be reformulated as the following boundary value problem for the
unknown function θ:

3
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∇ · q = 0 ∀x ∈ Ω (4a)

q = −K · ∇θ ∀x ∈ Ω (4b)

q · ν = 0 ∀x ∈ ∂qΩ (4c)

θ = θ∗ ∀x ∈ ∂θΩ (4d)

with:

K := T⊗T (5)

where ⊗ denotes the tensor product. The boundary value problem (4) defines
a heat conduction-like problem in the domain Ω, where θ is the temperature field
and where q is the conduction flux vector. Boundary conditions are prescribed on
the boundary ∂Ω = ∂qΩ ∪ ∂θΩ such that ∂qΩ ∩ ∂θΩ = ∅. More precisely, equation
(4c) expresses the Neumann condition of a null heat flux on the set ∂qΩ, whereas
equation (4d) represents the Dirichlet condition of fixed temperature values on the
boundary ∂θΩ.
From expression (5), it turns out that the conductivity tensor K is singular. In
order to avoid the ill-posedness of the conduction problem, the following isotropic
perturbation is introduced [4, 3]:

[K]ε =

[
T 2
x TxTy

TxTy T 2
y

]
+ ε

[
1 0
0 1

]
(6)

where Tx and Ty are the Cartesian components of the vector field T and where
ε is a user-defined numerical parameter. No rigorous criterion is available for its
choice. However, it should be as small as possible in order to fulfil equation (4a), but
sufficiently large to break down the singularity of K. The dependence of the results
on this numerical parameter may then limit the applicability of global tracking,
eventually leading to numerical instability issues.

2.2 Heat convection-diffusion-like problem

With the aim of overcoming the aforementioned limitation, a new interpretation
of the original problem defined by equation (2) is here proposed. To start with, let us
consider a convection-diffusion-like problem, which consists in finding a temperature
field θ such that:




T · ∇θ︸ ︷︷ ︸
Convective term

− div(α∇θ)︸ ︷︷ ︸
Diffusive term

= 0 ∀x ∈ Ω (7a)

J = −α∇T · ν = 0 ∀x ∈ ∂JΩ (7b)

θ = θ∗ ∀x ∈ ∂θΩ (7c)

where α is a diffusion coefficient and ν the unit outward normal vector to the
boundary. Problem (7) can be derived from Navier-Stokes equations in case of
incompressible fluids. In this context, the vector field T takes the physical meaning
of a fluid velocity. Therefore equation (7a) describes a heat transfer process where

4
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two contributions can be distinguished: the first one of convective nature, the second
one of diffusive nature. Boundary condition (7b) expresses the Neumann condition
on the diffusive flux J , while equation (7c) assumes the same meaning as in problem
(4). However, since T is now a velocity field, Dirichlet boundary conditions should
be prescribed only on the portions of the boundary where the former is directed
inward the domain Ω. In order to better understand the preceding formulation, let
us focus upon the one-dimensional case. Assuming a constant diffusion coefficient
and considering, on the one hand, a first order upwind scheme for the convective
term and, on the other hand, a second order centered scheme for the diffusive term,
equation 7a is discretized as:

T
θi − θi−1

∆x
− α

θi+1 − 2θi + θi−1

∆x2
= 0 (8)

where ∆x is the one-dimensional spatial discretization step. If we consider now
a centered discretization of the convective term, it turns out that the difference
between the upwind discretization and the aforementioned one is given by:

[
T
∂θ

∂x

]

Upwind

−
[
T
∂θ

∂x

]

Centered

= T
θi − θi−1

∆x
− T

θi+1 − θi−1

2∆x

= −T∆x

2

θi+1 − 2θi + θi−1

∆x2
(9)

=

[
T∆x

2

∂2θ

∂x2

]

Centered

Equation (9) shows that the discretized expression of the convective term by
means of the first order upwind scheme is equal to the second order centered scheme
discretization of the same term plus an additional diffusive contribution. By com-
paring equations (8) and (9), we notice that a numerical diffusive term comes out
naturally and it is characterized by a diffusion coefficient T∆x

2
which is function of

a mesh characteristic length - ∆x in the case of one-dimensional problems. This
term is similar to the numerical conductivity coefficient ε introduced in equation (6)
but it is no more user-defined and it tends towards zero as ∆x → 0, which means
that the centered and the upwind discretization schemes are consistent. This obser-
vation constitutes the fundamentals of upwind discretization methods, classically
used in fluid mechanics. Higher dimensional extensions of the concept of numerical
diffusion have been well-established in fluid mechanics in the case of finite element
discretizations. More precisely, two formulations are considered in this study. Given
the vector field T(x), the following bi-dimensional extension of the concept of nu-
merical diffusion has been proposed (Streamline Upwind method - SU):




T · ∇θ − div

(
hT‖T‖

2
∇θ

)
= 0 ∀x ∈ Ω (10a)

J =

(
−hT‖T‖

2
· ∇θ

)
· ν = 0 ∀x ∈ ∂JΩ (10b)

θ = θ∗ ∀x ∈ ∂θΩ (10c)
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where hT is a mesh characteristic length. Problem (10) describes the numerical
diffusion as an isotropic process and this may lead to imprecise results if coarse
meshes are adopted. As a matter of fact, since in this case a large amount of
diffusion is introduced in all directions, the isovalues of the temperature-like field do
not longer envelop the tangent vector field. Another formulation, which considers an
anisotropic numerical diffusion only in the direction of the vector field T (Streamline
Upwind Petrov Galerkin method - SUPG) has also been proposed:





T · ∇θ − div

(
hT‖T‖

2

T⊗T

‖T‖2
.∇θ

)
= 0 ∀x ∈ Ω (11a)

J =

(
−hT‖T‖

2

T⊗T

‖T‖2
· ∇θ

)
· ν = 0 ∀x ∈ ∂JΩ (11b)

θ = θ∗ ∀x ∈ ∂θΩ (11c)

It can be demonstrated that the tensor T⊗T
‖T‖2 has only one non-zero eigenvalue

associated to T as eigenvector. The product T⊗T
‖T‖2 .∇θ then retains only the part of

∇θ parallel to T.

3 CRACK TRACKING ALGORITHM

In Section 2.2 the problem of tracing the envelopes of a vector field T(x, t) has
been formulated in terms of Navier-Stokes equations for incompressible fluids. As
for the heat-conduction-like formulation, the scalar function θ(x, t) represents the
temperature field whose isovalues describe all the possible discontinuity lines in the
domain Ω.

The choice of the right isovalue stands on the stress distribution at time t. In
particular, global tracking associates to each discontinuity line Γi a root ri, i.e. the
material point (or the element) at time t0 not belonging to any crack path and
satisfying for the first time the activation condition [4, 3]. The discontinuity is thus
represented as follows:

{
Γi(t) = {x ∈ Ω|θ(x, t) = θ(xri , t)} (12a)

xri ∈ Ω|
∥∥σ(xri , t0)

∥∥ ≥ ft (12b)

where the activation condition is expressed in terms of a certain tensorial norm
‖.‖ and the material strength ft. The reference isovalue is considered to pass through
the centroid of the root element of the discontinuity [4, 3].

The previous definition implicitly assumes that the portion of isovalue associated
to the active part of the crack, i.e. with points characterized by �u�Γi

�= 0, does not
change any more. In reality, due to the approximative nature of the finite element
solution, this is not generally guaranteed: indeed, since principal stress directions
are free to rotate where the material is linear elastic, the isovalues of the thermal field
may evolve also inside the elements already exhibiting a crack. As a consequence,
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the nodes of the element domain Ωe traversed by the crack may be incorrectly sep-
arated, with a loss of continuity of the crack-path and stress-locking effects taking
place. A possible solution would be to freeze the nodal temperature of the cracked
element by imposing additional Dirichlet boundary conditions [9]. However, the
initial boundary value problem (4) or (10) would be contradicted with respect to
the initial boundary conditions and local techniques should be adopted in order to
perform the analysis at each time step.

This drawback can be found if the root ri is not updated for t ≥ t0. Thus,
the tracking procedure should explicitly take into account both the active part Γia

and the potential part Γip of each discontinuity Γi and, at the same time, impose
the match between the root ri, used to trace the prosecution of the crack, and
the crack-tip. In this circumstances, the reference point for tracing the isovalue
defining Γip does not coincide with the root element centroid but instead with a
point belonging to one of the root element edges, i.e. the crack-tip. If we consider
a time discretization {t0, ..., tk, ..., tn}, the total discontinuity Γi at time tn can then
be represented as:




Γi = Γia ∪ Γip =
n−1⋃
k=0

Γ̃i
(k) ∪ Γ̃i

(n)
(13a)

Γ̃i
(k)

=
{
x ∈ Ω|θ(x, tk) = θ(x(k)

ri
, tk), �u(x, tk)� �= 0

}
(13b)

Γ̃i
(n)

=
{
x ∈ Ω|θ(x, tn) = θ(x(n)

ri
, tn), �u(x, tn)� = 0

}
(13c)

x(k)
ri

∈ Ω|
∥∥σ(x(k)

ri
, tk)

∥∥ ≥ ft (13d)

From the previous definition, the potential part of the discontinuity Γip has
been defined as the portion of the isovalue triggered off the root ri at time tn
and characterized by linear elastic behavior. Consequently, only the portion of
the isovalue that does not cross the element associated to ri should be taken into
account. Since root ri divides the potential line into two parts, in order to avoid
ambiguity, it seems convenient to orient the curve by setting the origin at the root
itself and assume as positive the direction of the propagating discontinuity. This
can be done by means of a curvilinear abscissa si, whose origin is set to coincide
with root ri (see Fig. 1).

Thus, the prosecution of the crack path Γi at time tn will be associated to the
positive values of si, with origin at the root ri. This procedure can be translated
by the following steps:

1. Make the input point IΓi
match the crack-tip.

2. Trace of the isovalue passing trough IΓi
.

3. Create the curvilinear abscissa si with origin in IΓi
and with positive values

in the sense of the propagating discontinuity.
4. Choose the potential continuation of discontinuity Γi as the part of isovalue

associated to si > 0.

The algorithms derived by problem (12) and problem (13) are now compared.
The geometry is depicted in Fig. 2 and consists in a concrete specimen under
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Figure 1: Crack path tracking in a bi-dimensional domain by means of the variable-
root algorithm.

tension, characterized by two notches with an offset in the direction of the load. An
imposed displacement δ is applied horizontally on the right side of the structure,
while the left side is fixed in this direction. A hinged support is introduced at the
upper left corner in order to forbid any rigid body motion.

60 60 δ

δ

60

10

10

2

E=24 GPa

ν=0.2

Gf=50 N/m

ft=2.4 MPa

thickness=10 mm

Figure 2: Tension test on double-edge notched specimen - dimensions in mm.

In Fig. 3a the case of fixed roots r1 and r2 for the crack paths Γ1 and Γ2 is shown.
It appears that the evolution of the reference isovalues due to the rotation of the
principal stress directions inside linear elastic elements may lead to an imprecise
evaluation of the propagating discontinuities. In particular, even if the principal
stress directions are freezed inside cracked elements, the isovalues may no longer be
able to envelop the tangents to the active part of the discontinuities. A change in
the decomposition mode of the elemental domain Ωe may then occur whenever the
nodes shared by adjacent elements do not belong to the same sub-domain Ω+

e or Ω−
e .

If the root of each discontinuity is updated, it is possible to separate its active part
from its potential prosecution. This strategy allows to enforce the continuity of the
crack path even if the isovalue distribution evolves during the analysis. As depicted
in Fig. 3b, the requirement of a domain of unique decomposition is attained for all
the cracked elements.

4 STRUCTURAL CASE STUDY

The first example is the same as the double-edge notched specimen under tension
that has been preliminarily studied in Section 3. The formation of two principal
crack paths has been observed experimentally. A correct evaluation of the propagat-
ing discontinuities is essential in order to properly simulate the structural response.
Firstly, the fixed-root algorithm deriving from equations (12) is applied in the case

8
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(a) Fixed-root algorithm (b) Variable-root algorithm

Figure 3: Crack propagation scheme.

of the formulation presented above. Three discretizations counting 496, 1691 and
6762 3-node triangular elements respectively have been considered. The correspond-
ing load-displacement curves are plotted in Fig. 4a. The localization zones at the
end of each simulation are depicted in Fig. 4b.

(a) Load-displacement curves (b) Localization zones

Figure 4: Results of the fixed-root global tracking algorithm for the Shi’s test.

It can be noticed that the crack paths start developing correctly from the notches,
but then, as the distance from the respective root element increases, a loss of con-
tinuity occurs in all the three simulations. As it can be observed in Fig. 4b, the
localizations zones are not always defined by simple bands of elements, which means
that stress-locking and spurious cracking take place. Consequently the knowledge
of the crack-tip position is lost and the constitutive response is not well evaluated.
In addition, numerical issues are encountered already at early stages in particular
when fine meshes are adopted. These drawbacks may constitute a limitation to the
applicability of the global tracking scheme.
If the variable-root algorithm derived from equations (13) is adopted, the position
of the crack-tip is always available during the analysis. This information allows to
impose the continuity of each crack path by separating it into an active part and
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a potential part without the use of any further strategy. As shown in Fig. 5a,
the numerical simulations fit pretty well with the experimental result in terms of
load-displacement curves, denoting a good mesh-size independence. The localiza-
tion zones, depicted in Fig. 4b, consist in a fully developed crack-band initiating
at the upper notch and a partially developed crack-band starting from the lower
notch.

(a) Load-displacement curves (b) Localization zones

Figure 5: Results of the variable-root global tracking algorithm for the Shi’s test.

The mathematical formulation is now discussed. A comparison between the heat
conduction-like problem and the heat convection-diffusion-like problem is drawn in
case of the variable-root global tracking. The load-displacement curves and the
localizations zones are shown in Fig. 6 and 7 for the intermediate mesh contain-
ing 1691 elements. The global structural response shows minor differences between
the two simulations, in particular it seems that the former approach allows a bet-
ter energy dissipation in the final stage of the analysis. By observing the crack
trajectories, it appears that an asymmetrical propagation takes place for the heat-
convection-diffusion problem, whereas two almost identical crack paths are found
for the former problem, which is coherent with the fact that the stress distribution
is symmetrical with respect to the vertical axis. This discrepancy may be due to
the different physical meaning of the mathematical formulation. In particular, for
the heat-conduction-diffusion problem the tangent vector field represents a fluid
velocity, deduced from the principal stress directions. Therefore, the solution is
affected by the sense given to the velocity field. Such operation may lead to less ac-
curate results with respect to the heat-conduction formulation if not properly done,
especially in presence of singular points or high gradients in the stress distribution.

5 CONCLUSION

In this paper a modified global crack-tracking strategy has been applied to the
E-FEM simulation of quasi-brittle materials. The following conclusions can be
drawn:

• Independently from the mathematical formulation of the thermal-like prob-
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Figure 6: Load-displacement curve comparison of the heat-conduction and heat-
convection-diffusion formulations for the Shi’s test.

Figure 7: Crack path comparison of the heat-conduction and heat-convection-
diffusion formulations for the Shi’s test.

lem, a fixed-root scheme does not prevent the loss of continuity of the crack
path due to the rotation of the isovalues. As a consequence, spurious cracking
appears and both stress-locking effects and numerical instability issues occur;

• The variable-root scheme is able to provide a C0-continuous crack path at no
additional computational cost and without integrating any further technique;

• A good agreement with the experiments is found when coupling the variable-
root algorithm to the heat-convection-diffusion formulation, although in the
case of coarse meshes its precision is reduced with respect to the heat conduction-
like approach. However, from the authors’ experience, good results have been
obtained for all the spatial discretizations adopted in the analysis;

• Attention must be paid to the sense of the tangent vector field, especially in
the case of strong gradients of the stress distribution. This consideration is
important since Dirichlet boundary conditions can be applied only on the por-
tions of the boundary where the velocity field is directed inward the domain;

• The heat-convection-diffusion formulation provides better stability perfor-
mances with respect to the heat-conduction formulation. The latter is strongly
dependent on the numerical conductivity parameter, which may be not suffi-
cient to guarantee stable solutions and therefore to perform the global tracking
procedure.

The applicability of the variable-root heat-convection-diffusion tracking strat-
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egy to three-dimensional problems has not been investigated yet, in particular the
variable-root algorithm could be object of further studies. The extension of the
proposed approach to branching scenarios should be also evaluated, such as the
possibility to handle intersecting cracks.

6 ACKNOWLEDGEMENTS

The authors wish to express their most grateful thanks to CEA/DEN for its
financial support. The work carried out under the SINAPS@ project has benefited
from French funding managed by the National Research Agency under the program
Future Investments (SINAPS@ reference No. ANR-11-RSNR-0022). This work has
also been supported by the SEISM Institute (http://www.institut-seism.fr).

REFERENCES

[1] J. Oliver, M. Cervera, O. Manzoli, Strong discontinuities and continuum plastic-
ity models: the strong discontinuity approach, International journal of plasticity
15 (3) (1999) 319–351.
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Abstract. With growing capabilities of computers use of multi-scale methods for detailed
analysis of response with respect to material and geometric nonlinearities is becoming
more relevant. In this paper focus is on MIEL (mesh-in-element) multi-scale method and
its implementation with AceGen and AceFEM based on analytical sensitivity analysis.
Such implementation enables efficient multi-scale modelling, consistency and quadratic
convergence also for two-level path following methods for the solution of path dependent
problems.

1 INTRODUCTION

Implementation of multi-scale methods is possible in various ways. Here, the numerical
scheme for implementation of MIEL multi-scale method based on sensitivity analysis is
presented. Implementation is done with the Mathematica packages AceGen and AceFEM
[1]. Programs enable analytical sensitivity analysis of first and second order [2], that can
be used for efficient implementation of multi-scale finite element methods, eg. FE2 or
MIEL.

2 AUTOMATIC DIFFERENTIATION BASED (ADB) NOTATION

AceGen is advanced automatic code generator, where automatic differentiation tech-
nique, automatic code optimization and generation are combined with computer algebra
systemMathematica[3]. Size of code is reduced through control of expression swell[4]. The
AceFEM package is a general finite element environment designed to solve multi-physics
and multi-field problems.
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Automation of primal and sensitivity analysis is done with AceGen. The automatic
differentiation technique (AD) can be used for the evaluation of the exact derivatives of
any arbitrary complex function via chain rule and represents an alternative solution to
the numerical differentiation and symbolic differentiation. The result of AD procedure is

called ”computational derivative” and is written as δ̂f(a)

δ̂a
. The AD operator δ̂f(a)

δ̂a
represents

partial derivative of a function f(a) with respect to variables a. If, for example, alternative
or additional dependencies for a set of intermediate variables b have to be considered for
differentiation, then the AD exception is indicated by the following formalism

δ̂f(a,b)

δ̂a

∣∣∣∣∣Db
Da

=M

, (1)

which indicates that during the AD procedure, the total derivatives of variables b with
respect to variables a are set to be equal to matrix M. The automatic differentiation
exceptions are the basis for the ADB formulation of computational problem. The ADB
notation can be directly translated to the AceGen input and is part of numerically efficient
code automation. Details of the method and of the corresponding software AceGen can
be found in [4], [2] and [5].

The automation of multi-scale analysis requires the automation of primal and sensi-
tivity analysis. In primal analysis the response of the system is evaluated, whereas in
sensitivity analysis the derivatives of the response, e.g. displacements, strains, stresses
or work, with respect to arbitrary design parameter φi are sought. The primal problem
is solved by the standard Newton-Raphson iterative procedure (see e.g. [2]). For the
automation of the multi-scale methods the sensitivity analysis with respect to prescribed
essential boundary conditions is needed.

3 MULTI-SCALE METHODS

Multi-scale methods are nowadays widespread in computational mechanics [6, 7, 8].
They usually originate from the demand to model heterogeneous materials, like fiber
reinforced composites, particle reinforced adhesives, concrete and even metal. FE2 is a
standard two-level finite element homogenization approach [9], that is appropriate for the
problems where scales are separated far enough and are only weakly coupled. FE2 method
is already implemented in AceFEM using sensitivity analysis, for details reader is referred
to [10, 11]. In some cases for example when difference between two scales is finite, or when
in the region of high gradients, the FE2 multi-scale approach fails, thus we need to use
some sort of domain decomposition method. One possibility is the mesh-in-element or
MIEL scheme described e.g. by Markovič and Ibrahimbegović in [12].

3.1 MIEL method

MIEL method is variant of domain decomposition methods. Here its implementation
based on sensitivity analysis is presented. The finite element models at different scales
communicate between each other through degrees of freedom of the finite element at

2
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Figure 1: MIEL, problem, micro and macro level

the macro-scale. The residual and tangent matrix are for each macro element obtained
directly from the micro-scale problem. Each macro element thus represents one micro
problem, see Fig. 1. Macro element performs only proper transfer of components of the
macro element residual vector and tangent matrix from micro scale to macro scale finite
element assembly procedure. At the macro level residual and tangent are assembled from
individual macro elements and macro response is calculated. Macro tangent matrix is
typically evaluated using the Schur complement of the global micro matrix, which is
numerical expensive operation. Here it is calculated through sensitivity analysis with
respect to prescribed essential boundary conditions. Implementation in AceFEM enables
this approach that is numerical more efficient for dense micro finite element meshes.
Correctly done sensitivity analysis at micro level leads to algorithmically consistent macro
tangent matrix. Quadratic convergence of problem is with that ensured also for examples,
that are dependent on load-path.

Let pMe be a vector of unknowns in the nodes of the macro element, pme a vector of
unknowns in the nodes of the characteristic micro problem element and W strain energy
function. The outer shape of the micro problem is the same as the shape of the corre-
sponding macro element. The prescribed essential boundary conditions (displacements)
are identical to the displacements at the boundary of the corresponding macro element.
The integration point contribution (g-th integration point in the e-th element of the micro
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Figure 2: Characteristic velocity field for MIEL

mesh) to the macro residual and macro tangent matrix is then

RMg =
∂W (pme(pMe))

∂pMe

=
∂W

∂pme

Dpme

DpMe

(2)

KMg =
∂RMg

∂pMe

=
∂2W

∂pme
2

Dpme

DpMe

+
∂W

∂pme

D2pme

Dp2
Me

. (3)

The implicit dependencies Dpme

DpM e
and D2pme

Dp2
M e

are obtained by the first and second order

sensitivity analysis. Thus, the sensitivity analysis based automation of the MIEL scheme
requires the second order sensitivity analysis for a set of sensitivity parameters pMe. The
ADB form of (2) and (3) then leads to

RMg =
δ̂W

δ̂pMe

∣∣∣∣∣Dpme

DpM e
=DpM e

pme

(4)

KMg =
δ̂RMg

δ̂pMe

∣∣∣∣∣Dpme

DpM e
=DpM e

pme,
D(DpM e

pm)

DpM e
=DpM epM e

pme

(5)

where data structures DpM e
pme =

Dpme

DpM e
and DpM epM e

pme =
D2pme

Dp2
M e

are the results of the

first and second order sensitivity analysis.
For the complete formulation of the prescribed boundary condition sensitivity problem,

we need the first and second order prescribed boundary condition velocity fields Dφi
p̄e

and Dφiφj
p̄e for details see e.g.[2]. Let p̄m be a vector of unknowns at the boundary of

micro problems with prescribed essential boundary conditions, thus p̄m = p̄m(pMe). The
set of sensitivity parameters of the MIEL problem is φ = pMe. The components of Dφi

p̄e

are obtained by the differentiation of p̄m(pMe) with respect to pMe. Let us assume the
standard interpolation of the unknown field u on the boundary of the macro element

u =
∑

Ni(Ξ) ui, (6)
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where Ni(Ξ) are the shape functions and ui the nodal unknowns and
∂u
∂ui

= Ni(Ξ). Thus,
the components of the first order boundary condition velocity field Dφi

p̄e are the values
of the macro element shape functions at the position of the boundary nodes of the micro
mesh, see Fig. 2. For boundary condition in form of linear combination (6), the second
order velocity field is zero Dφiφj

p̄e = 0.

4 EFFICIENCY IMPROVEMENT

Numerical efficiency of multi-scale methods can be improved in different ways. First
improvement was done at individual macro problem, with replacing calculation of Schur
complement with sensitivity analysis based calculation of macro tangent matrix. For
densely meshed micro-structure calculation of the Schur complement inflicts high memory
allocation and is time consuming, which is not the case for the sensitivity analysis based
implementation. In case of MIEL method this is due to the fact that the number of
sensitivity parameters remains the same, regardless of the density of the micro mesh,
whereas the size of the Schur complement grows with the number of the nodes on the
boundary of the micro problem.

Further optimisation can be done with use of unified sensitivity based approach to
multi-scale modelling, that is enabled by automatic-differentiation-based (ADB) formula-
tion for an arbitrary nonlinear, time dependent coupled problem (e.g. general finite strain
plasticity). Different multi-scale methods FE2, MIEL and also single scale schemes can
be used together in one model. With that optimal domain discretization is possible. For
example, MIEL that is numerically most demanding can be used only where it is needed,
other ways FE2 or single-scale method can be used.

In AceFEM solving of nonlinear problems is done implicitly with a Newton-Raphson
type iterative solution procedure. Since we have two scales, we have in general a path
following procedure at both scales, resulting in two-level path following procedure. Tra-
ditionally, each step at macro level is followed by only one step at micro level. Sensitivity
analysis based multi-scale analysis allows extension to more general case, where each
macro step can be followed by an arbitrary number of micro substeps.

Implementation of the presented multi-scale computational approach in AceFEM is
fully parallelized for multi-core processors. Micro problems are distributed on kernels by
evaluating each individual micro problem always at the same kernel. With parallelized
computation, computational time for complex problems can be significantly reduced. The
setup is also appropriate for the implementation on clusters.

5 NUMERICAL EXAMPLE

Multi-scale MIEL method was tested on Cook membrane benchmark problem, to verify
consistency and efficiency of micro-macro coupling. The homogeneous micro structure is
chosen intentionally for the benchmark purposes. Effect of macro mesh density and use
of different finite elements were investigated. With AceGen, the codes of analytical first
and second order sensitivity analysis are generated automatically. Examples were calcu-
lated with AceFEM, where whole MIEL scheme is implemented including communication
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between macro and micro scale. Essential boundary condition of macro mesh are sent
to micro problem and interpolated over the edge. Important is that essential boundary
condition velocity fields are set correctly.

5.1 Description of example

In Tab. 1 characteristics of problem on macro and micro level are described. Geometry,
constraints and load are defined at macro level, whereas material properties are defined
at micro level. Displacements are fixed on one side and on the other distributed load in
vertical direction is added. Division of macro mesh had been variated, while division on
micro level was the same in all computations. For mesh at macro and micro level two-
dimensional quadrilateral elements with 4 nodes Q1 and with 8 nodes Q2S were used.
Converged mesh density on micro level was used, so that results for different macro mesh
densities can be compared.

Table 1: Macro and micro problem for MIEL

macro problem micro problem
Geometry Material
h1 = 44 mm; h2 = 16 mm; E = 1 N/mm2

l = 48 mm; t = 1 mm ν = 0
Constraints: X = 0: u = v = 0 *micro mesh of macro element marked
Load: q = 0.1 N/mm2 with m
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5.2 Consistency of micro-macro coupling

Consistent coupling between micro and macro scale was verified with comparison of
upper right point P displacement on the Cook membrane test. Vertical displacement was
compared for different macro mesh densities. For single scale analysis results for linear and
quadratic elements are shown. For MIEL three combinations were investigated. MIEL
Q1-Q1: Q1 element at macro and Q1 element at micro level, MIEL Q2S-Q1: Q2S element
at macro and Q1 element at micro level and MIEL Q2S-Q2S: Q2S element at macro and
Q2S element at micro level. Convergence of result is faster for MIEL, than for single-
scale analysis, comparison is shown in Fig. 3. Overall convergence of Q2S elements with
quadratic interpolation is faster than with Q1. Results show that for meshing at micro
level use of Q2S elements is not preferable, because small improvement of convergence
does not compensate for increased computational time. In Fig. 4 results for strain Exx of
example MIEL Q2S-Q1 are shown.

Figure 3: Convergence of result for vertical displacement

Figure 4: Results for strains Exx
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6 CONCLUSIONS

In this work, basic principles of multi-scale MIEL method and possibilities for nu-
merical improvement were described. In a conventional way of computing macroscopic
tangent matrix a Schur complement is needed. As an alternative, the boundary condi-
tion sensitivity analysis was used to obtain macroscopic tangent matrix, for which second
order sensitivity is needed. Numerical examples were calculated with AceFEM. Consis-
tency of micro-macro coupling was shown on a Cook membrane example. Use of finite
elements with quadratic interpolation is recommended for macro elements, whereas for
micro mesh, elements with linear interpolation are preferred. Codes of the finite element
for analytical first and second order sensitivity analysis are generated automatically with
AceGen. For densely meshed micro-structures, the sensitivity analysis based calculation
is numerically more efficient than Schur complement. This is due to the fact that the
size of the Schur complement grows with the number of the nodes on the boundary of the
micro problem, whereas the number of sensitivity parameters remains the same regardless
of the density of the micro mesh. Traditionally, in multi-scale methods solved with two-
level path-following procedure one macro time step is followed by one micro time step.
Sensitivity analysis based multi-scale analysis allows that each macro step can be followed
by an arbitrary number of micro substeps.
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nian Research Agency within the PhD Grant Agreement (annex No: 630-34/2015-7).
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Abstract. In this manuscript, accelerated, sparse and scalable eigenstrain-based reduced order

homogenization models have been developed for computationally efficient multiscale analysis

of polycrystalline materials. The proposed model is based on the eigenstrain based reduced

order homogenization (EHM) approach, which takes the concept of transformation field theory

that pre-computes certain microscale information and considers piece-wise constant inelastic

response within partitions (e.g., grains) of the microstructure for model order reduction.The

acceleration is achieved by introducing sparsity into the linearized reduced order system through

selectively considering the interactions between grains based on the idea of grain clustering.

The proposed approach results in a hierarchy of reduced models that recovers original EHM,

when full range of interactions are considered, and degrades to the Taylor model, when all grain

interactions are neglected. The resulting sparse system is solved efficiently using both direct and

iterative sparse solvers, both of which show significant efficiency improvements compared to

the full EHM. A layer-by-layer neighbor grain clustering scheme is proposed and implemented

to define ranges of grain interactions. Performance of the proposed approach is evaluated by

comparison with the original full EHM and crystal plasticity finite element (CPFE) simulations.

1 INTRODUCTION

Concurrent multiscale modeling for polycrystalline materials that couples the mechanical be-

havior at the grain scale to structural scale poses significant challenges. First is the tremendous

computational costs associated with evaluating complex polycrystalline morphologies, espe-

cially in the context of a multiscale analysis. Second is the development of constitutive models

1
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that accurately capture the physics at the material microstructures. This manuscript addresses

the former challenge.

CPFE is a powerful tool to solve various crystal plasticity problems (e.g., see Zhang and Oskay

[14]). However, high computational cost of CPFE simulations on a polycrystalline representative

volume element (RVE) makes its use in concurrent multiscale modeling frameworks (e.g.,

computational homogenization [6]) for structural scale analysis impractical. Reduced order

representation of the microstructural behavior is therefore essential for structural scale analysis

that takes into account the grain level behavior.

Early attempts for reduced order modeling of polycrystal plasticity are based on the iso-strain

or iso-stress assumption[10, 11], which either fails compatibility or equilibrium. To overcome

these drawbacks, grain-cluster [2], VPSC [5] and FFT [4] method have been developed and

widely used. Eigendeformation-based reduced order homogenization (EHM) has been recently

extended to polycrystal plasticity by the authors [13]. EHM is based on the transformation

field theory [1] and operates in the context of computational homogenization. EHM pre-

computes certain microstructure information (i.e., concentration tensors, interaction tensors)

and approximates the microscale problem using a much smaller basis by prescribing spatial

variation of inelastic response fields over the microstructure.

This manuscript extends the original EHM to an accelerated, sparse and scalable formulation

for computationally efficient multiscale analysis of polycrystalline materials. Specifically, the

grain-cluster concept is used to identify a cluster of neighboring grains for each grain, between

which the interactions (i.e., short-range interactions) are considered, while interactions between

grains far away from each other (i.e., long-range interactions) are neglected. Computationally,

this strategy introduces sparsity into the linearized reduced order system, facilitating the use of

sparse solvers. We thoroughly assessed the performance of the sparse EHM model for a range

of microstructure sizes using direct and iterative sparse solvers.

2 EHM for polycrystal plasticity

EHM starts from a two-scale analysis of the governing equation, resulting in the classical

form of coupled nonlinear microscale and the homogenized macroscale problem. Model order

reduction is achieved by first expressing the microscale component of the displacement field in

terms of “influence functions”, which define its variation over the microstructure. The influence

functions are numerical Green’s functions computed by solving linear-elastic problems defined

over the RVE prior to macroscale analysis. Next, the inelastic strain field within a microstructure

are approximated by a coarse discretization. Similar to finite elements, the discretization (i.e.,

each coefficient) is associated with a subdomain (part) of the microstructure domain. Employing

the microscale displacement discretization and the eigenstrain approximation, the reduced order

microscale problem is obtained as in Box 1 (see Ref. [13] for details).

2.1 Computational Implementation Overview

The reduced order microscale system defined in Box 1 serves as the macroscale constitutive

relationship and has been implemented as a User supplied MATerial (UMAT) subroutine within

the finite element solver Abaqus.The constitutive equation, along with, the evolution equations for

2
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Given: coefficient tensors M(β), P(αβ), A(β), part-wise parameters ns(α), ms(α), g
s(α)
sa , γ̇

s(α)

0
,

h
(α)

0
, g

s(α)

s0
, γ̇

(α)

s0
, volume fraction c

(β), macroscale strain ε̄kl and its increment ∆ε̄kl
Find: macroscale stress σ̄kl
• Constitutive equation:

M
(β)

i jkl
σ̇

(α)

kl
(x, t)−

n
∑

α=1

[

P
(αβ)

i jkl
−δ(αβ)

Ii jkl
]

µ̇
(α)

kl
(x, t)= A

(β)

i jkl
˙̄εkl (x, t)

σ̄i j =

n
∑

β=1

c
(β)σ

(β)

i j

• Kinematics:

µ̇
(α)

i j
(x, t) =

N
∑

s=1

γ̇s(α) (x, t) Z
s(α)

i j

• Flow rule:

γ̇s(α) (x, t) = γ̇0

( ��τs(α) (x, t)��
gs(α) (x, t)

)1/m

sgn
(

τs(α) (x, t)
)

• Hardening rule:

ġ
s(α) (x, t) = h0

(

g
s(α)
sa − gs(α) (x, t)

g
s(α)
sa − g

s(α)

0

) N
∑

s=1

|γ̇s(α) (x, t) |

• Schmid’s law:

τs(α) (x, t) = σ (α) (x, t) : Zs(α) Zs(α)
= ns(α) ⊗ ms(α)

Box 1: Reduced order microscale problem.

slip and hardening constitutes a nonlinear system, evaluated using the N-R method. Evaluating

the system with the part-average stresses, σσσ(α), as unknown, the system Jacobian is:

J =



∂φ (1)

∂σ (1)

∂φ (1)

∂σ (2) . . .
∂φ (1)

∂σ (ᾱ) . . .
∂φ (1)

∂σ (β̄)
. . .

∂φ (1)

∂σ(n)

∂φ (2)

∂σ (1)

∂φ (2)

∂σ (2) . . .
∂φ (2)

∂σ (ᾱ) . . .
∂φ (2)

∂σ (β̄)
. . .

∂φ (2)

∂σ(n)

...
...

. . .
...

. . .
...

. . .
...

∂φ (ᾱ)

∂σ (1)

∂φ (ᾱ)

∂σ (2) . . .
∂φ (ᾱ)

∂σ (ᾱ) . . .
∂φ (ᾱ)

∂σ (β̄)
. . .

∂φ (ᾱ)

∂σ(n)

...
...

. . .
...

. . .
...

. . .
...

∂φ (β̄)

∂σ (1)

∂φ (β̄)

∂σ (2) . . .
∂φ (β̄)

∂σ (ᾱ) . . .
∂φ (β̄)

∂σ (β̄)
. . .

∂φ (β̄)

∂σ(n)

...
...

. . .
...

. . .
...

. . .
...

∂φ (n)

∂σ (1)

∂φ (n)

∂σ (2) . . .
∂φ (n)

∂σ (ᾱ) . . .
∂φ(n)

∂σ (β̄)
. . .

∂φ (n)

∂σ(n)



(1)

where each component is a 6 × 6 block expressed as:

(

∂φ(β)

∂σ(α)

)

IK

=

(

δ(αβ)
II J − P

(βα)

I J

)

N
∑

s=1

Ω
s(α)

Z
s(α)

J
Z

s(α)

K
+ δ(αβ)

M
(β)

IK

∆t
(2)

2.2 Analysis of EHM scalability

The efficiency of EHM compared to CPFE (i.e., ratio between simulation time of CPFE and

EHM) as a function of RVE sizes is evaluated using uniaxial tension tests on a series of increasing

3
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(a) (d)(c)(b)

(e) (h)(g)(f)
Figure 1: Boundary conditions (a) and mesh of RVEs used in the simulation with

n = 85, 154, 242, 347, 487, 629, 938 (b-h).

Table 1: EHM efficiency compared with CPFE

n nelement nnode TCPFE(s) TEHM(s) RDOF RTime

85 29369 5627 2128.7 19.1 33.1 111.7

154 53149 9983 4034.0 74.85 32.4 53.9

242 84642 15583 7052.8 265.1 32.20 26.6

347 128716 23339 10371.3 662.1 33.63 15.7

487 176415 31777 13998.8 1671.5 32.63 8.4

629 238216 42651 19435.0 3434.2 33.90 5.7

938 337818 60122 29451.2 11240.6 32.05 2.6

size RVEs as shown in Fig. 1. The reduced order models consider uniform inelastic strain in

each grain (i.e., n =number of grains) in the current study. The macroscale mesh consists

of a single hexahedron with reduced order integration regularized by hourglass stiffness. The

reference CPFE analysis is performed over the fully resolved microstructure discretized with

trilinear tetrahedron elements.

The comparison between CPFE and EHM are listed in Table 1 and the efficiency of EHM

compared with CPFE reduces as microstructure size increases as shown in Fig. 2. Number of

grains in a RVE is often between O(102) to O(103) in literature. Maintaining high efficiency of

EHMs with n within this range is therefore critical and motives the the current research.

The primary cause of the efficiency degradation with increasing n is the dense and unsymmet-

ric structure of the linear system in Eq. (1), which requires 0.67(6n)3
= 144.72n

3 floating-point

operations (FLOPs) when solved using direct solver (e.g., LAPACK LU decomposition routines).

This explains the cubic increase in simulation time for the EHM as n increases.

We also investigate the effect of using iterative solver in the N-R iterations using the flexible

General Minimum Residual method (FGMRES) combined with Gauss-Seidel pre-conditioning.

The efficiency of EHM using FGMRES compared with CPFE is plotted in Fig. 2(b), which

4
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Figure 2: Efficiency of EHM compared with CPFE: (a) direct solver; (b) iterative solver.

shows lower efficiency than direct solver and similar degradation trend.

3 A sparse and scalable EHM formulation

To maintain the efficiency of EHM, one possible solution is to introduce sparsity into the

linearized EHM system and decrease the FLOPs for solving the system substantially. By

examing Eq. (2), one can find that, two 6 × 6 zero blocks will be introduced in to the Jacobian

matrix (highlighted in Eq. (1)) when P(ᾱ β̄)
= P( β̄ᾱ)

= 0. Following this finding, a structurally

symmetric sparse linear system can be obtained by setting interaction interaction tensors between

a group of selected grain pairs to be zero. Zero P(ᾱ β̄) and P( β̄ᾱ) indicates there is no interactions

between grain ᾱ and β̄. This section investigate the consequence of neglecting interactions

between a pair of grains, ᾱ and β̄ and the strategy for determining a cluster of grains between

which the interactions are negligible.

3.1 Coefficient tensors considering partial interactions

In the case of piecewise uniform fields, Dvorak [1] derived the following properties for the

coefficient tensors:

Kinematic consistency :

n
∑

α=1

P(βα)
= I − A(β) (3)

Simultaneous iso − stress/strain condition :

n
∑

α=1

P(βα)M(α)
= 0 (4)

Elastic reciprocity : c
(β)P(βα)M(α)

= c
(α)M(β)P(αβ),T (5)

Strain compatibility :

n
∑

α=1

c
(α)P(αβ)

= 0 (6)

In addition, the concentration tensors A(α) satisfies the well-known Hill relation:

n
∑

α=1

c
(α)A(α)

= I (7)
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In general, concentration (A) and interaction tensors (P) are computed from the elastic Green’s

function through linear elastic analysis on the microstructure domain. Our goal here is to derive

a new set of coefficient tensors from the original ones when interaction between a chose pair of

grains are neglected that enforce Eqs. (3)-(7) as much as possible. By applying this formulation

on a group of selected grains, one can obtain a sparse EHM model.

While enforcing Eqs. (3)- (7) simultaneously is not successful to the best knowledge of the

authors, we now introduce two models that will either enforce the kinematic consistency or

simultaneous iso-stress/strain condition, namely kinematically (ǫ-EHM) and simultaneous iso-

stress/strain constrained sparse EHM (σ-EHM), respectively. For both models, the compliance

tensors remain unchanged. The new coefficient tensors for ǫ-EHM are:

P′(αβ)
=





0 {α, β} = {ᾱ, β̄}

P(ᾱᾱ)
+

c
(β̄)

c(ᾱ) P
( β̄ᾱ) {α, β} = {ᾱ, ᾱ}

P( β̄ β̄)
+

c
(ᾱ)

c(β̄)
P(ᾱ β̄) {α, β} = { β̄, β̄}

P(αβ) otherwise

(8)

A′(α)
=





A(α) α � {ᾱ, β̄}

A(ᾱ)
+ P(ᾱ β̄) − c

(β̄)

c(ᾱ) P
( β̄ᾱ) α = ᾱ

A( β̄)
+ P( β̄ᾱ) − c

(ᾱ)

c(β̄)
P(ᾱ β̄) α = β̄

(9)

while the coefficient tensors for σ-EHM are:

P′(αβ)
=





0 {α, β} = {ᾱ, β̄}

P(ᾱᾱ)
+

c
(β̄)

c(ᾱ) M
(ᾱ)P( β̄ᾱ),TM(ᾱ),−1 {α, β} = {ᾱ, ᾱ}

P( β̄ β̄)
+

c
(ᾱ)

c(β̄)
M( β̄)P(ᾱ β̄),TM( β̄),−1 {α, β} = { β̄, β̄}

P(αβ) otherwise

(10)

A′(α)
=





A(α) α � {ᾱ, β̄}

A(ᾱ)
+ P(ᾱ β̄) − c

(β̄)

c(ᾱ) M
(ᾱ)P( β̄ᾱ)M(ᾱ),−1 α = ᾱ

A( β̄)
+ P( β̄ᾱ) − c

(ᾱ)

c(β̄)
M( β̄)P(ᾱ β̄)M( β̄),−1 α = β̄

(11)

Remark. ǫ-EHM can be deemed as a model between Taylor model and full EHM. It can be

shown, when all transmitted interactions are neglected ( P(α,β)
= 0, α � β ), the self-induced

interaction tensors become zero and concentration tensors will become identity tensor, leading

to a diagonal system in Eq. (2) and recovers the classical Taylor model.

3.2 A consistent grain clustering scheme

In the current study, we employe a nearest neighbor based algorithm to consistently eliminate

weak interactions between grains that are far from each other. Let Θ
(α)

1
denote the domain of

all grains in the immediate neighborhood of the grain, α, with domain, Θ(α). The immediate

neighborhood of Θ
(α)

1
is denoted as Θ

(α)

2
and constitutes the secondary influence zone of grain

6
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Figure 3: Schematic demonstration of the clustering scheme.

α. Following the same argument for higher order influence zones, nc−layer grain cluster for

grain α is defined as:

Ω
(α)
nc
= Θ

(α)

nc
⋃

i=1

Θ
(α)

i
(12)

The algorithm for constructing the grain clusters is schematically illustrated in Fig. 3. The

index of each grain is illustrated in Fig. 3(a). For each grain within the microstructure, the

boundary nodes are identified (Fig. 3(b)). An element connectivity based search is conducted

to identify all grains that contain at least one of the boundary nodes to build Θ
(α)

1
(Fig. 3(c)). To

build the second layer of neighbors, Θ
(α)

2
, the above process is repeated by replacing Θ(α) with

Θ
(α)

1
(Fig. 3(d)).

4 Computational implementation

The nonlinear numerical procedures for the sparse EHM models are similar to the full EHM

(detailed in Ref. [13]). The characteristics of the linearized equations of the sparse EHM system

is exploited to efficiently evaluate the reduced order models. In particular, we leverage the

structural symmetry (Fig. 4(a)-(b)), sparsity, compressed storage and reordering (Fig. 4(c)-(d))

of the equation system for computational efficiency.

(a) (b) (c) (d)
Figure 4: Sparsity pattern of the linearized 487-grain EHM system: original one- and

two-layer sparse EHM and their reordered versions (c)-(d).

The implementation is performed in two stages: (1) preprocessing; and (2) multiscale analysis.

Particular attention is paid on obtaining as much information as possible in the preprocessing

stage (e.g., CRS format and reordering as well as analysis and symbolic factorization in the case

7
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Figure 5: Overall stress-strain comparison between CPFE, EHM and: (a) ǫ-EHMs; (b) σ-EHMs.
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Figure 6: Von Mises stress distribution comparison.

of direct solver) and directly use them in the later on N-R process since the sparsity pattern

of the system remain unchanged. Both direct (PARDISO) and iterative solver (FGMRES) are

implemented for maximum efficiency (parallel disabled) in the multiscale analysis stage and the

details are skipped here for simplicity.

5 Numerical verification

5.1 Accuracy and efficiency evaluation

The material considered is pure aluminum with material parameters from Ref. [13]. The

RVE is taken to consist of 487 grains and the microstructure is shown in Fig. 1(f) under uniaxial

tension. The overall stress-strain response obtained by the CPFE, full EHM, ǫ-EHM and σ-

EHM models are compared in Fig. 6. Both ǫ-EHM and σ-EHM models provide almost identical

results as the full EHM model. The local von Mises stress distribution (i.e., stress distribution

of all the grains within the RVE, normalized by g0) computed with the CPFE and the proposed

models within the RVE is plotted in Fig. 6. The discrepancies between the stress distribution for

different EHMs are negligible, and the distribution match the results from the reference CPFE

simulation with reasonable accuracy.

The efficiency characteristics of the EHM models are assessed by performing simulations

with microstructures shown in Fig. 1. The speedup of different EHM models compared with

8
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Figure 7: Efficiency comparison: (a) full and sparse EHMs compared with CPFE; (b)

sparse EHM compared with full EHM.

CPFE are listed in Table 1 and plotted in Fig. 7. One-layer sparser EHMs (ǫ-EHM-1 and

σ-EHM-1) provide significant speedup compared with full EHM and a much slower efficiency

degradation as the microstructure size increases.

The speedup of sparse EHMs compared with the full EHM are plotted in Fig. 7(b), together

with the the speedup of linear solver portion (accumulated CPU time spent for linear solver only).

It is observed that the speedup of one-layer sparse EHM compared with full EHM increases

linearly as n increases. The speedup of the two-layer sparse EHM compared with EHM, shows a

sub-linear relationship with n. This is because sparsity decreases fast from the one-layer sparse

EHM to the two-layer sparse EHM and the FLOPs of solving a sparse linear system increase fast

as the decrease of the sparsity. The behavior of speedup for the linear solver portion is generally

similar to the total simulation times, but the curves show much higher slopes. This is because

the other procedures (i.e., computation of slip resistance evolution, matrix constructions etc.)

are of similar order for all models, including the full EHM and sparse EHM.

Figure 8 shows the efficiency of ǫ-EHM-1 using the iterative solver as a function of n. It

clearly shows that sparsity also significantly increase the efficiency of EHM when using iterative

solver, while the speedup is less than the case of direct solver in the cases we studied.

5.2 A structural example: plate with hole under bolt load

To demonstrate the capability of sparse EHM in solving structural scale problems, we in-

vestigated the response of a plate subjected to bolt pressure as shown in Fig. 9(a). Half of the

plate is discretized due to symmetry with 27,680 tri-linear eight-noded hexahedron elements

(Fig. 9(b)). The microstructure is the 938-grain RVE as shown in Fig. 1 (h). The simulation

therefore tracks 25,963,840 grains throughout the domain of the plate and the one-layer ǫ-EHM

is used in this study.

The stress-contour of the plate at the end of loading is shown in Fig. 9(c). The reaction

force versus the displacement at the far end (i.e., θ = 0o) of the hole is shown in Fig. 10(a).

12 elements at each position as shown in Fig. 9(a) are selected (probing 11,256 grains at each
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Figure 8: Efficiency of ǫ-EHM-1 using iterative solver compared with: (a) CPFE and

(b) full EHM using iterative solver.

P
θ

P

Sym.

Sym.

(a) (b)

Position 1
Position 2
Position 3

A

(MPa)
S, Mises

+1.057e−02
+1.505e+00
+2.999e+00
+4.493e+00
+5.987e+00
+7.481e+00
+8.976e+00
+1.047e+01
+1.196e+01
+1.346e+01
+1.495e+01
+1.645e+01
+1.794e+01

(c)
Figure 9: Plate under bolt pressure: (a) Geometry and loadings; (b) FE mesh; (c) stress contour.

position), and the von Mises stress (normalized by initial slip resistance, g0) histograms of the

microscale grains at each position are plotted in Fig. 10(b). Microscale stress histograms show

a decreasing grain level von Mises stress from position 1, 2 to 3, consistent with the macroscale

stress at position 1, 2 and 3 as shown in Fig. 9(c).

6 Conclusions and future research interests

We presented a grain-cluster accelerated eigenstrain-based reduced-order homogenization

model for computationally efficient modeling of complex polycrystal microstructures through

selectively considering grain-to-grain interactions. It is found that the proposed sparse EHM

can maintain the high efficiency better as the RVE size increases and with negligible differences

compared with full EHM for both overall stress-strain response and local response. The concept

of the sparse EHM is also beneficial for other reduced models (e.g., [9, 7, 8, 3, 12]) when

higher resolution (i.e., number of parts is relative large) is required. Future work will consider

incorporating of the sparse EHM concept into these models for efficiency improvement.
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Figure 10: Response of the plate: (a) force-displacement; (b) local von Mises stress histogram.
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Abstract. Crystalline materials undergo heterogeneous deformation upon the applica-
tion of external load, which results in the development of incompatible elastic strains in
the material as soon as the load is removed. The presence of heterogeneous distribution
of elastic strains in the absence of any form of external load results in the building up of
stresses referred to as residual stresses. The heterogeneity of strain is attributed either to
the presence of multiple phases or to the orientation gradients across the sample volume.
This paper is an endeavour to model the presence of second phase in a two-dimensional
discrete dislocation dynamics framework, which already contains constitutive rules to in-
clude three-dimensional mechanisms, such as line tension and dynamic junction formation.
The model is used to investigate residual stress development in single crystals subjected
to plane strain loading and then subsequently unloaded to study residual stresses. The
dislocation accumulation around the second phase and its effect on the mechanical prop-
erties is studied. The orientation dependence of residual stresses as a function of the
underlying defect substructure has also been explored. A variety of results are obtained.
In particular, the development of stresses as a function of underlying defect substructure
is also presented and found to depend upon the orientation of the crystal.
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1 INTRODUCTION

Metals and metallic alloys are essentially multiphase materials. The presence of multi-
ple phases in a material completely changes the mechanical behaviour of the system rang-
ing from the macroscopic stress versus strain response to the microscopic defect structure
development, which in turn affects the life of a component by accelerating or decelerating
failure. Presence of a brittle phase in a crystalline matrix may be detrimental as it tends
to be a potential site for failure by giving rise to residual stress, due to the difference in
properties between the two phases [1].

Residual stress development in metals and metallic alloys mainly depends upon the
manufacturing process. These stresses can be removed by subjecting the material to a
wide variety of treatments but cannot be completely nullified, which makes it important
to study the development and evolution of the stresses of this type, more so in case of
multiphase alloys where they play a crucial role in the failure of a material.

This paper is an endeavour to model residual stresses in a multiphase material using
discrete dislocation dynamics (DDD), a framework that models the plastic deformation
in crystalline materials as a collective motion of individual dislocations in an imposed
displacement field [2], thus exploring a relation between the stress development as a
function of defect substructure and establishing a signature of residual stress. Preliminary
results that show interesting trends have been presented.

2 DISCRETE DISLOCATION PLASTICITY

The formulation constitutes of a framework for solving quasi-static initial/boundary
value problems in which plastic flow is a direct consequence of collective motion of large
number of dislocations [3]. The formulation presented here is valid for a material char-
acterised by a linear elastic constitutive relation undergoing small deformation. The
formulation is applicable for three-dimensional solids, but the implementation is carried
out for plane strain problems.

A linear elastic body of volume V comprising of an elastic inclusion of volume V∗

is considered. The matrix material contains a distribution of dislocations, modelled as
line defects in elastic continuum. The elastic properties of the matrix and the inclusion
are governed by the fourth order tensors L and L∗ respectively. Each dislocation i is
characterised by its Burgers vector, bi and unit normal, ni of its slip plane. The body
with boundary Su ∪ Sf is now considered to be subject to time dependent traction and
displacement boundary conditions T = T0(t) on Sf and u = u0(t) on Su respectively.

The ensuing deformation is assumed to be quasi-static and is limited only to small
strains. The deformation process will lead to motion of dislocations, generation of new
dislocations by nucleation and mutual annihilation, and their pinning at obstacles. The
analysis of the deformation process is performed in an incremental manner in time where

2
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the incremental step at any time step involves three main computational stages. The
first of them involving the computation of the current dislocation configuration and the
associated stress and strain values for current configuration; the second step comprises
of determining the Peach-Koehler force, driving force for change in dislocation structure,
and the third being the determination of instantaneous rate of change of dislocation struc-
ture, computed on the basis of a set of constitutive equations for motion, annihilation and
generation of dislocations.

Figure 1: Decomposition of a problem for a body with dislocations and an inclusion into
a problem of interacting dislocations in the infinite solid and a complementary field for
the non-homogenous body without dislocations.

The formulation is based on decomposing the problem into two equivalent problems as
shown in figure 1, one solving for the fields due to individual dislocations (∼) and the other
for the fields (∧) due to the external boundary conditions. After solving for the individual
fields, the solutions are superposed. The first step, determining the instantaneous state
of the body, involves determination of the current state of the body, which follows the
formulation of [4] to determine the present dislocation structure and compute the current
state of the body in terms of the displacement, strain and stress fields corresponding to
the underlying dislocation substructure, and is written as the superposition of two fields,

u = ũ+ û ε = ε̃+ ε̂ σ = σ̃ + σ̂ (1)

where (∼) fields are associated with n dislocations in their current configuration but in an
infinitely large medium of homogenous matrix material, and are obtained by superposition
of fields of individual dislocations. Standard equations of linear elasticity are supposed to
be valid outside the dislocation core area. These fields are obtained by superposition of
fields (ui, εi, σi) associated with each individual dislocation,

ũ = Σui ε̃ = Σεi σ̃ = Σσi (2)

3
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The governing equations for (∼) fields can therefore be summarised as:

� · σ̃ = 0 ε̃ = �ũ σ̃ = L : ε̃ in V M ∪ V ∗ (3)

with following boundary conditions on S,

ν · σ̃ = T̃ on Sf and (4)

u = ũ on Su (5)

where ν is the outer unit normal to S. The absence of boundary conditions facilitates
the finding of solution of the (∼) fields. Since the formulation has been restricted to the
modelling of edge dislocations alone, the solutions are available in textbooks [5]. The (∧)
fields take care of the actual boundary conditions as well as the presence of inclusion. The
governing equations may be written as follows:

� · σ̂ = 0 ε̂ = �û in V M ∪ V ∗ (6)

σ̂ = L : ε̂ in V M (7)

σ̂ = L∗ : ε̂+ (L∗ − L): ε̃ (8)

It is important to notice the contribution of polar stresses to the (∼) fields in the inclusion,
which results due to the dislocation strain fields and the difference in the elastic properties
between matrix and inclusion.

ν · σ̂ = T̂ = T0 − T̃ on Sf (9)

u = Û = u0 − Ũ on Su (10)

µ and B are used to denote the shear and bulk moduli of the matrix material where as
µ∗ and B∗ represent the respective moduli for the second phase. The displacement fields
due to the presence of dislocations in the matrix are assumed to remain smooth across
the interface of the matrix and second phase, which makes the problem a well posed one
and can be solved by using Finite Element Method.

For any dislocation configuration to be stable in a deformed body, it has to fulfil the
conditions for thermodynamic equilibrium, which makes the rearrangement of disloca-
tions a vital activity in a deformation process. The dislocations will time and again have
to reorganise themselves to minimise the energy of the system. The rearrangement takes
place under the action of a gliding force, referred to as Peach-Koehler force, which essen-
tially can be described as the change of the potential energy of the body associated with
an infinitesimal variation of the dislocation position in the glide plane. The expression
for the Peach-Koehler force, f i may be written as:

f i = mi · {σ̂ +
∑∑∑
j �=i

σj} · bi (11)
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Short range interactions are accounted for by a set of constitutive rules for (i) dislocation
nucleation, (ii) dislocation annihilation, (iii) dislocation obstacles, (iv) dislocation glide,
(v) junction formation and (vi) dynamic sources. The three-dimensional interactions are
modelled through constitutive rules.

In case of a two dimensional analysis, performed here, an initial density of sources
and obstacles is specified a priori, each of them being a point source on a slip plane.
Dislocations are nucleated in the form of dipoles when the magnitude of Peach-Koehler
force at the location of the source i exceeds a critical value, for a prescribed time t0.
During the deformation, dislocations get pinned at these locations and are released only
when the Peach-Koehler force exceeds τobsbi. While the number of sources remain constant
throughout the entire deformation, the case is different in actual conditions, i.e., (i) the
density of sources and obstacles increases as the dislocation density increases and (ii)
line tension acts to restrict dislocation multiplication. These mechanisms are captured
in two dimensions following the approach given in [6], wherein they have successfully
been able to include key features of these interactions into two dimensional simulations
to enable the dislocation source and obstacle population to evolve dynamically. This
is achieved by modelling the formation of junctions upon the interaction of dislocations
on intersecting planes. A junction, once formed, can act as a source or an obstacle to
dislocations gliding on the slip plane, thus increasing the density of sources and obstacles
with ensuing deformation.

3 RESULTS

To implement the framework discussed above using finite element method, a boundary
value problem to simulate the uniaxial deformation of a planar crystal is formulated. A
crystal of FCC type with dimensions, L x H with a second phase with dimensions w x
h, as shown in figure 2, is subjected to compression followed by unloading along x1-axis.
Plane strain condition is invoked. A uniform displacement of u1 = ±U/2 and vanishing
shear stress at x1 = ±L/2 is prescribed while a traction free condition is maintained at
surfaces, x2 = ±H/2.

Figure 2: Geometry of the compression problem analysed for an FCC crystal with an
inclusion oriented for double slip.
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For the present simulations, a sample of dimensions 8µm x 4µm with a precipitate
volume fraction vpf = 0.03 and dimensions 1µm x 1µm was used. The simulations were
initially carried out for a single orientation with two slip systems oriented at φ = ±54.75o

to the loading x1 axis. The slip planes are such that they extend from one free surface to
another without intersecting the surfaces where the displacement boundary conditions are
prescribed. The material was initially assumed to be dislocation free with initial source
and obstacle density, ρs = ρo = 1.56 x 1013m−2. The static obstacles were assigned a con-
stant strength τobs = 150 MPa. The mean nucleation strength was taken to be τnuc = 17
MPa. Standard values for other material parameters like Young’s modulus E = 70 GPa,
Poisson’s ratio ν = 0.3, drag factor B = 10−4 Pa s, Burger’s vector, b = 0.25nm, were
used. For the second phase, the values for Young’s Modulus and Poisson’s ratio were
taken to be E = 500 GPa and ν = 0.17 respectively. Nucleation time remains fixed at
tnuc = 10ns.
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Figure 4: Contours showing residual stress distribution in a deformed sample after un-
loading for (a) without a second phase (b) with second phase
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A nominal strain rate of the order of 104s−1 was applied. The sample was loaded in
simple uniaxial compression. With the nucleation of first dislocation loop, the material
begins to yield. In order to demonstrate the effect of presence of a second phase particle
in a material, two cases (i) a sample without a second phase and (ii) a sample with a
second phase present in it, were simulated. Both the samples were loaded in compression
up to a strain, ε = 0.012 followed by unloading to a zero value of macroscopic stress, by
reversing the direction of the applied load. Representative stress versus strain response
was plotted, as given in figure 3.

From the results given in figure 3, it can be seen that the presence of a second phase
in an otherwise homogenous matrix changes the mechanical response of the material; the
sample with a second phase hardens more than the one without a second phase. This
happens as a result of the obstruction to the flow of dislocations in the matrix caused
by the presence of the second phase. It was observed that unloading to a zero value of
finite body stresses doesn’t make the material completely stress free. The average value
of stress present in the sample in presence of a second phase, after unloading, was found
to be σ = 2.67 MPa, which is more than σ = 1.968 MPa, the value obtained for the
sample without a second phase. In order to relate the presence of these stresses with the
underlying defect substructure, the geometrically necessary dislocation (GND) density
was computed for both the cases. The GND density values for the sample with a second
phase was found to be ρGND = 2.67 x 1012 m−2, which is more than ρGND = 1.96 x 1012

m−2 observed in the sample without a precipitate, which suggests a correlation between
the residual stress development and the GND density. This has also been illustrated
by representing the dislocation configuration superimposed upon the stresses contours as
shown in figure 4. It can be seen that in a material with second phase, the dislocation
pile ups around the second phase lead to the accumulation of more residual stresses.

Figure 5: Representative stress versus strain response for an FCC single crystal with a
second phase under compressive load for three different matrix orientations.

Additional simulations were carried out to study the orientation dependence of resid-
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ual stress development in a material. Uniaxial compression tests, for three different ma-
trix orientations, viz., Cube ({100} < 001 >), Brass ({011} < 211 >), and Copper
({112} < 111 >) were carried out. The samples were deformed upto a strain, ε = 0.023
and were subsequently unloaded to a zero value of macroscopic stress as shown in figure
5. It was observed that the samples, after unloading, show a different distribution of resid-
ual stresses depending on their orientation, which is illustrated in the contours given in
figure 6. The average values of residual stresses for the three different orientations were
computed. It was found that Cube orientation develops the maximum residual stress,
σCube = 4.93 MPa, and Copper develops the least, σCopper = 3.97 MPa, while the residual
stress value in the Brass orientation, σBrass = 4.24 MPa was found to lie midway between
the two, which establishes the hypothesis that residual stress development in a two phase
alloy is orientation dependent. A similar behaviour was observed for Bauschinger effect
as well.
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Figure 6: Contours showing residual stress distribution in a deformed sample after un-
loading for three different orientations (a) Cube (b) Brass (c) Copper

4 SUMMARY

A mechanism based discrete dislocation dynamics model was used to simulate the de-
velopment of residual stresses in a two phase face centred cubic (FCC) material. It was
observed that the presence of a harder phase in the matrix changes the mechanical be-
haviour of the material, which can be observed from a representative stress versus strain
response, and leads to the hardening of material and development of residual stresses in
a material. Moreover, it was also observed that the residual stress development in a two

8
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phase crystalline material not only depends upon the mechanical properties of the second
phase but also the orientation of the matrix. A trend between the development of residual
stress and defect substructure was observed.
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Abstract. The simulation of structural changes in the surface region of Al crystallite during 

self-ion bombardment was carried out. The calculations were performed on the base of the 

molecular dynamics method. A many-body potential calculated in the approximation of the 

embedded atom method was used to describe the interatomic interactions. It is shown that 

atomic displacement cascades in the near-surface region were generated under ion irradiation. 

At relatively low energies the impact of the atomic displacement cascades not only lead to the 

generation of Frenkel pairs, but also to the nucleation of plastic deformation. That is due to 

the high-rate heating of the grains, causing their expansion and deformation in the stained 

conditions with the formation of stacking faults. Melting of surface layers takes place at high 

energies of irradiation. A crystallization process and a formation of a grain structure of the 

surface layers will be determined by the characteristics of the propagation of the 

crystallization front, which shape depends on the relative location, size and orientation of 

grains on the boundary of the liquid and solid phases.  
 

 

1 INTRODUCTION 

Modification of the surface by ion beams is widely used to improve the operating 

characteristics of metals and alloys [1,2]. The change in physical and mechanical properties is 

due both to the process of surface alloying of the material by chemical elements from the 

beam, and to the structural changes of the near-surface layer. 

Irradiation by ions can cause not only fragmentation of grains but also lead to melting of 

the surface layer. The thickness of the modified layer depends on the energy of the ion beam. 

It may reach to several tens of microns at the irradiation by ion beams with energy of more 

than 3 MeV. We note that fragmentation takes place in a layer with several micrometers of 

thickness for beams with energies less than 1 MeV. 

In this case, the thickness of the modified layer with the changed defect structure can reach 

more than 100 μm. Due to the long-range effect, the depth of the modified layer exceeds not 

only the mean free path of the incident ions, but also the average grain size. The occurrence of 

high stresses at the boundaries and grain joints causes the fragmentation of the surface layer 
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upon irradiation [1,3]. Irradiation with high-energy ions leads to the generation of shock 

waves and strong elastic fields [4-6]. As a result, nonequilibrium micro- and nanostructural 

layers can form in the near-surface region of metals. Different competing mechanisms 

connected with phase transitions, structural transformations, plastic deformation, 

fragmentation in the near-surface region, lay on the base of the relaxation process of the 

irradiated material. 

Experimental study of the dynamics of such processes may face considerable difficulties in 

view of the small spatial and temporal scales of their occurrence Modeling of these processes 

allows to overcome these difficulties and to obtain detailed information on the dynamics of 

structural changes during irradiation and relaxation of the material [7-9] 

In this paper, we investigate the features of structural transformations in the surface layer 

both in single crystals with different orientations of the irradiated surface and in 

nanocrystalline aluminum samples under ion irradiation. 

2 METHODS 

The method of molecular dynamics [10,11] was used to solve the problem posed in this 

paper. The simulation was carried out in the software package LAMMPS [12]. The potential 

of the interatomic interaction for aluminum was described in the framework of the embedded 

atom method [13]. The simulated samples contained from 75 000 to 1 000 000 atoms. The 

initial temperature of the samples was set equal to 300 K. The mono- and nanocrystalline 

samples of aluminum were subjected to irradiation. The {100}, {110} and {111} surfaces 

were irradiated in the case of single-crystal samples. The nanocrystalline samples consisted of 

6 and 10 grains with an average size of 7.5 and 6.5 nm, respectively. Ion irradiation was 

simulated by the bombardment of aluminum atoms on a free surface. In the case of a single 

crystal, the energy of incident atoms on the free surface was 60 eV. Total number of incident 

atoms was 540. Both mechanically unloaded crystallites and elastically deformed samples 

were irradiated. In the case of nanocrystalline samples, the number of incident atoms varied 

from 16 to 80. The energy of each atom was 1.5 keV. Analysis of structural changes in 

irradiated samples was based on the Common Neighbor Analysis [14] and the Dislocation 

Extraction Algorithm [15]. Visualization of investigated structures was performed in the 

OVITO software [16]. 

3 SIMULATION RESULTS 

Calculations showed that ion irradiation with the above energies leads to sputtering of 

individual atoms and atomic clusters from the irradiated surfaces of the crystallite. Under this 

irradiation regime, the number of implanted atoms was less than the number of atoms 

sputtering from the surface. It was found that the process of atom sputtering occurred most 

intensively at exposing of the {111} surface. 

During the irradiation, the temperature of the near-surface layer of the crystallite exceeded 

the melting point. Temperature dependency on time for the layer with a thickness of 10 lattice 

parameters near the {111} surface is shown in Fig. 1. After irradiation, the temperature of this 

layer decreases quite rapidly and is characterized by pronounced oscillations. We note that 

irradiation of the surface leads to the generation of shock waves in the crystallite. Due to this 

fact the periodicity of the temperature oscillations correlates well with the time of passage of 
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the shock waves from the loaded surface to the rear one and back. 

Crystallites with the {100} irradiated surfaces are the most stable to structural changes in 

the near-surface layers. In this case, only a small number of surface layers involved in 

cascades of atomic displacements locally change the symmetry of the nearest environment 

(Fig. 2a). It was noted that dislocations, stacking faults, interstitial dumbbells are not formed 

in crystallites. The elastic deformation of the investigated crystallites before irradiation had 

little effect on the structural changes in the surface layer. 

When the {111} surfaces of the undeformed crystallite are irradiated, the stacking faults 

are formed in the near-surface region in the (111) planes. If the crystallite is pre-deformed, the 

stacking faults are also generated in adjacent planes (Fig. 1b). In the case of irradiation of the 

{110} surface, the local symmetry of the nearest environment changes for many atoms, which 

can subsequently lead to the generation of stacking faults (Fig. 3). The sizes of the defects 

increase with the growth of preliminary elastic deformation of the crystallite. In this case, 

stacking faults are formed in adjacent planes and vacancy chains can be formed at their 

intersection (Fig. 3b, c). 

 
Figure 1: Dependence of the temperature of the surface layer versus time at the irradiation of the 

{111} surface. Sample was preliminary deformed to 4%  

 

  
Figure 2: The structure of the samples after irradiation of the {100} (a) and {111} (b) surfaces. 

Samples were deformed by 4%. Atoms with hcp and an uncertain symmetry of the nearest 
environment are indicated by pink and gray colors, respectively. Atoms with fcc symmetry of the 
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nearest environment are invisible 

 

 

   
Figure 3: Structure of the crystallite after irradiation of the {110} surface. The value of the 
preliminary deformation is: a) 0%; b) 4%; c) 5%. Atoms with fcc symmetry of the nearest 

environment are not shown. Pink and gray spheres are atoms with a hcp and an uncertain symmetry 
of the nearest environment, respectively 

 

Irradiation dose have a significant effect on the structural changes in a nanocrystalline 

sample. Small dose of irradiation (16-40 atoms with energy of 1.5 keV) do not change the 

sizes and positions of grains in the sample. At the irradiation of the nanocrystalline samples 

stacking faults are generated in grain boundary regions and begin to propagate into the grain 

interior. This is due to the fact that the incident atoms generate cascades of atomic 

displacements (Fig. 4a, c). This leads to high-rate local heating of the grains and the formation 

of shock waves [4,17]. As a result, the interaction of shock waves with grain boundaries 

causes a local increase in stresses and generation of stacking faults. At the same time, the 

density of stacking faults in grains increases with increasing number of incident atoms (Fig. 

4). The stacking faults locating in parallel slip planes were formed only in few grains at 

irradiation by 16 atoms (Fig. 4b). When the irradiation dose was increased to 40 atoms with 

energy of 1.5 keV, the stacking faults are formed in all grains in a larger number. In this case, 

their slip planes have indices of different signs (Fig. 4d). 

If the radiation dose is increased, the surface layer will melt. At the stage of relaxation, the 

crystallization front propagates from the boundary of the liquid and crystalline phases. As a 

result, the formed grain structure in the surface layer differs significantly from the structure 

before irradiation. Analysis of the calculation results shows that after crystallization, the 

number of grains in the simulated sample is changed (Fig. 5). This is clearly seen in the 

histogram, which shows the change in grain size distribution after irradiation of the sample 

with 80 atoms with energy of 1.5 keV. The grain sizes in the near-surface layer of the sample 

are increased. This is due to the fact that the atoms of the molten region were adjusted to the 

grain structure at the crystallization front and increased their size. Note that craters formed on 

the surface of the irradiated sample, which size increases with increasing radiation dose. 
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(a) (b) 

  
(c) (d) 

Figure 4: Structure of irradiated sample with 6 grains before (a and c) and after relaxation (b and d). 
The upper and lower rows of figures refer to the irradiation by 16 and 40 atoms, respectively. The 

grain boundaries, defects formed by cascades and stacking faults are shown in gray, green and pink, 
respectively. Atoms with fcc symmetry of the nearest environment are invisible  
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Figure 5: Distribution of grains in size before (green bars) and after irradiation (red bars) of the 

sample 

 

4 SUMMARY 

It is shown that the nature of structural changes in the surface layer of an aluminum single 

crystal upon irradiation is largely determined by the crystallographic orientation of the 

irradiated surface. The {100} surfaces undergo the smallest structural changes under 

irradiation. Irradiation of the {111} and {110} surfaces results in formation a large number of 

stacking faults in the surface layer. On the basis of this, it can be assumed that an increase in 

the irradiation dose can cause fragmentation of the surface layer of the crystallite. Irradiation 

of a nanocrystalline sample with small doses leads to the formation of stacking faults in 

grains. Their number increases with increasing radiation dose. At higher doses, the surface 

layer melts. Crystallization of the molten layer increases the grain size in the near-surface 

region. This is due to the fact that the atoms of the molten layer are adjusted to the crystal 

structure of grains at the boundary of the liquid and crystalline phases. 
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Abstract. Comprehensive studies on the modelling and numerical simulation of the 
mechanical behaviour under tension, bending and torsion of single-walled carbon nanotubes 
and their heterojunctions are performed. It is proposed to deduce the mechanical properties of 
the carbon nanotubes heterojunctions from the knowledge of the mechanical properties of the 
single-walled carbon nanotubes, which are their constituent key units. 
 
1 INTRODUCTION 

Systematic research has been conducted for studying nano-materials such as carbon 
nanotubes (CNTs) that are efficient components for designing new materials with required 
electronic and mechanical properties [1] and building blocks for optical and electronic 
nanodevices [2]. The CNT heterojunctions (two connected CNTs) are necessary constituents 
for such nanodevices as circuits, amplifiers, switches and nanodiodes [3]. The understanding 
of the CNTs’ mechanical properties is indispensable in order to design composites reinforced 
with CNTs and CNT-based devices, since their stability and efficiency are dependent on the 
mechanical properties of the constituents, i.e. CNTs and CNT heterojuctions. 

The elastic properties of CNTs can be assessed using experimental techniques (atomic 
force microscopy (AFM) and transmission electron microscopy (TEM) [4]) and 
computational approach. There are three main groups of methodologies for the modelling of 
CNTs mechanical behaviour: the atomistic approach, the continuum mechanics approach and 
the nanoscale continuum mechanics approach. In case of the nanoscale continuum modelling 
approach (NCM) each carbon-carbon (C-C) bond is replaced by a solid element, e.g. a beam 
element, whose behaviour is described by elasticity theory (see, [5, 6]). 

A considerable part of the theoretical investigations has been devoted to the predicting of 
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the Young’s modulus of single-walled carbon nanotubes (SWCNTs) [5, 6]. Less attention has 
been paid to understanding the mechanical behaviour of nanotube heterojunctions. 

The present work is focused on the characterisation of mechanical properties of SWCNTs 
in a wide range of chiral indices, diameters as well as SWCNT cone-heterojunctions by 
modelling their structure and mechanical behaviour, using nanoscale continuum approach [5]. 

2 ATOMIC STRUCTURE OF CNTS AND THEIR HETEROJUNCTIONS 
An ideal single-walled nanotube can be seen as a rolled-up graphene sheet, whose surface 

is composed by the repeated periodically hexagonal [2]. The symmetry of the atomic structure 
of a nanotube is characterized by the chirality, which is defined by the chiral vector 𝑪𝑪𝒉𝒉:  

𝑪𝑪𝒉𝒉 = 𝑛𝑛𝒂𝒂𝟏𝟏 +𝑚𝑚𝒂𝒂𝟐𝟐 (1) 

where n and m are integers, and 𝒂𝒂𝟏𝟏 and 𝒂𝒂𝟐𝟐 are the unit vectors of the hexagonal lattice. 
The length of the unit vectors is defined as 𝑎𝑎 = √3𝑎𝑎𝐶𝐶−𝐶𝐶 with the equilibrium carbon-carbon 

(C-C) covalent bond length 𝑎𝑎𝐶𝐶−𝐶𝐶 usually taken to be 0.1421 nm [2]. The nanotube 
circumference, Lc, and diameter, 𝐷𝐷𝑛𝑛 are: 

𝐿𝐿𝑐𝑐 = |𝑪𝑪𝒉𝒉| = 𝑎𝑎√𝑛𝑛2 + 𝑛𝑛𝑚𝑚 +𝑚𝑚2 (2) 

𝐷𝐷𝑛𝑛 = 𝐿𝐿𝑐𝑐
𝜋𝜋

(3) 

The chiral angle, 𝜃𝜃, is defined by the angle between the chiral vector 𝑪𝑪𝒉𝒉 and the direction 
(n, 0) [2] and it is given by: 

𝜃𝜃 = sin−1 √3𝑚𝑚
2√𝑛𝑛2 + 𝑛𝑛𝑚𝑚 +𝑚𝑚2 (4) 

Three major categories of carbon nanotubes can be defined based on the chiral angle 𝜃𝜃: 
zigzag (𝜃𝜃 = 0°), armchair (𝜃𝜃 = 30°) and chiral (0° < 𝜃𝜃 < 30°) SWCNTs. Three main 
symmetry groups can be also defined based on the chiral indices. In this case for armchair 
structure 𝑛𝑛 = 𝑚𝑚, for zigzag structure 𝑚𝑚 = 0, and for chiral structure 𝑛𝑛 ≠ 𝑚𝑚. 

The CNT heterojunction can be represented as two CNTs that are connected by 
introducing an intermediate region with Stone–Wales defects [7]. Similarly to SWCNT 
structures, the geometrical parameters of heterojunctions (HJs) are the chirality, and diameter. 
There are two main heterojunction configurations [7]: (i) cone-heterojunctions (HJs of 
nanotubes with a given chiral angle but different radii) as armchair – armchair and zigzag – 
zigzag HJs, and (ii) radius-preserving heterojunctions (HJs preserving the radii, but with 
different chiral angles of the constituent nanotubes) as armchair – zigzag or chiral – armchair 
(or zigzag) HJs. According to the study of Yao et al. [8] most HJs (95%) are cone-
heterojunctions type. 

The overall length of the heterojunction is defined as follows: 
𝐿𝐿𝐻𝐻𝐽𝐽 = 𝐿𝐿1 + 𝐿𝐿2 + 𝐿𝐿3 (5) 

where 𝐿𝐿1, 𝐿𝐿2 are the lengths of the narrower and wider SWCNTs regions, respectively, and 𝐿𝐿3 
is the length of the connecting region (see, Fig. 1). 
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Figure 1: Geometry of cone armchair – armchair (10, 10) – (15, 15) HJ, obtained by using academic software 

CoNTub 1.0  [7] 

When the heterojunction consists of two SWCNTs with different diameters (i.e. cone-
heterojunction), the diameter of HJ can be characterised by the average of the narrower and 
wider diameters (see for example: [7]): 

�̅�𝐷𝐻𝐻𝐻𝐻 =
1
2 (𝐷𝐷𝑛𝑛1 + 𝐷𝐷𝑛𝑛2) (6) 

And the aspect ratio of the cone-heterojunction is defined as [9]: 

𝜂𝜂 = 𝐿𝐿3
�̅�𝐷𝐻𝐻𝐻𝐻

 (7) 

The length of the connecting region, 𝐿𝐿3, can be deduced basing on geometrical analysis 
[9]: 

𝐿𝐿3 = √3
2 𝜋𝜋(𝐷𝐷𝑛𝑛2 − 𝐷𝐷𝑛𝑛1) = 2.7207(𝐷𝐷𝑛𝑛2 − 𝐷𝐷𝑛𝑛1) (8) 

where 𝐷𝐷𝑛𝑛1 and 𝐷𝐷𝑛𝑛2 are diameters of the narrow and wider nanotubes, respectively. 
Other relationship for the connecting region, which follows a linear function with (𝐷𝐷𝑛𝑛2 −

𝐷𝐷𝑛𝑛1), for armchair – armchair and zigzag – zigzag cone-heterojunctions was previously 
proposed [10]: 

𝐿𝐿3 = 2.9157(𝐷𝐷𝑛𝑛2 − 𝐷𝐷𝑛𝑛1) (9) 

3 NUMERICAL SIMULATION AND ANALYSIS 

3.1 Finite element modelling of CNTs’ structures 
The NCM approach that replaces the carbon-carbon bonds of CNT by equivalent beam 

elements is used for modelling SWCNTs and SWCNT HJs. The finite element (FE) method 
uses the coordinates of the carbon atoms for generating the nodes and their suitable 
connection creates the beam elements. The relationships between the inter-atomic potential 
energies of the molecular CNT structure and strain energies of the equivalent continuum 
structure, consisting of beam elements undergoing axial, bending and torsional deformations, 
are the basis for the application of continuum mechanics to the analysis of the mechanical 
behaviour of SWCNTs and SWCNT HJs [5]. 

The meshes of the SWCNTs and SWCNT HJs structures to be used in the FE analyses, 
were built using the CoNTub 1.0 software 7. This code generates ASCII files, describing 
atom positions and their connectivity that enter as input data in available commercial and in-
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house FE codes. A previously developed in-house application, designated InterfaceNanotubes 
6, was used to convert the ASCII files, acquired from the CoNTub 1.0 software, into the 
format compatible with the ABAQUS® commercial FE code. The geometrical characteristics 
of the SWCNTs used in the current FE analyses are summarized in Table 1. The nanotube 
length used in the numerical simulations was 30 times bigger than the outer diameter, so that 
the mechanical behaviour can be independent of the length [11]. 

Table 1: Geometrical characteristics of SWCNTs under study. 

SWCNT 
type (𝑛𝑛,𝑚𝑚) 𝐷𝐷𝑛𝑛, nm 𝜃𝜃° SWCNT 

type (𝑛𝑛,𝑚𝑚) 𝐷𝐷𝑛𝑛, nm 𝜃𝜃° 

ar
m

ch
ai

r 

(5, 5) 0.678 

30 
zi

gz
ag

 

(14, 0) 1.096 

0 

(10, 10) 1.356 (23,0) 1.802 
(15, 15) 2.034 (32,0) 2.507 
(20, 20) 2.713 (41,0) 3.212 
(25, 25) 3.390 (50,0) 3.916 
(30, 30) 4.068 (59,0) 4.618 
(35, 35) 4.746 (77,0) 5.323 
(40, 40) 5.424 (68,0) 6.027 
(45, 45) 6.101 (86,0) 6.732 
(50, 50) 6.780 (95,0) 7.436 (55, 55) 7.457 

 
The geometrical characteristics of SWCNT HJs used in the present FE analyses are 

summarized in Table 2. The HJs were constructed such that the lengths of the constituent 
nanotubes are almost equal to each other and their value is about two orders of magnitude of 
the length of the junction region. 

Numerical simulations of conventional tensile, bending and torsion tests were carried out 
in order to study the mechanical properties of the SWCNTs and SWCNT HJ. In the latter 
case, two loading conditions, which consist of fixing the narrower and the wider side of the 
HJ structure, were considered. 

3.2 Molecular interactions and equivalent properties of beam elements 
The NCM approach uses the direct relationships between the structural mechanics 

parameters, i.e. tensile, 𝐸𝐸𝑏𝑏𝐴𝐴𝑏𝑏, bending, 𝐸𝐸𝑏𝑏𝐼𝐼𝑏𝑏, and 𝐺𝐺𝑏𝑏𝐽𝐽𝑏𝑏, torsional rigidities, and the bond force 
field constants, 𝑘𝑘𝑟𝑟, 𝑘𝑘𝜃𝜃, and 𝑘𝑘𝜏𝜏 as follows [5: 

𝐸𝐸𝑏𝑏𝐴𝐴𝑏𝑏
𝑙𝑙 = 𝑘𝑘𝑟𝑟  (10) 

𝐸𝐸𝑏𝑏𝐼𝐼𝑏𝑏
𝑙𝑙 = 𝑘𝑘𝜃𝜃 (11) 

𝐺𝐺𝑏𝑏𝐽𝐽𝑏𝑏
𝑙𝑙 = 𝑘𝑘𝜏𝜏 (12) 

where 𝑙𝑙 is the beam length equal to 0.1421 nm; 𝐸𝐸𝑏𝑏 and 𝐺𝐺𝑏𝑏 are the beam Young’s and shear 
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moduli, respectively; 𝐴𝐴𝑏𝑏 is the beam cross-sectional area; 𝐼𝐼𝑏𝑏 and 𝐽𝐽𝑏𝑏 are the beam moment of 
inertia and polar moment of inertia, respectively; and 𝑘𝑘𝑟𝑟, 𝑘𝑘𝜃𝜃, and 𝑘𝑘𝜏𝜏, are the bond stretching, 
bond bending and torsional resistance force constants, respectively. 

Table 2: Geometrical characteristics of SWCNT HJs under study. 

HJ (n1, m1) – (n2, m2) D̅HJ, nm  L1, nm L2, nm L3, nm 

ar
m

ch
ai

r (5, 5) – (10, 10) 1.018 1.940 100.01 99.95 1.97 

(10, 10) – (15, 15) 1.696 1.166 100.06 100.00 1.98 

(15, 15) – (20, 20) 2.375 0.833 100.00 100.01 1.98 

zi
gz

ag
 (5, 0) – (10, 0) 0.588 1.950 99.92 99.96 1.15 

(10, 0) – (15, 0) 0.979 1.177 100.14 100.12 1.15 

(15, 0) – (20, 0) 1.371 0.843 100.03 100.00 1.16 
 
Equations 10 – 12 are the base for the application of continuum mechanics to the analysis 

of the mechanical behaviour of SWCNTs and SWCNT HJs. The input material and 
geometrical parameters of the beam element (see refs. [36, 37] from [12]) for the numerical 
simulations was previously summarised by the authors (see, for example [6, 10 – 12]). 

4 ELASTIC PROPERTIES OF THE SINGLE-WALLED CARBON NANOTUBES 

4.1 Rigidities of SWCNTs 

The values of the tensile, 𝐸𝐸𝐴𝐴, bending, 𝐸𝐸𝐼𝐼, and torsional, 𝐺𝐺𝐽𝐽, rigidities were obtained 
from the respective numerical simulation tests results as described in the following. The 
tensile rigidity, 𝐸𝐸𝐴𝐴, of SWCNT is determined as: 

𝐸𝐸𝐴𝐴 = 𝐹𝐹𝑥𝑥𝐿𝐿
𝑢𝑢𝑥𝑥

 (13) 

where 𝐹𝐹𝑥𝑥, is the tensile axial force applied at one nanotube end, leaving the other end fixed, 𝐿𝐿 
is the nanotube length and 𝑢𝑢𝑥𝑥 is the axial displacement taken from the FE analysis. 

Similarly, the bending rigidity of the nanotube, 𝐸𝐸𝐼𝐼, is represented as: 

𝐸𝐸𝐼𝐼 =
𝐹𝐹𝑦𝑦𝐿𝐿3
3𝑢𝑢𝑦𝑦

 (14) 

where 𝐹𝐹𝑦𝑦 is the transverse force applied at one end of the nanotube, leaving the other fixed, 𝑢𝑢𝑦𝑦 
is the transverse displacement, taken from the FE analysis. Finally, the torsional rigidity of the 
nanotube, 𝐺𝐺𝐽𝐽, is determined as: 

𝐺𝐺𝐽𝐽 = 𝑇𝑇𝐿𝐿
𝜑𝜑  (15) 
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where 𝑇𝑇 is torsional moment applied at one end of the nanotube, leaving the other fixed and 𝜑𝜑 
is the twist angle, taken from the FE analysis. In case of torsion, the nodes under loading, at 
the end of the nanotube, are prevented from moving in the radial direction. 

The evolutions of the tensile, 𝐸𝐸𝐸𝐸, bending, 𝐸𝐸𝐸𝐸, and torsional, 𝐺𝐺𝐺𝐺, rigidities with the 
nanotube diameter, 𝐷𝐷𝑛𝑛, were studied for the SWCNTs presented in Table 1. These evolutions 
are shown in Fig. 2. In previous studies [6, 12], the evolutions of the rigidities with nanotube 
diameter, 𝐷𝐷𝑛𝑛, were represented by a linear function for the case of the tensile rigidity, 𝐸𝐸𝐸𝐸, and 
by a cubic power function for the cases of bending, 𝐸𝐸𝐸𝐸, and torsional, 𝐺𝐺𝐺𝐺, rigidities, for 
armchair, zigzag and chiral SWCNTs, with diameters up to 2.713 nm. The fitting equations 
were expressed as follows, regardless of the nanotube chirality: 

𝐸𝐸𝐸𝐸 = 𝛼𝛼(𝐷𝐷𝑛𝑛 − 𝐷𝐷0) (16) 

𝐸𝐸𝐸𝐸 = 𝛽𝛽(𝐷𝐷𝑛𝑛 − 𝐷𝐷0)3 (17) 

𝐺𝐺𝐺𝐺 = 𝛾𝛾(𝐷𝐷𝑛𝑛 − 𝐷𝐷0)3 (18) 

The values of the fitting parameters [6, 12] were:  𝛼𝛼 = 1131.66 𝑛𝑛𝑛𝑛 𝑛𝑛𝑛𝑛⁄ , 
𝛽𝛽 = 143.48 𝑛𝑛𝑛𝑛 𝑛𝑛𝑛𝑛⁄ ,  = 130.39 𝑛𝑛𝑛𝑛 𝑛𝑛𝑛𝑛⁄  and 𝐷𝐷0 = 3.5 ∙ 10−3 𝑛𝑛𝑛𝑛. 

Figure 3 shows that the current results, up to nanotube diameters equal to 7.457 nm, also 
follows the trends described by Eqs. 16 – 18. The values of the fitting parameters calculated 
based on the results of the Fig. 3 are: 𝛼𝛼 = 1121.20 𝑛𝑛𝑛𝑛 𝑛𝑛𝑛𝑛⁄ , 𝛽𝛽 = 140.25 𝑛𝑛𝑛𝑛 𝑛𝑛𝑛𝑛⁄  and 𝛾𝛾 =
130.39 𝑛𝑛𝑛𝑛 𝑛𝑛𝑛𝑛⁄ , which are close to those above mentioned. Given that the value of 𝐷𝐷0 is 
negligible when compared with 𝐷𝐷𝑛𝑛, it was discarded in the fitting of the equations (i.e. 𝐷𝐷0 was 
considered equal to zero). 

a) 

b) 

c) 

Figure 2: Evolution of: (a) the tensile, 𝐸𝐸𝐸𝐸, (b) bending, 𝐸𝐸𝐸𝐸, and (c) torsional, 𝐺𝐺𝐺𝐺, rigidities as a function of the 
nanotube diameter, 𝐷𝐷𝑛𝑛, for armchair and zigzag SWCNTs. 
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a) 

b) 

c) 

Figure 3: Evolution of: (a) the tensile, 𝐸𝐸𝐸𝐸, rigidity as a function of 𝐷𝐷𝑛𝑛 − 𝐷𝐷0 and (b) bending, 𝐸𝐸𝐸𝐸, and (c) 
torsional, 𝐺𝐺𝐺𝐺, rigidities, as a function of (𝐷𝐷𝑛𝑛 − 𝐷𝐷0)3 for armchair and zigzag SWCNTs. 

The linear dependence of Eq. 16 can be understood on the base of the linear relationship 
between cross-sectional area and the nanotube diameter: 

𝐸𝐸 = 𝜋𝜋
4 [(𝐷𝐷𝑛𝑛 + 𝑡𝑡𝑛𝑛)2 − (𝐷𝐷𝑛𝑛 − 𝑡𝑡𝑛𝑛)2] = 𝜋𝜋𝐷𝐷𝑛𝑛𝑡𝑡𝑛𝑛 (19) 

where 𝑡𝑡𝑛𝑛 is the value wall thickness, which in the current study is 0.34 𝑛𝑛𝑛𝑛, equal to the 
interlayer spacing of graphite. In a similar way, the cubic dependences of Eqs. 17 – 18 can be 
understood based on the quasi-cubic relationships between the moment of inertia or the polar 
moment of inertia and the nanotube diameter (neglecting the value of (𝑡𝑡𝑛𝑛 𝐷𝐷𝑛𝑛⁄ )2 in the following 
equations): 

𝐸𝐸 = 𝜋𝜋
64 [(𝐷𝐷𝑛𝑛 + 𝑡𝑡𝑛𝑛)4 − (𝐷𝐷𝑛𝑛 − 𝑡𝑡𝑛𝑛)4] = 𝜋𝜋𝐷𝐷𝑛𝑛

3𝑡𝑡𝑛𝑛
8 [1 + ( 𝑡𝑡𝑛𝑛

𝐷𝐷𝑛𝑛
)

2
] (20) 

𝐺𝐺 = 𝜋𝜋
32 [(𝐷𝐷𝑛𝑛 + 𝑡𝑡𝑛𝑛)4 − (𝐷𝐷𝑛𝑛 − 𝑡𝑡𝑛𝑛)4] = 𝜋𝜋𝐷𝐷𝑛𝑛

3𝑡𝑡𝑛𝑛
4 [1 + ( 𝑡𝑡𝑛𝑛

𝐷𝐷𝑛𝑛
)

2
] (21) 

4.2 Young’s and shear moduli of SWCNTs  

The Young’s modulus of the SWCNT is calculated, taking into account the tensile, 𝐸𝐸𝐸𝐸, 
and bending, 𝐸𝐸𝐸𝐸, rigidities, using the following expression [6]: 
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𝐸𝐸 = 𝐸𝐸𝐸𝐸
𝐸𝐸 = 𝐸𝐸𝐸𝐸

𝜋𝜋𝑡𝑡𝑛𝑛√8(
𝐸𝐸𝐸𝐸
𝐸𝐸𝐸𝐸) − 𝑡𝑡𝑛𝑛2

(22) 

The shear modulus of the SWCNT is calculated, taking into account the tensile, 𝐸𝐸𝐸𝐸, 
bending, 𝐸𝐸𝐸𝐸, and torsional, 𝐺𝐺𝐺𝐺, rigidities by following equation [12]: 

𝐺𝐺 = 𝐺𝐺𝐺𝐺
𝐺𝐺 = 𝐺𝐺𝐺𝐺

2𝜋𝜋𝑡𝑡𝑛𝑛 (
𝐸𝐸𝐸𝐸
𝐸𝐸𝐸𝐸)√8(

𝐸𝐸𝐸𝐸
𝐸𝐸𝐸𝐸) − 𝑡𝑡𝑛𝑛2

(23) 

The relationships 16 – 18 and the knowledge of the values of the parameters 𝛼𝛼, 𝛽𝛽,  allow 
the easy evaluation of the Young’s and the shear moduli as a function of the nanotube 
diameter, without resorting to the numerical tests (𝐷𝐷0 was neglected in these equations): 

𝐸𝐸 = 𝛼𝛼𝐷𝐷𝑛𝑛

𝜋𝜋𝑡𝑡𝑛𝑛√8 𝛽𝛽𝛼𝛼𝐷𝐷𝑛𝑛
2 − 𝑡𝑡𝑛𝑛2

(24) 

𝐺𝐺 = 𝛾𝛾𝐷𝐷𝑛𝑛

2𝜋𝜋𝑡𝑡𝑛𝑛 (
𝛽𝛽
𝛼𝛼)√8 𝛽𝛽𝛼𝛼𝐷𝐷𝑛𝑛

2 − 𝑡𝑡𝑛𝑛2
(25) 

In the Fig. 4 (a, b) the values of the Young’s modulus and shear modulus calculated by 
Eqs. 22 and 23, are plotted as a function of the nanotube diameter, 𝐷𝐷𝑛𝑛. The evolutions of the 
Young’s modulus and shear modulus, obtained by Eqs. 24 and 25, are also shown in Fig. 4. 
The Young’s modulus of SWCNTs decreases with increase of the nanotube diameter, and 
with further increase of the nanotube diameter, the Young’s modulus tends to an 
approximately constant value as it is shown in the Fig. 4a. The same trend is observed for the 
evolution of the shear modulus with 𝐷𝐷𝑛𝑛 (see, Fig. 4b). These trends in the evolution of the 
Young’s and shear moduli with nanotube diameter extend up to diameters of about 7.5 nm, 
the trends already described for SWCNTs with diameters up to about 2.7 nm [6, 12]. Eqs. 24 
and 25 allow obtaining acurate evolutions of the Young’s and shear moduli, respectively, 
without resorting to the numerical simulation. 

a) b) 
Figure 4: Evolution of: (a) Young’s modulus, 𝐸𝐸, and (b) shear modulus, 𝐺𝐺, of SWCNTs as a function of the 

nanotube diameter, 𝐷𝐷𝑛𝑛. 
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5 ELASTIC PROPERTIES OF THE SINGLE-WALLED CARBON NANOTUBES 
HETEROJUNCTIONS 

5.1 Rigidities of SWCNT HJs 
The analysis of the mechanical behaviour of the armchair – armchair and zigzag – zigzag 

HJs, pointed out the occurrence of redundant bending deformation during the tensile test, 
making it difficult to analyse this test [10]. Therefore, we analyse the mechanical behaviour 
under bending and torsion. 

The bending rigidity, (𝐸𝐸𝐸𝐸)𝐻𝐻𝐻𝐻, is obtained from the respective numerical simulation tests 
results as follows: 

(𝐸𝐸𝐸𝐸)𝐻𝐻𝐻𝐻 =
𝐹𝐹𝑦𝑦𝐿𝐿𝐻𝐻𝐻𝐻3
3𝑢𝑢𝑦𝑦

 (26) 

where 𝐿𝐿𝐻𝐻𝐻𝐻 is the heterojunction length, 𝐹𝐹𝑦𝑦 is the transverse force applied at one end of the 
nanotube, leaving the other fixed, 𝑢𝑢𝑦𝑦 is the transverse displacement, taken from the FE 
analysis. The torsional rigidity, (𝐺𝐺𝐺𝐺)𝐻𝐻𝐻𝐻, is determined by: 

(𝐺𝐺𝐺𝐺)𝐻𝐻𝐻𝐻 =
𝑇𝑇𝐿𝐿𝐻𝐻𝐻𝐻
𝜑𝜑  (27) 

where 𝑇𝑇 is torsional moment applied at one end of the nanotube, leaving the other fixed and 𝜑𝜑 
is the twist angle, taken from the FE analysis. The nodes under loading, at the end of the 
nanotube, are prevented from moving in the radial direction. 

The (𝐸𝐸𝐸𝐸)𝐻𝐻𝐻𝐻 and (𝐺𝐺𝐺𝐺)𝐻𝐻𝐻𝐻 rigidities for armchair-armchair and zigzag-zigzag HJs were plotted 
in Fig. 5 as a function of the heterojunction aspect ratio, 𝜂𝜂 = 𝐿𝐿3/�̅�𝐷𝐻𝐻𝐻𝐻 (see Fig. 1). Both 
rigidities, (𝐸𝐸𝐸𝐸)𝐻𝐻𝐻𝐻 and (𝐺𝐺𝐺𝐺)𝐻𝐻𝐻𝐻 for armchair-armchair and zigzag-zigzag HJs increase with the 
increasing of the 𝜂𝜂. The bending and torsional rigidities for armchair-armchair HJs are higher 
than those for zigzag-zigzag HJs. The difference between the (𝐸𝐸𝐸𝐸)𝐻𝐻𝐻𝐻 values for armchair – 
armchair HJs and zigzag – zigzag HJs is more significant when the force is applied to the 
narrower nanotube. On the contrary, the evolution of the torsional rigidity with the aspect 
ratio, η is not sensitive to the loading condition: the (𝐺𝐺𝐺𝐺)𝐻𝐻𝐻𝐻 values are at about the same 
whether the torsional moment is applied to the wider or narrower nanotube. 

The bending, (𝐸𝐸𝐸𝐸)𝐻𝐻𝐻𝐻, and torsional, (𝐺𝐺𝐺𝐺)𝐻𝐻𝐻𝐻, rigidities of the HJ structures can be calculated 
knowing the rigidities of the constituent SWCNTs.  In fact, using Eq. 26 (or more suitably the 
equation of beam deflection) and Eq. 27, it is possible to obtain both rigidities for the HJs 
structures, considering that the respective transverse displacement (bending test) or the twist 
angle (torsion test) are equal to the sums of the corresponding transverse displacements or 
twist angles of each SWCNT constituent of the HJs: 

(𝐸𝐸𝐸𝐸)𝐻𝐻𝐻𝐻 =
𝐿𝐿𝐻𝐻𝐻𝐻3

( 𝐿𝐿𝑎𝑎3
(𝐸𝐸𝐸𝐸)𝑎𝑎 +

3𝐿𝐿𝑎𝑎2 𝐿𝐿𝑓𝑓 + 3𝐿𝐿𝑎𝑎𝐿𝐿𝑓𝑓2 + 𝐿𝐿𝑓𝑓3
(𝐸𝐸𝐸𝐸)𝑓𝑓 )

(28) 
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(𝐺𝐺𝐺𝐺)𝐻𝐻𝐻𝐻 =
𝐿𝐿𝐻𝐻𝐻𝐻

( 𝐿𝐿𝑎𝑎
(𝐺𝐺𝐺𝐺)𝑎𝑎

+ 𝐿𝐿𝑓𝑓
(𝐺𝐺𝐺𝐺)𝑓𝑓

)
 (29) 

where 𝐿𝐿𝐻𝐻𝐻𝐻 is the overall length of HJ; (𝐸𝐸𝐸𝐸)𝑎𝑎 and (𝐸𝐸𝐸𝐸)𝑓𝑓 are the bending rigidities of the 
constituent SWCNTs and (𝐺𝐺𝐺𝐺)𝑎𝑎 and (𝐺𝐺𝐺𝐺)𝑓𝑓 are their torsional rigidities; 𝐿𝐿𝑎𝑎 and 𝐿𝐿𝑓𝑓 are the 
lengths of the constituent SWCNTs; the letters a and f refer to the nanotubes to which the 
force is applied and is fixed, respectively. 

a) b) 
Figure 5: Evolution of: (a) (𝐸𝐸𝐸𝐸)𝐻𝐻𝐻𝐻 rigidity and (b) (𝐺𝐺𝐺𝐺)𝐻𝐻𝐻𝐻 rigidity with the heterojunction aspect ratio, 𝜂𝜂, for 

armchair – armchair and zigzag – zigzag HJs. 

Figure 6 compares the values of the rigidities ((𝐸𝐸𝐸𝐸)𝐻𝐻𝐻𝐻 – Fig. 6a; (𝐺𝐺𝐺𝐺)𝐻𝐻𝐻𝐻 – Fig. 6b) obtained 
from FE analysis (Eqs. 26 and 27) and those calculated with help of Eqs. 28 and 29. The 
results of the Fig. 6 evidence the accuracy of the proposed analytical solutions for evaluation 
of the bending and torsional rigidities of armchair – armchair and zigzag – zigzag 
heterojunctions. The mean difference between the values of rigidities, evaluated by Eqs. 28 
and 29 and those obtained from FE analysis, is 1.22% for the (𝐸𝐸𝐸𝐸)𝐻𝐻𝐻𝐻 rigidity and 1.74% for 
the (𝐺𝐺𝐺𝐺)𝐻𝐻𝐻𝐻 rigidity. 

a) b) 
Figure 6: Comparison of: (a) bending, (𝐸𝐸𝐸𝐸)𝐻𝐻𝐻𝐻 and (b) torsional, (𝐺𝐺𝐺𝐺)𝐻𝐻𝐻𝐻 rigidities obtained from FE analysis and 

evaluated by Eqs. 28 and 29, for armchair – armchair and zigzag – zigzag HJs. 
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5.2 Young’s and shear moduli of SWCNT HJs 
The bending and torsional rigidities obtained from FE analysis were used for the 

evaluation of the heterojunction Young’s, 𝐸𝐸𝐻𝐻𝐻𝐻, and shear, 𝐺𝐺𝐻𝐻𝐻𝐻, moduli equivalent to a SWCNT 
with diameter given by �̅�𝐷𝐻𝐻𝐻𝐻 = 1

2 (𝐷𝐷𝑛𝑛1 + 𝐷𝐷𝑛𝑛2), respectively: 

𝐸𝐸𝐻𝐻𝐻𝐻 =
(𝐸𝐸𝐸𝐸)𝐻𝐻𝐻𝐻

𝐸𝐸𝐻𝐻𝐻𝐻
=

(𝐸𝐸𝐸𝐸)𝐻𝐻𝐻𝐻
𝜋𝜋

64 [(�̅�𝐷𝐻𝐻𝐻𝐻 + 𝑡𝑡𝑛𝑛)4 − (�̅�𝐷𝐻𝐻𝐻𝐻 − 𝑡𝑡𝑛𝑛)4]
(30) 

𝐺𝐺𝐻𝐻𝐻𝐻 =
(𝐺𝐺𝐺𝐺)𝐻𝐻𝐻𝐻

𝐺𝐺𝐻𝐻𝐻𝐻
=

(𝐺𝐺𝐺𝐺)𝐻𝐻𝐻𝐻
𝜋𝜋

32 [(�̅�𝐷𝐻𝐻𝐻𝐻 + 𝑡𝑡𝑛𝑛)4 − (�̅�𝐷𝐻𝐻𝐻𝐻 − 𝑡𝑡𝑛𝑛)4] (31) 

where 𝑡𝑡𝑛𝑛 = 0.34 𝑛𝑛𝑛𝑛 is the value of the nanotube wall thickness. 
The Young’s modulus and shear modulus of armchair-armchair and zigzag-zigzag 

SWCNT HJs were plotted as a function of the heterojunction aspect ratio, 𝜂𝜂 (Fig. 7). Both, 
Young’s modulus and shear modulus decrease with increasing of the HJ aspect ratio. Also, 
the Young’s modulus of HJs is sensitive to the loading condition: the value of 𝐸𝐸𝐻𝐻𝐻𝐻 is higher 
when the force is applied on the narrower nanotube. The difference between the 𝐸𝐸𝐻𝐻𝐻𝐻 values of 
armchair – armchair HJs and zigzag – zigzag HJs is less significant when the force is applied 
on the narrower nanotube. On the contrary, shear modulus of HJs is insensitive to the loading 
condition: the value of 𝐺𝐺𝐻𝐻𝐻𝐻 does not change when the torsional moment is applied on the 
wider or narrower nanotube. The difference observed between shear modulus of armchair HJs 
and zigzag HJ is relatively small. 

a) b) 
Figure 7: Evolution of the Young’s modulus (a) and shear modulus (b) with the heterojunction aspect ratio for 

armchair – armchair and zigzag – zigzag HJs. 

6 CONCLUSIONS 
- Equations 16 – 18 establishing relationships between each of three rigidities and the 

nanotube diameter allowing the easy evaluation of the Young’s modulus and shear 
modulus of SWCNTs by using Equations 24 and 25, without resorting to numerical 
simulation; 

- Equations 28 and 29 allow the easy evaluation of the bending and torsion rigidities of 
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HJs structures, from the respective rigidities of the constituents SWCNT. These 
allows the accurate evaluation of the Young’s and shear moduli of the SWCNTs, 
equivalent to the HJs structures. 
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Abstract. Atomic mechanisms of structural transformations leading to fragmentation in 
vanadium under deformation in constrained conditions without changing its volume are 
investigated on the basis of the molecular dynamics method. The process of formation of a 
fragmented structure in a deformed specimen can be divided into two stages. At the first 
stage, twins nucleate and grow in the crystallite. In the second stage, the orientation of lattice 
in twins may change due to the intersection of twins leading to their anisotropic deformation. 
In this case, the directions of stretching and compression of the crystal lattice in the deformed 
twin quite closely lie in the directions of stretching and compression of the whole crystallite.  
 
1 INTRODUCTION 

The mechanical load when large deformations are reached can lead to a fragmentation of 
the microstructure of the metallic materials. For this purpose, various methods of severe 
plastic deformation (SPD) are most frequently used, for example rolling, equal-channel 
angular pressing and torsion under high pressure [1,2]. It is believed that the main mechanism 
determining deformation-induced fragmentation of grains is dislocation activity such as 
multiplication and interaction of dislocations, as well as the formation of various 
configurations of dislocation boundaries. The formation of these dislocation boundaries is due 
to the fact that dislocation sliding is the prevailing deformation regime in majority of metals 
when loaded by SPD methods at room temperature with ordinary deformation rates (<1 s-1). 

Deformation twinning also plays an important role in deformation of metals [3,4]. It 
becomes the main regime of plastic deformation at low temperatures and/or at high 
deformation rates [5,6]. It is due to the fact that the critical shear stress for twinning becomes 
lower than stress required for dislocation glide. In this case plastic deformation results in the 
generation of numerous deformation twins in the grains and the spacing between neigboring 
twin boundaries may reach an order of nanometers. Further deformation leads to the 
formation of equiaxed grains from twin lamellae. Thus, deformation twinning can be 
considered as a process preceding the nanoscale fragmentation of material. 

The onset and evolution of plastic deformation on a microscopic level determines the 
deformation behavior of materials at higher scale levels. In view of the smallness of the 
spatial and temporal scales of the processes computer simulation is a powerful tool for 
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studying the dynamics of structural transformations at the micro level [7-9]. It should be 
noted that some of the grains in the bulk can be in the constrained conditions during the 
deformation of polycrystalline materials that affect their mechanical response under load. In 
this work, we study the atomic mechanisms of fragmentation of vanadium crystallite under 
deformation in constrained conditions. 

2 SIMULATION DETAILS 
The calculations were based on the molecular dynamics method [10,11]. The interatomic 

interaction in vanadium was described by the Finnis-Sinclair potential [12]. The initial 
crystallite had a parallelepiped shape and was heated to the room temperature. Periodic 
boundary conditions were applied in all directions. To simulate the constrained deformation 
the crystallite was uniformly stretched in one direction and compressed in other two directions 
without changing its volume. The crystallite was stretched along one of following 
crystallographic directions: X - [112̅], Y - [111] and Z - [11̅0]. An analysis of the simulated 
crystallite structure of was carried out using Common Neighbor Analysis (CNA) [13] and the 
Dislocation Extraction Algorithm (DXA) [14]. Visualization of obtained structures was 
performed in the OVITO software [15]. 

3 RESULTS AND DISCUSSION 
It is shown that structural defects begin to nucleate in the material when the threshold 

value of tensile strain is reached. This value depends on the crystallographic direction of 
loading. It is minimal when stretching the specimen along the Y direction and maximum for 
the Z direction. When the threshold value of tensile strain is reached, the potential energy of 
the simulated crystallite decreases abruptly (Fig. 1). 

 
Figure 1: Dependence of the specimen potential energy per atom on the tensile strain along different 

crystallographic directions 
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The process of structural rearrangements in the deformed specimens can be divided into 
two stages. In the first stage, twins nucleate in the specimen, the growth of which is 
accompanied by the generation of the 1/2 <111> and <100> dislocations. The density of the 
1/2<111> dislocations formed is much larger. Dislocations are nucleated at twin boundaries 
and propagate into the volume of matrix. The dislocation density inside the twins is much 
lower than in the surrounding volume. Formed twins grow until they intersect with other 
counterparts. In the second stage, a redistribution of the stresses occurs in the vicinity of 
intersected twins. This can lead to a reorientation of the crystal lattice in the region of twins 
and/or a decrease in their dimensions, until they disappear completely. The typical structure of 
the specimens stretched to a threshold value along different directions is shown in Fig. 2. It is 
seen in the figure that a large twin is formed when tension is applied along the X direction 
(Fig. 2a). Stretching along Y and Z directions leads to the formation of a large number of 
fragments. Moreover, when stretching along the Z direction, the largest number of fragments 
with the smallest average size is formed (Fig. 2c). The results of calculations showed that the 
total volume of fragments for specimens stretched along Y and Z directions is practically the 
same and they occupy approximately 4% of the simulated crystallite volume. The twin 
formed in the specimen stretched along the X direction occupies 10% of crystallite volume. 

     
Figure 2: The defect structure of specimens stretched to a threshold value along the X [ 211 ] (a), Y [111] (b) and 
Z [ 011 ] (c) directions. Specimen fragments reoriented relative to the initial lattice are shown. Each fragment has 

its own color 

We have carried out a comparative analysis of the fragment size distribution in specimens 
stretched along different directions. For this purpose, 10 calculations for each direction were 
performed and the results were summed. On the basis of these data, two intervals can be 
distinguished in which the number of fragments differs significantly for various streching 
directions. Calculations showed that small fragments that contain less than 10 thousand atoms 
are formed in a larger amount in a specimen stretched along the Z direction than along the Y 
one. There are no small fragments in a specimen stretched along the X direction (Fig. 3a). For 
large fragments containing more than 10 thousand atoms, the size distribution is directly 
opposite: the largest fragments are typical for specimens stretched along the X direction. 
Their dimensions are 2-3 times larger than the size of fragments for specimens stretched along 
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X and Y directions (Fig. 3b). The number of such fragments is larger in specimens stretched 
along the Y direction. 

The difference in the number and size of the fragments is related to the orientation of the 
preferred slip systems with respect to the direction of stretching. As a consequence, at the 
stage of plastic deformation nucleation a different number of twin nuclei is formed in the 
crystallite for different load directions. When stretching along the X direction, a twin is 
formed in one of the {112} planes, which subsequently crosses the entire specimen. When 
loaded along the Y direction, one nucleus is formed, consisting of two twins oriented at an 
angle to each other. These twins subsequently become the largest fragments, such as the red 
and green fragments in Fig. 2b. When stretching along the Z direction, a large number of 
twins with a thickness of several atomic layers are formed in one region. Their growth is 
accompanied by the generation of new twins at the periphery of the defective area. Moreover, 
the rate of increase in their longitudinal dimensions (area) is much higher than the rate of 
increase in their transverse dimensions (thickness). As a result, the intersection of these twins 
leads to the formation of a structure consisting of small size fragments (Fig. 2c). 

  
Figure 3: Distribution of fragments by their sizes (<104 atoms (a), >104 atoms (b)) in specimens for different 

directions of stretching  

All reoriented fragments are formed due to the growth and interaction of twins. Some of 
them have orientations that differ from twinning ones. Fig. 4 shows such a fragment in a 
specimen stretched along the Z direction. Initially, when the specimen was loaded, a twin was 
formed (indicated by the arrow in Fig. 4a). As a result of the twin growth and its interaction 
with other defects, the orientation of the region in which the twin nucleated has changed. This 
region and its surroundings are highlighted with a red border in Fig. 4b and are shown in 
Fig. 4c. The orientation of this fragment does not correspond to the twin, which is clearly seen 
from comparing the structures in Fig. 4c and Fig. 4d. The latter shows a part of the twin 
considered, which retained its orientation. An analysis of the structure change in the central 
region in Fig. 4c showed that its crystal lattice is elastically deformed according to the scheme 
shown in the inset of Fig. 4a. In the insert, green and blue atoms from two {110} planes are 
shown, the lines indicate the cross section of the elementary bcc cell by the {110} plane. The 
arrows show that the lattice is compressed in the <110> direction and stretched in the <100> 
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direction. It should be noted that the directions of stretching and compression of the crystal 
lattice in the twin are sufficiently close to the directions of preliminary stretching and 
compression of the entire specimen. The resulting lattice structure in the reoriented fragment 
is shown in the inset of Fig. 4b, the cross section of the elementary bcc cell by the {100} 
plane is highlighted by lines. Thus, the reorientation of fragments of the specimen can occur 
due to deformation of the formed twins. This deformation is elastic and is realized by the 
compression and stretching in different directions by a different value. This leads to the 
formation of a new crystallographic orientation of the lattice without significant rotation of 
the fragment as a whole. 

 
Figure 4: Structure of the two {110} atomic planes of the specimen, stretched along the Z [ 011 ] direction by 
14.75%, after stopping the loading in: a) 10 ps b) 70 ps. Figures c and d show enlarged areas in red and black 

frames in figure b, respectively 

4 CONCLUSIONS 
The vanadium crystallite behavior under constrained deformation without changing its 

volume was studied by means of molecular dynamics simulation. Loading of the crystallite 
leads to nucleation and growth of twins, which is accompanied by the generation of 

979



Aleksandr V. Korchuganov, Konstantin P. Zolnikov and Dmitrij S. Kryzhevich 

 6 

dislocations. The formation and interaction of twins leads to the fragmentation of the 
crystallite. 

The difference in the number and size of the fragments is related to the orientation of the 
preferred slip systems with respect to the direction of streching. The twin of maximum size is 
formed by stretching along the X direction. Stretching along Y and Z directions leads to the 
formation of a large number of fragments. The greatest number of fragments is formed in the 
specimen stretched along the Z direction. The volumes of fragmented parts of the specimens 
stretched along Y and Z directions are almost the same. 

The process of fragmentation of the deformed specimens can be divided into two stages. In 
the first stage, twins nucleate in the specimen, the growth of which is accompanied by the 
generation of dislocations. Formed twins grow until they intersect with each other. In the 
second stage, a redistribution of the stresses occurs in the vicinity of intersected twins. This 
can lead to a reorientation of the crystal lattice in the region of twins and/or a decrease in their 
dimensions, until they disappear completely. 

It is shown that the process of the lattice reorientation in fragments can be realized due to 
anisotropic deformation of the formed twins. The directions of stretching and compression of 
the crystal lattice in the deformed twin quite closely lie in the directions of stretching and 
compression of the whole crystallite. 
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Abstract. Features of primary radiation damages in the near-surface layers of the Fe-Cr 
crystallite were investigated. The calculations were based on the molecular dynamics method. 
It was found that the number of surviving defects at the generation of atomic displacement 
cascades near the free surfaces is almost twice their number than in case of cascade generation 
far away from the various interfaces. Besides it the cascades can knock out some atoms from 
the free surfaces and form some specific structural defects: craters, adatom islands, 
dislocation loops of vacancy type. The crystallographic orientation of the irradiated surfaces 
has a significant influence on the features of the material damage. Craters are much more 
frequently formed at the irradiation of the (111) surface. There is a correlation between the 
size of the vacancy loops and the number of adatoms on the free surface. The size of the 
vacancy loops formed by the irradiation of the (111) surface is slightly larger than the number 
of adatoms. The inverse relationship was found at the irradiation of the (110) surface of Fe-Cr 
crystallite.  

 
 
1 INTRODUCTION 

The primary radiation damage of materials is determined by the evolution of cascades of 
atomic displacements, which are generated in collisions of the decay particles with lattice 
atoms. The internal structure of the material, as well as the chemical composition has a 
significant impact on the nature of radiation damage. So, the survived radiation defects near 
the free surfaces, interfacial and grain boundaries differ in the amount and type from radiation 
defects in the material with ideal structure [1-4]. Grain boundaries accumulate in their regions 
the greatest number of the generated radiation defects [5,6]. They formed the largest clusters 
of point defects. Features of the radiation damage evolution near the free surfaces associated 
with the formation of craters and adatom islands on the surface of the irradiated material, as 
well as the escape of the generated defects onto the surface. As a result of collision of the 
decay particles and atoms of the surface layer, usually a certain number of atoms is knocked 
out from a sample. 
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It is expected that the generation of atomic displacement cascades with energies less than 
50 keV in the surface region most significantly affects the radiation damage of the material. 
This is due to the fact that the evolution of the cascade occurs in the vicinity of the surface. 
The aim of this work is investigation of peculiarities of the radiation defect evolution in the 
atomic displacement cascades in the Fe-10Cr crystallite near free surfaces with different 
crystallographic orientations. 

2 FORMALISM 
Primary radiation damage near free surfaces of the Fe-10Cr alloy was studied on the base 

of the molecular dynamics method [7-9]. Simulations were performed in the LAMMPS 
package [10]. The interaction between atoms was described by the many-body potential 
constructed according to the concentration-dependent embedded atom method [11]. The 
collision of decay particle with the crystallite was simulated by setting a momentum to the 
one of surface atoms – the primary knocked atom (PKA). Direction of PKA momentum was 
perpendicular to the free surface. Periodic boundary conditions were applied in other two 
directions. The PKA energy was equal to 20 keV. Simulated crystallites had the cubic shape 
with 20 nm edges. The irradiated free surface had the (110) or (111) indices. The temperature 
of the crystallite before irradiation was 300 K. Concentration of Cr was 10 at.% which is close 
to concentrations for majority of steels applied in nuclear power plants. About 40 calculations 
with different PKA positions for each irradiated surface were made. The occupancy of 
Wigner-Seitz cells was calculated to identify point defects in irradiated crystallites. Analysis 
of extended defects, such as craters and dislocation loops was based on the Common 
Neighbor Analysis [12] and the Dislocation Extraction Algorithm [13]. Visualization of 
investigated structures was performed in the OVITO software [14]. 

3 RESULTS AND DISCUSSION 
The evolution of cascades of atomic displacements can be characterized by three stages. 

The ballistic stage lasts from the generation of cascade of atomic displacements until a 
number of defects in the cascade reaches its maximum size. At the recombination stage, the 
number of radiation defects decreases as a result of annihilation of the formed self-interstitial 
atoms (SIAs) and vacancies. It finishes when the number of radiation defects reaches 
saturation. At the steady stage, the number of radiation defects is subject to weak fluctuations, 
associated only with thermal and diffusion processes in the material. 

Calculations showed that twice more radiation damage is formed at the steady stage of 
cascade with an energy of 20 keV near the free surface, than at the same energy cascade in the 
volume far from the interfaces. This is due to the knockout of atoms from the surface of the 
sample and the formation of a number of specific structural defects: craters, dislocation loops 
of a vacancy type, adatom islands. Approximately 250 point defects survive (this is without 
taking into account surface defects such as adatoms and craters) in the near-surface region of 
the material. In the case of cascade generation in the material bulk, approximately 110 point 
defects survive and some of which form small clusters. 

The Table 1 presents the calculation results of the number of survived radiation defects at 
the generation of cascades of atomic displacements in the volume of the material and in the 
regions of the (111) and (110) free surfaces. The number of vacancies, without taking into 
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account vacancy loops, is approximately the same for cascades near irradiated surfaces, and 
for cascades in the bulk of the material. The number of SIAs survived in the free surface 
regions is approximately half that in the volume of the material. This is explained by the SIAs 
escape onto the free surfaces and by the knocking out of atoms from the irradiated surface at 
the ballistic stage of the cascade. It can be seen from the table that the number of adatoms on 
the (110) surface is somewhat higher than on the (111) surface. 

 
Table 1: The number of radiation defects in the steady stage formed by cascades of atomic displacements 

with energy of 20 keV in different regions of Fe-Cr crystallite  

Cascade type Number Average size, vacancies 
 Vacancies SIAs Adatoms Crater ½<111> loop <100> loop 

Bulk cascade 54±3 54±3 - - - - 
(110) surface 

cascade 
46±3 26±2 176±26 - 63±8 101±12 

(111) surface 
cascade 

53±3 28±2 127±18 105±16 113±18 75±9 

 

a) b) 
Figure 1: The defect structure of the crystallite with the irradiated (110) surface at different stages of cascade 

evolution: a) the end of the ballistic stage, b) the steady state. Only atoms which symmetry of the nearest 
environment is different from the bcc lattice are shown. Subcascades are numbered by digits. The pink line 

shows the <100> dislocation  

The simulation results showed that near-surface cascades lead to the formation of 
sufficiently large vacancy loops with the 1/2 <111> and <100> Burgers vectors. When the 
(110) surface is irradiated, the <100> vacancy loops are mainly formed in the material. In the 
case of the (111) surface, the 1/2 <111> vacancy loops are formed. The loop size was 
determined by the number of vacancies from which they are consisted. The average size of 
vacancy loops depends on the orientation of the irradiated surface. It should be noted that the 
cascades of atomic displacements generated in the bulk of the material do not lead to the 
formation of vacancy loops (Table). Calculations showed that craters, as a rule, are formed 
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during the generation of cascades of atomic displacements on the (111) surface. The 
formation of craters on the (110) surface is much less frequent. The results of the simulation 
are in good agreement with experimental [15,16] and theoretical data [1,2]. 

A cascade of atomic displacements near the (110) free surface at different stages of 
evolution is shown in Fig. 1. At the ballistic stage, the cascade consists of four subcascades 
(Fig. 1a). The displaced atoms in the region of the main subcascades, whose energy exceeds 
50% of the kinetic energy of the whole cascade, are colored green and orange. At the end of 
the recombination stage, the largest vacancy loop is formed in this region (Fig. 1b). 

The character of the radiation damage of the crystallite structure after the cascade 
generation on the (110) and (111) free surfaces is shown in Fig. 2. It is clearly seen that the 
crater is formed on the (111) surface and the vacancy loops arise in the near-surface regions. 

a) b) 
Figure 2: Radiation damage in the crystallite on the (110) (a) and (111) (b) surfaces. Adatoms are shown in 

green, vacancies in red, and SIAs in blue. The pink and green lines show the <100> and 1/2 <111> dislocations, 
correspondingly. The free surface is colored by grey 

Analysis of the results of calculations shows that there is a correlation between the size of 
the vacancy loops and the number of adatoms. Thus, the number of adatoms on the free 
surface is approximately equal to the size of the vacancy loop (Fig. 3). Deviations from this 
ratio are associated with a small number of surviving point defects and clusters formed from 
them in the crystallite bulk. It is found that the number of adatoms on the (110) surface is 
slightly larger than the number of vacancies that make up the loop. The number of adatoms on 
the (111) surface is, as a rule, smaller than the size of the loop. A sufficiently large number of 
loops left the (111) free surface in the process of crystallite relaxation. 

It follows from the calculations that there is a correlation between the sizes of the surviving 
vacancy loop and the crater on the free surface. So, the smaller the size of the surviving 
vacancy loop, the larger the crater size on the free surface. It was found that the higher the 
kinetic energy of the main subcascade of atomic displacements, the larger the size of the 
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vacancy loop. 

 
Figure 3: The ratio between the number of adatoms and the size of dislocation loops at the steady stage of 

cascade development near the (110) and (111) surfaces. Colors mean different calculations 

 

a) b) 
Figure 4: Distribution of survived SIA (a) and vacancy (b) clusters by their size for cascades generated near the 

(111) и (110) free surfaces and in the bulk 

Since free surfaces are a region of a point defect sink, the number of survived clusters 
consisting of SIAs at irradiation of free surfaces is less than when cascades of atomic 
displacements develop in the bulk of the material (Fig. 4a). Note that the largest clusters are 
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formed by cascades of atomic displacements which are far from free surfaces. In this case 
clusters with size up to 18 SIAs can survive in the bulk of the material. This is almost twice 
the size of clusters in the near-surface regions. The number of clusters of SIAs larger than 6 is 
always less for the (110) surface than for the (111) one. The number of single dumbbells is 
the same for both surfaces. The number of survived vacancies and vacancy clusters with size 
of ≤12 is approximately the same for the generation of cascades in the near-surface region and 
in the bulk. This is due to their low mobility. Figure 4b shows that the largest vacancy clusters 
(except dislocation loops) are formed in the bulk of the material. It should be noted that an 
increase of the atomic volume at constant temperature and pressure can lead to a change in the 
phase composition of the region [17]. 

 

4 CONCLUSION 
The cascades of atomic displacements near the free surface generate twice as many 

radiation defects as cascades developing in the bulk far from different interfaces. This is due 
to the fact that the generation of cascades of atomic displacements in the near-surface region 
leads to knockout of atoms from the free surface, as well as the formation of craters, adatom 
islands and dislocation loops of the vacancy type. The nature of the radiation damage of the 
near-surface region depends on the crystallographic orientation of the irradiated surfaces. In 
the samples with the (111) irradiated surface, as a rule, craters are formed. In the (111) near-
surface region, the 1/2 <111> dislocations are mainly formed, and <100> dislocations arise in 
regions with the (110) orientation. There is a correlation between the number of adatoms on 
the free surface and the size of the vacancy loops. When the (111) surface is irradiated, the 
size of the vacancy loop is somewhat larger than the number of adatoms, while for the (110) 
surface the inverse ratio is observed. A greater number of vacancy loops from the radiation-
damaged region escape on the (111) free surface than on the (110) surface. 
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Abstract. This contribution is focused on a description of implementation details for
solver related to the slope stability benchmarks in 3D. Such problems are formulated by
the standard elastoplastic models containing the Mohr-Coulomb yield criterion and by
the limit analysis of collapse states. The implicit Euler method and higher order finite
elements are used for discretization. The discretized problem is solved by non-smooth
Newton-like methods in combination with incremental methods of limit load analysis.

In this standard approach, we propose several innovative techniques. Firstly, we use
recently developed sub-differential based constitutive solution schemes. Such an approach
is suitable for non-smooth yield criteria, and leads better return-mapping algorithms.
For example, a priori decision criteria for each return-type or simplified construction of
consistent tangent operators are applied.

The parallel codes are developed in MATLAB using Parallel Computing Toolbox.
For parallel implementation of linear systems, we use the TFETI domain decomposi-
tion method. It is a non-overlapping method where the Lagrange multipliers are used to
enforce continuity on the subdomain interfaces and satisfaction of the Dirichlet boundary
conditions.

1 INTRODUCTION

In our paper, we focus on parallel implementation of the new approach introduced
in [12], which is based on MATLAB codes. The parallelization is based on the TFETI
domain decomposition method [5], which is a modification of the original FETI method
proposed by Farhat and Roux [7].

1

989



Martin Cermak and Vaclav Hapla and David Horak

We investigated the parallel implementation of a solver for small-strain, quasi-static
elastoplastic problem that contains the Mohr-Coulomb yield criterion, associative flow
rule, and perfect plasticity. The incremental constitutive problem is usually solved by the
elastic predictor/plastic corrector method. The plastic correction is also called (implicit)
return-mapping scheme. The improved scheme in [12] is based on the sub-differential
formulation of the plastic flow rule. It leads to a priori information whether the unknown
stress tensor lies on the smooth portion, on the “left” edge, on the “right” edge, or at the
apex of the pyramidal yield surface, even if the nonlinear isotropic hardening is considered
within the model.

The procedure of solving the problem in parallel is very similar to the classical solu-
tion. The main differences are: a) the original mesh is partitioned by METIS [10] into
subdomains, and it is necessary to assemble the TFETI objects for each subdomain such
as the equality constraint matrix and the kernel matrix, and these matrices do not change
during the computation process [13]; b) the stiffness matrix, right hand side and other
objects are assembled for each subdomain in each Newton step; c) in each Newton step,
the dual formulation in the Lagrange multipliers is solved instead of the primal formula-
tion in displacement; d) in contrast to the approach introduced in [12] where two loops
(loading step, Newton step) are considered, we add another loop for the iterative solver
(conjugate gradient) which solved the linearized problem in each Newton iteration.

In the text, we assume a deformable body from an elastoplastic material. The mate-
rial model contains the Mohr-Coulomb yield criterion, the associative flow rule, and the
nonlinear hardening law as in [2, 4]. For the sake of simplicity, consider an elasto-plastic
problem in 3D. Let Ω be a polygonal 3D domain and Th denote its triangulation. Further,
consider linear and conforming elements. So the displacement fields are approximated by
continuous and piecewise linear functions, and the strain, stress and isotropic hardening
fields are approximated by piecewise constant functions.

The paper is organized as follows. In Section 2, we introduce the initial value con-
stitutive problem for the Mohr-Coulomb plastic criterion with the implicit Euler time
discretization; in Section 3, we summarize the TFETI domain decomposition method
and algebraic formulation of our investigated problem; in Section 4, several implementa-
tion details for the parallel code in MATLAB are briefly summarized. We illustrate the
performance of our algorithm on the slope stability benchmark in 3D in Section 5.

2 THE CONSTITUTIVE INITIAL VALUE PROBLEM OF THE MOHR-
COULOMB CRITERION AND THE IMPLICIT EULER DISCRETIZA-
TION

The initial value constitutive problem reads:

Given the history of the strain tensor ε = ε(t), t ∈ [0, tmax], and the initial values εp(0) =
εp0, ε̄

p(0) = ε̄p0, find (σ(t), εp(t), ε̄p(t)) such that the conditions

σ = De : (ε− εp), κ = H(ε̄p),

ε̇p ∈ λ̇∂g(σ), ˙̄εp = −λ̇∂f(σ,κ)
∂κ

,

λ̇ ≥ 0, f(σ, κ) ≤ 0, λ̇f(σ, κ) = 0.




(1)

2
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hold for each instant t ∈ [0, tmax].

Here, σ, εp, ε̄p, λ denote the Cauchy stress tensor, the plastic strain, the hardening vari-
able, and the plastic multiplier, respectively. The dot symbol means the pseudo-time
derivative of a quantity. The functions f and g represent the yield function and the
plastic potential for the Mohr-Coulomb model, respectively. They are defined as:

f(σ, κ) = (1 + sinφ)ω1(σ)− (1− sinφ)ω3(σ)− 2(c0 + κ) cosφ, (2)

g(σ) = (1 + sinψ)ω1(σ)− (1− sinψ)ω3(σ), (3)

where ω1 and ω3 are the maximal and minimal eigenvalue functions, and ∂f(σ, κ)/∂κ =
−2 cosφ.

Further, the fourth order tensor De represents the linear isotropic elastic law

σ = De : ε
e =

1

3
(3K − 2G)(I : εe)I + 2Gεe, De =

1

3
(3K − 2G)I ⊗ I + 2GI, (4)

where εe = ε− εp, K and G (K,G > 0) denote the elastic part of the strain tensor, bulk
and shear moduli, respectively.

Finally, we let the function H representing the non-linear isotropic hardening in an
abstract form and assume that it is a nondecreasing, continuous, and piecewise smooth
function satisfying H(0) = 0.

It is worth mentioning that the value tmax need not be always known. Let

0 = t0 < t1 < . . . < tk < . . . < tN = tmax

be a partition of the interval [0, tmax] and denote σk := σ(tk), εk := ε(tk), ε
p
k := εp(tk),

ε̄pk := ε̄p(tk), ε̄
p,tr
k := ε̄p(tk−1), ε

tr
k := ε(tk) − εp(tk−1), and σtr

k := De : εtrk . Here, the
superscript tr denotes the so-called trial variables (see, e.g., [4]) which are known. If it
is clear that the step k is fixed, then we will omit the subscript k and write σ, ε, εp, ε̄p,
ε̄p,tr, εtr, and σtr to simplify the notation. The k-th step of the incremental constitutive
problem discretized by the implicit Euler method reads:

Given σtr and ε̄p,tr, find σ, ε̄p, and �λ satisfying

σ = σtr −�λDe : ν, ν ∈ ∂g(σ),

ε̄p = ε̄p,tr +�λ(2 cosφ),

�λ ≥ 0, f(σ, H(ε̄p)) ≤ 0, �λf(σ, H(ε̄p)) = 0.




(5)

Unlike Problem (1), the unknown εp is not introduced in (5). It can be simply computed
from the formula εp(tk) = ε(tk) − D−1

e : σ(tk) and used as the input parameter for the
next step. To solve the incremental problem, we use the standard elastic predictor/plastic
corrector method.

The elastic predictor. First, we verify whether the trial generalized stress (σtr, ε̄p,tr) is
admissible:

f(σtr, H(ε̄p,tr)) ≤ 0. (6)
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If this inequality holds, then we set

σ = σtr, ε̄p = ε̄p,tr, �λ = 0.

It is readily seen that the triplet (σ, ε̄p,�λ) solves the incremental problem.
The plastic corrector (the implicit return-mapping scheme). Let (6) not hold and as-

sume that the incremental constitutive problem has a solution. Then clearly �λ > 0,
and the problem reduces into the following form:
Given εe,tr and ε̄p,tr such that f(σtr, H(ε̄p,tr)) > 0, find σ, ε̄p and �λ > 0 satisfying

σ = σtr −�λDe : ν, ν ∈ ∂g(σ),

ε̄p = ε̄p,tr +�λ(2 cosφ),

f(σ, H(ε̄p)) = 0.





(7)

If the plastic potential g is differentiable on the yield surface, then the flow direction
ν is always single valued, and the return-mapping scheme leads to solving a system of
nonlinear equations. In [12] you can find details how to return to the smooth portion, to
the “left” edge, to the “right” edge, and to the apex of the pyramidal yield surface, as
well as how to construct nonlinear and tangential operators. The algebraic formulation
of the elastoplastic problem is formulated in [3] for the Drucker-Prager criterion and in
[14] for the von Mises criterion in combination with TFETI, which is summarized in the
following section.

As we mentioned above, we solved the nonlinear system of equations in each time step.
The semi-smooth Newton method [11] is applied to the nonlinear system of equations in
order to linearize it.

After preparing the tangential stiffness matrix and load vectors according to [12], we
can formulate the following problem:
Find increment of displacement �uk+1 ∈ V so that

vT
(
F k(�uk+1)−�f k+1

)
= 0 ∀v ∈ V , (8)

where �f k+1 is the increment of the load vector, F k is the nonlinear operator, and V is
the set of admissible displacements

V = {v ∈ Rn|BUv = o} .

The relation BUv = o represents the Dirichlet boundary conditions. The nonlinear
equations (8) can be linearized by the semi-smooth Newton method.

3 TFETI AND ALGEBRAIC FORMULATION OF THE PROBLEM FOR
ELASTO-PLASTIC BODIES

To apply the Total FETI (TFETI) domain decomposition method (DDM), we tear the
body from the part of the boundary with the Dirichlet boundary condition, decompose it
into subdomains, assign each subdomain a unique number, and introduce new “gluing”
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conditions on the artificial subdomain interfaces and on the boundaries with the imposed
Dirichlet condition. Let s denote the total number of the subdomains.

In the case of TFETI, the global stiffness matrix K and right-hand side f are assembled
only subdomain-wise, and take the form

K = diag(K1, . . . ,Ks),

f = [(f1)T , . . . , (f s)T ]T ,

where Kp and fp, p = 1, . . . , s, are the fully assembled stiffness matrix and load vector of
the subdomain Ωp, respectively. Then also the unknown vector of displacements u can
be subdivided as

u = [(u1)T , . . . , (us)T ]T ,

where up, p = 1, . . . , s, is the vector of displacements of subdomain Ωp.
TFETI is a dual approach, which means that the interface compatibility is enforced by

introducing the Lagrange multipliers. In the case of TFETI, also the Dirichlet boundary
conditions are enforced (see Figure 1) in this way whereas Kp remains unchanged, and
hence it is singular. The resulting equality constraints can be written as

Bu = o,

whereB is a signed Boolean matrix. It can be split vertically into two blocks corresponding
to the gluing part BG and the Dirichlet part BD.

Figure 1: The TFETI domain decomposition method for unit cube.

Introducing the Lagrange multipliers λ to enforce the interface compatibility, the global
problem takes the equivalent primal-dual form

[
K BT

B O

] [
u
λ

]
=

[
f
o

]
. (9)
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Let us establish notation

F = BK†BT , G = −RTBT , d = BK†f , e = −RT f .

K† denotes a generalized inverse of K, satisfying KK†K = K. Notice K† inherits the
block-diagonal structure from K and each block (K†)p is the generalized inverse of Kp.
We obtain a new linear system with unknowns λ and α

[
F GT

G O

] [
λ
α

]
=

[
d
e

]
. (10)

For more details about solving this system and preconditioning, see [6, 1].

4 IMPLEMENTATION DETAILS

Our parallel implementation is based on the TFETI DDM. To apply this method, the
original domain is partitioned into subdomains first. One of the widely used software tools
for this task is METIS [10], which allows meshes to be partitioned in 2D and 3D. This
software returns the number of subdomains for each element in the original mesh. Based
on this partitioning, we assemble the objects for each individual subdomains indepen-
dently. The local-to-global maping is constructed and the elements and nodes belonging
to the interface are identified in order to assemble the equality constraint matrix B.

The equality constraint matrix B consists of the Dirichlet part BD and the gluing part
BG. We have three ways how to assemble the gluing part BG: redundant, non-redundant
and orthonormal case, see [8]. In our code we allow all options but we recommend a) and
c) for better convergence.

Two well known preconditioners were implemented: Dirichlet and lumped, see [6,
1]. The Dirichlet preconditioner needs a smaller number of CG iterations but is more
expensive than the lumped one.

In our implementation, we use three loops: the outer loop for the loading process
represents the direct method; the middle loop for the semi-smooth Newton method; and
the inner loop for the linear iteration solver, more specifically the preconditioned conjugate
gradient method with projector (PCGP). The first two loops were introduced in [12] in
detail and the last one in [14].

For parallel computation, we use MATLAB Distributed Computing Server and MAT-
LAB Parallel Toolbox for sending and receiving data via its Message Passing Interface
(MPI) wrappers.

5 NUMERICAL EXPERIMENTS

We implemented the direct method of incremental limit analysis in MATLAB for the
3D slope stability problem. The code is parallelized by MATLAB Parallel Toolbox as
we mentioned in the previous section, and includes the improved return-mapping scheme
for the Mohr-Coulomb model. The available options include a) several types of finite
elements with appropriate numerical quadratures; b) locally refined meshes with various
densities; c) different preconditioners; d) different types of the equality constraint matrix.
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We consider the extension of the benchmark for the plane strain problem introduced
in [4, Page 351] for the 3D case. Further, we set E = 20 000 kPa, ν = 0.49, φ = 20◦ and
c = 50 kPa, where c denotes the cohesion for the perfect plastic model. The stopping
tolerance of the Newton and CG loops are set to εNewton = 10−7 and εCG = 10−12,
respectively.

All numerical experiments were computed on the Salomon supercomputer. The Sa-
lomon cluster consists of 1008 compute nodes, totaling 24,192 compute cores with 129 TB
RAM and giving over 2 Pflop/s theoretical peak performance. Each node is a powerful
x86-64 computer, equipped with 24 cores, at least 128 GB RAM. The nodes are intercon-
nected by 7D Enhanced hypercube InfiniBand network and equipped with the Intel Xeon
E5-2680v3 processors. The Salomon cluster consists of 576 nodes without accelerators
and 432 nodes equipped with the Intel Xeon Phi MIC accelerators.

Within this slope stability experiment, we compared the loading paths for the Q1
and Q2 hexahedral elements with 8 and 20 nodes, respectively, simillarly as in [12]. We
consider 2 × 2 × 2 and 3 × 3 × 3 nodes integration quadratures for these element types,
respectively. For the Q1 elements, the meshes contain 5103 and 37597 nodal points.
For the Q2 elements, the meshes contain 19,581 and 147,257 nodal points. We use the
direct method of the incremental limit analysis which is terminated when the computed
settlement exceeds 4 meters. For parallel computing, we use 4 and 20 cores on Salomon
for level 1 and 2, respectively.

The corresponding loading paths are depicted in Figure 2. We can see that the loading
paths are very similar to loading paths which were introduced in [12]. Figure 3 illustrates
a failure at the end of the loading process for the Q2 elements and the finer mesh.

The computation time of our approach is worse than the time which we need for the
sequential version of the code in MATLAB, but this implementation gives us the oppor-
tunity to compute bigger problems and guidelines how to implement it more efficiently
for example in our PERMON toolbox [9].

Figure 2: Comparison of the loading paths
for Q1 and Q2 elements.

Figure 3: Total displacement and original
shape at the end of the loading process.
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6 CONCLUSIONS

In this paper, we have briefly summarized our parallel implementation of the Mohr-
Coulomb plastic criterion, which is based on the new approach introduced in [12] and
the TFETI DDM. This approach allows us to compute bigger benchmarks and estimate
the limit value to get closer to the expected value of 4.045 (which is the experimentally
measured limit value of the slope stability experiment).
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