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Abstract. This paper introduces a versatile hysteretic constitutive law, developed for
various joints with steel fasteners commonly used in timber structures (nails, screws,
staples, 3D connectors of bracket type, punched plates). Compared to previous models
available in literature, the proposed one improves numerical robustness and represents a
step forward by taking into account the damaging process of joints with metal fasteners.
Experimental tests carried out on joints are used for calibration purpose, and quasi–static
and dynamic tests performed on shear walls allow validating the proposed Finite Element
model. Finally, the development of a computationally efficient simplified FE model of
timber–frame structures for shear walls is described, with emphasis on its validation and
its use at the scale of a complete structure.

1 INTRODUCTION

The study presented in this paper is motivated by two facts. Firstly, timber–frame con-
struction is becoming a common building system in Europe and they present many qual-
ities, one of which being their good earthquake resistance due to the excellent strength-
to-density ratio of timber and to the ductility of joints with metal fasteners, respectively
leading to limited inertia forces and providing good energy dissipation. Secondly, the
recent European code for design of earthquake resistant buildings is accompanied in some
countries by a new seismic hazard map. In France, based on this revised map, earth-
quake resistance calculations are now mandatory in a much larger part of the territory.
Therefore, the seismic behaviour of timber–frame structures has to be studied, in order
to better understand their global and local behaviours. This study focuses on shear walls,
as they contribute the most to the energy dissipation of structures.
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Because nonlinear dissipative phenomena in timber–frame structures are mainly con-
centrated into joints, simplified force–displacement models for joints can be derived from
refined analytical or FE models [3, 4, 11] or by fitting results of tests performed on joints.
The proposed approach is based on a multi–scale concept, as proposed previously by dif-
ferent authors [13, 7, 14]. Such an approach requires a behaviour law to represent the
force–displacement evolution at each scale. Numerous constitutive laws have been devel-
oped over the years, from the nonlinear laws for monotonic loads (e.g. [8]) to hysteretic
models of various complexities [2, 6, 15, 14, 12]. A new model, developed by [10], can be
considered as an improvement of Richard and Yasumura models [13, 15] and fulfils the
following needs:

• The Richard’s behaviour law showed that for some sets of parameters (e.g. for
metal punched plate), an exponential function does not provide a strict analytical
continuity at one end of the branch leading to numerical issues [10]. This issue is
shared by all models using the exponential functions.

• The law should model asymmetric behaviour, such as those of punched metal plates
for roof trusses and 3D connectors of bracket type. As far as we know, all afore-
mentioned behaviour laws would require new developments to meet this need.

• In the aim of reliability analysis of structures, it is convenient to develop a robust
model defined by means of physical parameters such as displacement, forces and
stiffnesses whose variabilities can be identified. While most of the models already
meet this condition, the BWBN model [14] does not.

It is important to notice that the hysteretic behaviour of nailed wood joints governs the
response of many wood systems when subjected to lateral loadings, force–displacement
backbone and hysteresis curves of shear walls and joints are then similar in shape. Thus,
a common feature to all the previous force–displacement models is that they can be used
to describe the constitutive behaviour of joints as well as the global shear wall response
to lateral forces.

In this paper, a new hysteretic constitutive behaviour law for joints and timber–frame
structures is proposed and its application to the modelling of OSB and Particleboard
sheathed shear walls is presented. Quasi-static experimental tests on metal fasteners
(nails, 3D connectors of bracket type and punched plates) are performed to calibrate
their hysteretic constitutive behaviour. 14 quasi-static and 12 dynamic tests on several
configurations of shear walls are carried out to validate the numerical model for shear walls.
This important number of tests limits the effects of the experimental variability. Once
the refined FE model is fully validated thank to experimental quasi–static and dynamic
tests, a simplified FE model of shear wall is developed in order to reduce calculation costs.
This simplified model is defined by a very limited number of degrees of freedom (DOF). It
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is calibrated on quasi–static force–displacement evolutions and used to perform dynamic
calculations. Yet, the calibration is rarely validated by comparing the dynamic behaviour
of the refined and simplified FE models, or by using experimental dynamic tests on a
single shear wall. This validation step is emphasized in this paper. Finally, an illustration
of the whole process is illustrated by the modelling of a 3D timber–frame structure.

2 FORCE–DISPLACEMENT HYSTERETIC MODEL

The one dimensional constitutive model is shown in Figure 1. The branches of the
force–displacement model are grouped into two distinct categories and numbered from
(0) to (5). A first group formed by branches (0) to (3) describes the behaviour under
monotonic loading. The initial linear branch (0) ranges from the zero displacement up
to the yield displacement dy. The corresponding elastic stiffness is K0. This branch is
followed by branch (1), which models the non-linear phenomena in the joint up to the
force peak at (d1,F1). After the force peak, branches (2) and (3) model up to the ultimate
displacement du at force Fu associated to the collapse of the joint. Fu is generally chosen
null to ensure a correct continuity of forces and prevent numerical issues. Therefore, 9
parameters describe the force–displacement behaviour under monotonic loading. Branch
(1) is defined using a rational quadratic Bézier curve and provides a strict analytical con-
tinuity of forces.

Figure 1: Proposed force–displacement model ([10])
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A second group of branches describes the hysteresis loops which are typically observed
when the joint undergoes a reversed loading. Starting from a previously reached loop
peak (upk,Fpk), branch (4) models the nonlinear elastic unloading down to a null force. A
residual displacement dc 6= 0 is commonly observed due to prior plastic deformations. The
unloading stiffness K4 is either: a) proportional to the elastic stiffness K0 of the joint; or
b) proportional to the secant stiffness Fpk/upk in order to model a stiffness decrease with
displacements of increasing amplitude. Following this unloading, loading in the opposite
direction is modelled with branch (5). The stiffness at dc between branches (4) and (5) is
denoted Kc and is used as a tangent for both branches for the sake of continuity. Branch
(5) eventually reaches the previous loop peak (u•pk,F •pk) in the opposite loading direction.
Like the unloading stiffness K4, the reloading stiffness K5 is proportional to the elastic
stiffness K0 or to the secant stiffness Fpk/upk. A second set of 4 control parameters Ci=1,...,4

governs the shape of the hysteresis loops. This allows modelling several mechanical be-
haviours, in particular, the thickness of the pinching area can be adjusted. Parameters C1

and C2 control the unloading stiffness K4 and reloading stiffness K5 respectively. Param-
eter C3 controls the tangent stiffness Kc at location (dc,0). Finally, parameter C4 controls
the value of the residual displacement dc after the non-linear elastic unloading. These 4
control parameters Ci=1,...,4 depend mainly on the phenomena involved, and therefore on
the configuration of the modelled system. They are constant for a given configuration.

Finally, a third set of 3 parameters controls the damage process of the model. The
word damage refers here to the decrease of strength under cyclic. It is based on the
hypothesis that the hysteresis loops are bound by the backbone curve which models
the force–displacement evolution of the joint under monotonic loading. During the first
loading, the peak (upk,Fpk) is located on the backbone curve. The damage process defines
the evolution of the ratio (1-D) between the “non-damaged load” Fmono and the “damaged
load” Fpk. The scalar damage indicator D ranges from 0 to 1, where D = 0 corresponds to
a non-damaged mechanical system and D = 1 corresponds to a fully collapsed mechanical
system. D is increased of ∆D at each change of the force sign ((4) to (5) in Figure 1). To
ensure the damage stabilization after a few cycles of constant amplitude as experimentally
observed, an upper limit D∞ for the displacement dmax is defined, using a power law (eq 1).
A power term Br > 1 ensures that the damage remains moderate before the force peak
and becomes heavy after the peak.

D∞ = Bc (dmax/d1)Br (1)

SCALE 1: JOINTS WITH METAL FASTENERS

In this section, the experimental tests carried out on joints with metal fasteners are
presented. Then, the calibration process of parameters of the constitutive model of joints
is described.
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Experimental tests

Experimental tests on joints with metal fasteners (scale #1) are achieved to provide
input data for the numerical model of shear wall (scale #2). There are three different
steel joints in a shear wall: Panel-to-Frame (P2F) joint (Figure 2.a) made with nails,
Frame-to-Frame Nail (F2F Nail, Figure 2.b) between the top / sill plate and the studs
and Frame-to-Frame Bracket (F2F Bracket, Figure 2.c) at both ends of the shear wall,
which have to be strengthened in order to prevent uplift of the exterior studs.

Three configurations are considered in this study: OSB 9 and 12 mm with 2.1x45 mm
nails and Particleboard 16 mm with 2.5x50 mm nails, respectively named OSB9, OSB12
and P16. Figure 2.a shows the principle of these tests which consists in a shear test, first
under a monotonic loading, then under a reversed–cyclic loading. F2F Nail joints were not
tested and the results of tests achieved by [13] are used. These tests (Figure 2.b) consist
in a cyclic pull–out load on a joint. The same tests are performed on F2F joints made of
three–dimensional connectors of brackets type only (Figure 2.c). For each configuration,
tests were repeated 2 times for monotonic loading and 5 times for reversed cyclic loading.

(a) Panel-To-Frame (b) Frame-To-Frame Nail (c) Frame-To-Frame 3D
connector

Figure 2: Experimental tests on metal fastened joints

Calibration of the force–displacement model of joints

The results of the tests carried out on P2F nails are used to calibrate the constitutive
model. Two levels of calibration are distinguished. The first level is a direct calibration
which consists in reproducing one particular test. The second level is an average cali-
bration which consists in calibrating the parameters to reproduce the average behaviour
of several experiments. Figure 3.a presents a direct calibration of parameters for a P2F
nail joint. It is obtained by calculating the backbone curve parameters from a single
test under monotonic loading and by calibrating the pinching and damage parameters by
successive simulations. Using the direct calibration as a starting point, backbone curve
parameters are re–calibrated so that the simulation now reproduces the average envelope
curve of all available cyclic tests. Figure 3.b presents the average envelope curve and the
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calibrated model. This process provides joint models to be used in the subsequent shear
wall modelling.

-800

-600

-400

-200

 0

 200

 400

 600

 800

-10 -5  0  5  10

F
o

rc
e

 (
N

)

Displacement (mm)

Experimental
Numerical

(a) Direct calibration

-800

-600

-400

-200

 0

 200

 400

 600

 800

-10 -5  0  5  10

F
o

rc
e

 (
N

)
Displacement (mm)

Average Envelope
Numerical

(b) Average calibration

Figure 3: Calibration of the hysteretic model for a 2.1 mm × 45 mm P2F nail in a 9 mm OSB panel

For F2F Nail connections, the compression (contact between the two timber elements)
is linear and the stiffness is calculated according to material characteristics and the di-
mensions of the section in contact. The pull–out behaviour is bilinear and parameters are
estimated from tests carried out by [13]. The shear behaviour is linear and symmetrical.
For F2F bracket connections, experimental tests were carried out on E5 R© 3D connectors
in shear and pull-out. That was not the case for joints made with AH 3D connectors,
for which the behaviour is estimated based on the connector’s dimensions and material
properties and set as bilinear. Shear behaviour is linear and symmetric. The E5 R© pull–
out behaviour parameters are calibrated with the same method as P2F connections. Note
that for all joints (P2F and F2F), there is no rotational stiffness implemented.

SCALE 2: TIMBER–FRAME SHEAR WALL

In this section, the experimental tests carried out on shear walls are presented. Then,
the refined FE model of shear wall is described and its prediction are confronted to
experimental results.

Experimental tests

Figure 4 describes the studied shear wall. The frame is made of C24 timber and wood–
based panels are nailed to the frame. In this study, OSB panels and particleboards are
used. The spacing between two P2F joints along the perimeter of the panel is set to
150 mm (sext) and 300 mm (sint) along intermediates studs. F2F joints are made by
means of 3.1 mm × 90 mm nails. At both ends, 3D connectors of bracket type are added
to prevent the uplift of the exterior studs (E5 R© standard or AH2950/2 R© reinforced con-
nectors). Anchorage to the test machine is performed with bolts. For quasi–static tests,
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one push–over and two reversed–cyclic tests are achieved for each configuration tested.
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Figure 4: Shear wall description and principle of reversed cyclic tests

Dynamic tests are performed on the unidirectional shake table of the FCBA Technolog-
ical Institute at Bordeaux, France. The dead load (1500 or 2000 kg) is directly attached
on the top of the shear wall and the out–of–plane instability is limited by means of a fric-
tionless guiding system quite similar to the one described in [5]. For each configuration of
specimen and each mass (1500 or 2000 kg), three seismic tests were achieved with three
different accelerograms. Two are natural signals (l’Aquila 2009 (GX066) and El Salvador
2001 (Zacatecoluca)) and the third is modified so that its frequency content correspond to
the design spectra of the Eurocode 8. Tests are performed by repeating one accelerogram
with increasing scaling ratios of the PGA.
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Figure 5: Refined FE model of shear wall

The finite element modelling of shear
walls is carried out by means of beam,
plate and two–node spring–like finite el-
ements. The constitutive behaviour pre-
sented previously is implemented into the
free software Code Aster1. Euler beam el-
ements model the frame and their mate-
rial properties correspond to a C24 tim-
ber. Four–node plate elements model the
panels, and their material properties cor-
respond to OSB or Particleboard panels.
Each two–node spring–like element models

1All documentation is available at www.code-aster.org
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a metal fastener joint whose properties are given by the previous calibration.

The sill plate is considered as embedded, since insignificant displacements are recorded
in tests. For quasi–static loading, the top plate undergoes an imposed displacement. As
for the tests, lumped masses are added to the frame plate in order to account for the roof
weight and / or upper story (1500 or 2000 kg per shear wall). The damping matrix is build
with the Rayleigh method (C = αK + βM), such that α end β are equally distributed
on the two first vibration modes. Experimental results showed that the global damping
ratio (ξglob) is between 6 and 9 % for maximal relative displacements not exceeding 1 mm.
Assuming that the energy dissipation is concentrated in the metal fasteners, a viscous
damping ratio (ξvisc) is identified such that the addition of viscous damping dissipation
and hysteretic dissipation for all the joints allows to correctly predict the free vibration
of the wall for a maximal relative displacement inferior to 1 mm. The identification led
to ξvisc = 5 %. This damping ratio is thus taken into account for each joint and for all
calculations.

FE model validation

The model predictions are compared to experimental results obtained from 14 quasi–
static tests and 12 dynamic ones. For quasi–static loading, the results show that the peak
forces predicted by the numerical model are in good agreement with the experimental
results (the average error is around 5% with a maximum of 11%). One example of pre-
dictions is presented in Figure 6.a (full results are in [1]), it can be seen that the model
predictions are in good agreement with the experimental behaviour, as pinching and peak
forces of the hysteresis loops are in accordance with the experimental data.
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Figure 6: Comparisons of test results and numerical predictions

In order to complete the validation of the refined FE model, dynamic calculations
are carried out and results are compared to the experimental dynamic tests. Figure 6.b
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presents experimental and predicted displacement–time evolutions for a P16 specimen
with a mass of 1500 kg (PGA = 0.33 g). The FE model is generally in good agreement
with the experimental results. Average error in peak displacement only exceed 10 % for
long simulated time (more than 60 sec).

SCALE 3: STRUCTURE

The modelling of a whole 3D timber–frame structure at the scale of elementary com-
ponents (joints, framing, sheathing...) may lead to important computational costs. Thus,
a macro–scale finite element is proposed to model shear walls.

Simplified FE model development and calibration

The simplified FE model is composed of a frame of bars ensuring the hypothesis of
a parallelogram–like deformation of the wall, therefore modelling only the shearing be-
haviour (i.e. in and out-of-plane bending and overturning effects are not taken into
account). This hypothesis is based on previous studies [9], experimental observations and
refined FE model results. The in–plane horizontal degree of freedom of the simplified ele-
ment is modelled by the previously described constitutive hysteretic behaviour law, whose
parameters are identified thanks to the results of the refined FE model under quasi–static
loadings. The roof load, which is predominant, is modelled with two lumped masses m/2.
The calibration process is similar to the direct calibration of the joints.

Simplified FE model validation

The macro–element model is calibrated for quasi–static loading and then used for
dynamic calculations. In order to assess the accuracy of its behaviour under dynamic
loading, the simplified FE model predictions and the experimental results under dynamic
loading are now compared, those predictions can also be compared to those of the refined
FE model. The dynamic calculations carried on both the refined and the simplified
models showed that the computation time ratio is about 12. Results show that while the
simplified and the refined FE models match perfectly under quasi–static loading, it is less
the case under dynamic loading. The simplified FE model is based on the idealization
of the refined FE model behaviour, which is not perfect but shows nevertheless a good
agreement. When compared to the experimental results, the errors due to the simplified
FE model predictions are slightly greater than the ones obtained with the refined FE
model.

Use of the simplified FE model

The simplified FE model is developed in order to build accurate and computation
time efficient models of buildings. A whole 3D building model is obtained by connecting
different simplified FE models. Openings can be modelled either by a simplified FE
model that includes adjacent shear walls, or by a specific simplified FE model limited to
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the opening area. The latter is proposed in this study for the following reasons:

• Calculations showed that the maximal force is proportional to the length of the wall.
Thank to this property, the number of necessary refined FE models to calibrate the
simplified ones is reduced to one. This property is only valid for blind shear walls
(without openings).

• The opening area can be modelled by a specific simplified element, which necessitates
a refined FE model for its calibration. Yet, due to the opening and the relatively
small dimensions of the simplified element, the refined FE model is relatively light
and therefore quickly developed and calculated.

A single story house (6× 6 m) model is built according to the aforementioned method.
Shear walls are modelled by means of the simplified elements, and are linked one to an-
other by ball–and–socket connections. All the top nodes of the simplified elements are also
attached to an horizontal diaphragm made of four beams placed in diagonal (Figure 7.a).
A refined model of roof has been developed, following the same modelling principles than
the refined models of shear walls (Figure 7.b). It is attached to the simplified shear walls
by spring–like elements modelling 3D connectors of bracket type. The development of
a simplified element of roof is considered irrelevant, as the refined one does not require
an important computational time compared to refined models of shear walls. Figure 7.c
shows the model of the single story house. It has been developed in order to design an
experimental test of such a structure on the shake table of the CEA at Saclay, France.

(a) Shear walls and horizontal
diaphragm

(b) Refined model of roof (c) House model

Figure 7: Mesh of the structure

The design of the seismic test is ongoing work. Dynamic calculations are carried out
by using two–directional earthquake signals (North–South and East–West) in order to
predict the behaviour of the structure. Figure 8.a displays an example of the house de-
formations, and Figure 8.b shows the displacement–time evolution of one of the wall.
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(a) Deformation of the house during a dynamic
calculation
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(b) Displacement–time evolution of a wall

Figure 8: Dynamic calculation for the two–directional Kobe earthquake signal

CONCLUSION

This paper is dedicated to the development of a versatile hysteretic constitutive be-
haviour for timber joints made of metal fasteners. The main features of the model are
its ability to accurately describe the hysteretic behaviour, notably by considering the
damage effects (strength reduction), and its numerical robustness. Application of this
constitutive behaviour law is then described for the multi–scale modelling of a timber–
frame structure in the scope of an analysis under dynamic loading. Experimental results
of tests performed on timber joints with metal fasteners are used for the identification
of the model parameters. Using these calibrated models of joints, a FE model of shear
wall is developed. The FE model predictions are compared to the experimental results of
14 quasi–static tests and 12 dynamic tests for validation. Those comparisons show that
the FE model accurately predicts the experimental behaviour of different configuration of
shear walls.

In order to reduce the calculation time for dynamic simulations, a simplified FE model is
developed. The calibration of this element is based on the refined FE model results under
quasi-static loadings. The results obtained with the two models for dynamic calculations
are compared. The results are reasonably close and the simplified model provides a
significant gain in calculation time. The discretization of a wall into several simplified
elements is based on the property of proportionality between the maximal force of a full
shear wall and its length. Finally, the simplified model is used to build a 6 × 6 m single
story house. This FE model of a complete structure is used to design a future seismic
test, which is currently ongoing research.
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