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ABSTRACT
The dominating material test for sheet metal is the uni-axial tensile test, the test does however, cover
a very limited deformation-range. The demand for alternative identification schemes for identification
of constitutive parameters is getting more pronounced as the complexity of the constitutive equations
is increasing i.e. the number of parameters subject to the identification is increasing. Furthermore, the
constitutive parameters can is some cases not be determined solely from the uni-axial tensile test e.g.
for an exact identification of the coefficients for Barlat’s Yld2000-2d and Yld96, data for the biaxial
yield stress is needed.

1 INTRODUCTION
A general framework for inverse identification of constitutive parameters associated with sheet metal
forming is proposed in this paper. Through minimization of the least square error between a experimen-
tal punch force, F em, sampled from a deep drawing operation and modeled punch force, F fit, produced
from a coherent finite element model.

The framework for analytic sensitivity analysis is presented and some implementation issues are cov-
ered as well. The sensitivity analysis is based on the assumption that the total punch force can be
separated into a plastic contribution and a contribution from friction, thus F total = F plastic + F fric,
where an expression for the plastic force can be derived from incremental plastic work, dw. The ana-
lytic sensitivity scheme is implemented in a user-defined material routine in LS-Dyna. Further, a simple
strategy for analytic sensitivity analysis of the friction coefficient is presented.

Finally, the proposed inverse modeling scheme was tested on data produced from a square deep-drawn
cup, where the punch-force was sampled during the drawing, the tool dimensions correspond to the
Benchmark tool for the NumiSheet’93 conference. The constitutive parameters were identified through
iterative minimization of the least square error between the experimental punch force and the coherent
modeled punch (Finite element). Barlat’s 2D criterion [1] was applied for modeling the anisotropic be-
havior and an exponential hardening behavior is assumed. The solution of the proposed inverse problem
is highly sensitive to the capability of the applied inverse solver or optimization scheme, e.g. appropri-
ated bounds on the solution space, the strategy for steep size regulation etc.

A least square formulation of the object function was applied utilizing the structure of the object func-
tion, for further introduction to the inverse solver see [2, 5, 4, 3].

2 ANALYTIC SENSITIVITY
The punch force as a function of punch displacement reflects the energy input to the system. The basic
idea is that two identical punch forces can only be obtained with the same set of constitutive parameters.
The constitutive parameters were identified, by iteratively minimizing the objective function, f(x) =

r
T
r, where the residual vector was defined as rj = (F fit

j −F em
j ), where F em represents the empirical

punch force, and F fit represents the fitted data and was produced by LS-Dyna .



The objective was to minimize f(x). The minimum was identified through gradient based optimization
techniques, thus an analytical expression, representing the Jacobian matrix which holds the derivatives
∂r(x)

∂x
was needed. Barlat’s 2D yield criterion Φ(a, h, p,M) describes the relation between the equiv-

alent stress σ̄ and Lankford’s coefficients which can be expressed through the parameters a, h, p and
M . Further, a similar relation exists between the equivalent stress and the exponential hardening law,
described by the strength coefficient K and hardening coefficient n.

The following scheme was applied to establish the relation between σ̄ and F fit. The total punch force
from the model F fit is defined as:

F fit = F plast + F fric (1)

where F plast denotes the plastic force, i.e. the contribution to the total punch force from plastic defor-
mation of the blank. The contribution from friction is denoted F fric. Independency between F plast and
F fric was assumed. The incremental plastic work dw for one element in the finite element model can
be expressed as: dw = σ̄dε̄ (2)
The total plastic work increment was calculated by summation of the contribution for each element.
The plastic force F plast can now be stated as:

F plast =

nel
∑

i=1

Viσ̄idε̄i

∆s
(3)

where nel represents the number of elements for the blank, Vi blank and the number of integration
points, respectively. Vi represents the element volume and ∆s is the increment for the punch displace-
ment ∆s.

Under the assumption that F plast is independent of the friction coefficient, the Jacobian matrix can now
be defined as:

Jij =

[

1

∆si

nel
∑

k=1

Vkdε̄k
∂σ̄k

∂xj

]

i = 1, 2, . . . , m

j = 1, 2, . . . , n

(4)

The Jacobian is a (m×n) matrix, where n is the number of constitutive parameters, m is the number of
points in the residual vector. The derivatives of the residual vector (ri(x) = F

fit
i − F em

i ) with respect
to x = [K,n, a, h, p,M ] were assumed to be independent of the friction coefficients.

The friction was modeled using Coulomb’s friction law (F fric = µF N ), and the sensitivity for the
friction coefficient was evaluated analytically using a very simple strategy. Where the normal force is
approximated using the following relation:

F̃N
'

F fit
− F plast

µ
(5)

using the above approximation of the normal force, the sensitivity for the friction coefficient can be
defined as: ∂F fric

∂µ
= F̃N (6)

assuming equal friction coefficients for all the contact interfaces between the tool parts and the sheet.

Finite difference Analytic
∂F fric

∂µ
-595.1 -618.4

Table 1: Comparison between analytically defined friction sensitivity and friction sensitivity approxi-
mated by finite difference, using a finite difference increment δµ = 0.001.

For comparison between the proposed analytical friction sensitivity scheme and the finite difference
approximation, see table 1, where an increment δµ = 0.001 was used for the finite difference approx-
imation. In conclusion, the difference between the two sensitivity schemes was insignificant, thus, the
simple analytical definition of the friction sensitivity seemed valid.



3 IMPLEMENTATION
The analytic sensitivity scheme was implemented as an user defined material routine in LS-Dyna ver-
sion 970 double precision, the additional calculation steps compared to a normal material routine are
summarized in table 2. The material routine is based on the implementation by K.B. Nielsen [6].

1: Initialize the element thickness eth, number of integration points hipt, material parameters and the Jacobian dump interval tdump .
And define the variables Jacobian J , volume V , plastic work dwp and the counter k = 1.

2: if (t = 0.0 and j=1) then
3: Calculate the volume of the i’th element and store the result in Vi.
4: end if
5: Update the stress and incremental plastic strain dε̄ for the i’th element and j’th integration point, see e.g. [6].
6: if ( t > tcount ) then
7: Write the Jacobian J and incremental plastic work dwp.
8: k = k + 1
9: tcount = tcount + tdump

10: end if
11: Update the incremental plastic work array dw

p
k

= dw
p
k

+ Vi

hipt
σ̄dε̄

12: Update the Jacobian J

13: Jk1 = Jk1 + Vi

hipt
dε̄ ∂σ̄

∂K
.

14: Jk2 = Jk2 + Vi

hipt
dε̄ ∂σ̄

∂n
.

15: Jk3 = Jk3 + Vi

hipt
dε̄ ∂σ̄

∂a
.

16: Jk4 = Jk4 + Vi

hipt
dε̄ ∂σ̄

∂h
.

17: Jk5 = Jk5 + Vi

hipt
dε̄ ∂σ̄

∂p
.

18: Jk6 = Jk6 + Vi

hipt
dε̄ ∂σ̄

∂M
.

19: End.

Table 2: Illustration of the additional calculation compared to a normal material routine. The number
of rows in the Jacobian matrix was controlled by tdump and the termination time. The Jacobian and
plastic work array is updated for each time step. Finally, the volume of the element is assumed equally
distributed over the integration points.

4 RESULTS

The process was simulated with the explicit code LS-Dyna version 970. The process time was scaled
to 20 milliseconds and a forced time step δt = 2.0 10−7 was applied, utilizing mass scaling to improve
computational efficiency [6]. The blank was modeled using 1368 Belytschko-Tsay shell elements with
7 intergrarion points through the thickness.Due to symmetry only a quarter of the cup was modeled.

De04 was used for the sheet material with an initial thickness of 0.75[mm] and a diameter of 160[mm] .
A square deep-drawing tool, corresponding to Benchmark tool for the NumiSheet’93 conference, was
applied and the produced cup was 38[mm] high and a blank-holder force of 20[kN] was applied.

Two initial sets of parameters were tested, the initial parameters and the corresponding identified solu-
tion are represented in table 3. Lankford’s coefficients

Uni-axial Initial 1 Inverse 1 Initial 2 Inverse 2
µ - 0.1 0.1129 0.1 0.1139
K 544.68 550 584.29 550 586.57
n 0.239 0.25 0.2284 0.24 0.2286
R00 1.758 1.8 1.9106 1.9 1.9619
R45 1.287 1.4 1.1952 1.4 1.2137
R90 2.028 2.3 1.8196 2.2 1.7869
M - 6.0 6.9437 6.0 6.9649

Table 3: Inverse identified parameters, where equal friction coefficients are assumed between the tool
parts and the blank.
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Figure 1: Barlat’s 2D yield locus for a fixed σ12 = σ̄
10 [MPa] and an equivalent strain ε̄ = 0.5 (left) and

the normalized locus (center). Finally to the right the fitted and empirical punch force.

5 CONCLUSION
An insignificant difference in the identified parameters was observed, the term insignificant is used due
to the close resemblances between the identified yield loci, they are close to identical, see figure 1 and
table 3. Further, a very good fit between the experimental and fitted punch force was achieved, see
figure 1, where the residuals were reduced to ±0.1[kN]over the majority of the punch stroke, whereas
the largest error (0.3 [kN]) was observed within the first 5[mm] of the punch displacement, the relatively
large error in this region may indicate that the Coulomb’s friction model based on a single friction
coefficient is unsuitable in this region.

A difference between the uni-axial parameters and inverse parameters was observed, both with respect
to anisotropy and hardening parameters. The uni-axial tension tests seem to underestimate the strength
coefficient K and to overestimate the hardening coefficient n; and as a result the yield stress is under-
estimated, thus a significant difference between the uni-axially and inversely identified yield loci.

6 FURTHER WORK
Verification of the results; does the inverse procedure produce more reliable simulation results? - i.e.
prediction of the thickness distribution, geometric properties, strain distribution etc. Furthermore an
implicit version is under implementation, as we in the explicit implementation was forced to use a very
modest time step, δt = 2.0 10−7, to ensure stable convergence and sufficient quality of the gradients.
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