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Summary. The geometrical method for assessment of discontinuous bifurcation condi-
tions is extended to encompass J−2 gradient-dependent plasticity. The gradient-dependent
localization condition is cast in form of an elliptical envelope condition in the coordinates
of Mohr, see Pijaudier-Cabot and Benallal (1993)3, Liebe and Willam (2001)2. The re-
sults of the localization analysis geometrically and numerically demonstrate the capability
of the thermodynamically consistent gradient-dependent model formulations to suppress
localized failure modes of the related local plasticity formulations

1 J2 GRADIENT–DEPENDENT ELASTOPLASTICITY

Under consideration of small strain kinematics, the free energy density of the strain
gradient elastoplastic J2 continuum is expressed in the additive form

ρΨ(εe, κ, ∇κ) = ρΨe(εe) + ρΨp,loc(κ) + ρΨp,g(∇κ) (1)

where ρ is the material density. The elastic free energy density is ρΨe(εe) = 1
2
εe : Ee : εe,

with εe and Ee the elastic strain tensor and the fourth order elastic operator, respectively.
The local and gradient free energy density contributions due to inelastic strains Ψp,loc and
Ψp,g are expressed in terms of the scalar hardening/softening variable κ.

ρΨp,loc =
1

2
Hκ , ρΨp,g =

1

2
l2∇κ ·Hg ·∇κ

Two types of state parameters were considered, the local hardening/softening modulus
H and the second order tensor of non–local gradient state parameters Hg. The gradient
effects are only restricted to hardening/softening behavior via the inclusion of ∇κ.

The function corresponding to the vonMises yield criterium is

Φ(σ, K) = σe − σy −K , σe =

√
3

2
|s| (2)

with σy the yield stress, K the dissipative stress and s the deviatoric stress tensor. The
explicit expressions of the dissipative stress components K loc and Kg, regarding eq. (2)
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result

K loc = −ρ
∂Ψp,loc

∂κ
= −Hκ , Kg = ∇ ·

(
ρ

∂Ψp,g

∂(∇κ)

)
= l2∇ · (Hg ·∇κ) (3)

within the continuum, while on the boundary ∂Ω is K(g,b) = −l2m · Hg · ∇κ with the
(outward) normal m to ∂Ω.

2 CONDITION FOR LOCALIZED FAILURE

In case of localized failure in the form of discontinuous bifurcation we resort to the
gradient elastoplastic localization tensor defined as Qepg = Qe − a∗ ⊗ a/(h + hg), with

Qe = nl ·Ee · nl and a∗ =
∂Φ∗

∂σ
: Ee · nl, a =

∂Φ

∂σ
: Ee · nl (4)

The localized failure condition in case of gradient-dependent elastoplasticity det(Qepg) = 0
leads to the analysis of the spectral properties of Qepg. Its smallest eigenvalue, with respect
to the metric defines by Qe, has the expression

λ(1) = 1− a(nl) · [Qe(nl)]
−1 · a∗(nl)

h + hg
= 0 (5)

In case of gradient isotropy, the explicit form of eq.(5) turns

H +
∂Φ

∂σ
: Ee :

∂Φ∗

∂σ
− a · [Qe]−1 · a∗ = 0 with H = H̄g

c (
2πl

δ
)2 + H̄c (6)

The localization condition in eq.(6) serves as a basis for analytical and numerical eval-
uations of the localization directions nl and of the corresponding maximum or critical
hardening/softening parameters H̄c(nl) = max[H̄(nl)] in case of local plasticity, and
H̄g

c (nl) = max[H̄g(nl)] in gradient–dependent plasticity.

2.1 GEOMETRICAL LOCALIZATION IN J2 GRADIENT PLASTICITY

The approach is based on the original proposal by Benallal (1992)1 , which was further
developed by Pijaudier-Cabot and Benallal (1993)6 and Liebe and Willam (2001)2 for
classical plasticity.

Equation (6) defines an ellipse in the σ − τ coordinates of Mohr

σ = σ · nl · σ, s = nl · s · nl, τ = (nl · s) · (nl · s)− (nl · s · nl)
2 (7)

The critical direction nl, normal to the plane where the Mohr components are evaluated,
and the critical hardening/softening parameters H̄c and H̄g

c for localization are obtained

when the Mohr circle of stresses contacts the elliptical localization envelope (σ−σ0)2

A2 − τ2

B2 =
1. Considering the expression Ee = 2GI4 + ΛI ⊗ I for the elastic tensor, with the shear
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module G and the Lamé’s constant Λ, the traction vectors can then be rewritten as

a∗ = a = GJ
− 1

2
2 nl · s. Thus, from eq.(4), follows

[Qe]−1 =
1

G
[I − 1

2(1− ν)
nl ⊗ nl] (8)

Replacing eq. (8) in eq.(6), and combining with eq.(7), the center σ0 and the half axes A
and B of the localization ellipse result

σ0 =
1

3
I1 B2 = J2(

H
G

+ 1) A2 = 2
1− ν

1− 2ν
B2 (9)

So, the thermodynamically consistent gradient–dependent plasticity formulation allows
a simple extension of the geometrical localization method for local plasticity as demon-
strated in this section. Thereby, the non-local effects in terms of the characteristic length
and of the gradient hardening/softening modulus only affect the expression of the local-
ization ellipse half axes A and B.

3 GOMETRICAL LOCALIZATION ASSESSMENTS

The localization properties of the thermodynamically consistent gradient–dependent J2

elastoplastic model are analyzed for the plane strain condition when σz = ν(σx + σy) and
H̄ = H̄c, being H̄ the particular hardening/softening modulus of the gradient-dependent
model and H̄c the critical one for localization of the local elastoplastic model.
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Figure 1: Localization in local and gradient von Mises yield criterion in the principal stress space.

Figure 1 illustrate the results of numerical localization analysis performed for the stress
states belonging to the von Mises ellipse of limit stress states in the plane strain regime.
The distance between the different curves and the J − 2 limit stress ellipse in its normal
direction, is proportional to the normalized localization indicator. Thereby, outward
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normal to the ellipse corresponds to positive values of this failure indicator, indicating
that diffuse mode of failure takes place for the considered limit stress state. In this analysis
both local and non-local gradient J2 material models were considered. In case of the non-
local model, the adopted internal material length equals the width of the localization
zone, i.e. l = δ. The results in Figure 1 indicate that the gradient-regularized plasticity
suppresses the localized failure modes of the local model along the entire set of limit stress
states of the J − 2 material, in the plane strain regime.
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Figure 2: Geometrical (a) and numerical (b) localization analysis at peak of the simple shear test. Local
and gradient-dependent J2 plasticity.

The geometrical localization analysis of the gradient-based J2 model is performed at
peak stress of the simple shear and the results are shown in Figure 2(a). These results
illustrate the influence of the characteristic length l in the mode of failure. When l > 0, no
contact is observed between the localization ellipses of the gradient–dependent plasticity
model and the Mohr circle corresponding to the considered limit stress state. Thus,
diffuse failure mode takes place for all three limit stress states. However, as l/δ → 0
discontinuous bifurcation takes place.

4 CONCLUSIONS

The geometrical localization analysis in this work demonstrates that the non-local
effects of the gradient plasticity formulation only affects the half axes of the localization
ellipse. The results show that the J2 gradient-based elastoplastic model has the capacity
to suppress the discontinuous bifurcations of the related classical elastoplastic model,
when the selected hardening/softening modulus H̄ equals the critical one for localization
of the local material formulation H̄c. Its regularization capability reduces as l/δ → 0.
When l approaches zero, a continuous transition from diffuse to localized failure modes is
obtained.
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