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1 INTRODUCTION

A plasticity model is said to be associated if the plastic strain flow is orthogonal to the
loading surface, i.e. the elastic domain boundary. Using the language of convex analysis,
associativity (or normality) means that it is possible to define the plastic strain flow as
an element of the sub-differential of the indicator function of the elastic domain, which is
a convex set in the stress space1,2. For the (perfectly-plastic) Drucker-Prager model, the
flow is not in general orthogonal to the loading surface, hence it is classically considered
as a non-associated model. However, in this standard definition, the loading surface does
not depend on state variables, viz. the total and the plastic strain. In this contribution,
making use of a loading surface depending on state variables (see e.g. 3 ), it is shown that
the non-associated Drucker-Prager model can be formulated as an associative model.
However, this new loading surface no longer represents the elastic domain.

2 A NEW DESCRIPTION OF THE DRUCKER-PRAGER MODEL

In this Section, a plasticity model is defined by its Helmholtz free energy and its pseudo-
potential3. Then, normality assumptions will be used to derive flow rules and it will be
proved that these associated rules are equal to those of the non-associated (and perfectly-
plastic) Drucker-Prager model. The state variables (ε, εp) are assumed to belong to a
convex subset H. Hence, the Helmholtz free energy is the sum of a smooth part ψ and of
the indicator function IH :

Ψ = ψ (ε, εp) + IH (ε, εp) =
1

2
(ε− εp) : C : (ε− εp) + IH (ε, εp) (1)

Under the assumption of isotropy, the elasticity tensor becomes C = (K− 2
3
G)1⊗ 1+2GI,

where 1 is the second order identity tensor; I is the fourth order identity tensor; and ⊗
represents the tensor product. The term IH is associated to (see also Figure 1a)
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H =

{
(ε, εp) such that

3K tr (ε− εp)

3
− c

tan ϕ
:= −h (ε, εp) ≤ 0

}
(2)

where ϕ is the friction angle, and c is the cohesion. The constraint defining H imposes
that the elastic hydrostatic dilation tr (εe) = tr (ε− εp) can never be greater that c

K tan ϕ
.

Figure 1: (a) Domain H of the admissible state variable values. (b) Domain D of the admissible fluxes.

The non-dissipative forces (nd) and the non-dissipative reaction forces (ndr) follow3,4

σnd = ∂ψ
∂ε = C : (ε− εp) = K tr (ε− εp)1 + 2G dev (ε− εp)

τnd = ∂ψ
∂εp = −C : (ε− εp)

(
σndr, τ ndr

)
∈ ∂IH (ε, εp) =





(0,0) for h (ε, εp) > 0
(t1,−t1) with t ≥ 0. for h (ε, εp) = 0
∅ for h (ε, εp) < 0

(3)

A pseudo-potential depending on the flow ε̇p is introduced. It is a non-negative, convex
function homogeneous of order 1. A pseudo-potential having these properties and the
normality assumption lead to flow rules fulfilling the second principle of thermodynamics3:

φ (ε̇′, ε̇p′; ε, εp) = φ1 (ε̇p′; ε, εp) = φ2 (ε̇p′; ε, εp) + ID (ε̇p′)

φ2 := c
tan ϕ

tr (ε̇p′) + kd (tan ϕ− tan θ) h (ε, εp) ‖dev (ε̇p′)‖
(4)

where tan θ introduces the dilatancy effect, kd > 0 is related to the friction angle ϕ 5 and

D = {ε̇p′ such that fD (ε̇p′) := kd tan θ ‖dev (ε̇p′)‖ − tr (ε̇p′) ≤ 0} (5)

(see Figure 1b). The positivity of φ is ensured if h (ε, εp) ≥ 0 (see the condition defining
H) and if 0 ≤ tan θ ≤ tan ϕ. Note that the second term of φ2 depends on (ε, εp).

The Legendre-Fenchel transform of φ1 is equal to φ∗1(τ
d′ ; ε, εp) = IE(ε,εp)

(
τ d′

)
, E(ε,εp)={

τ d′ such that f
(
τ d′ ; ε, εp

)
≤ 0

}
and the loading function f is given by:

f
(
τ d′ ; ε, εp

)
=

∥∥∥dev
(
τ d′

)∥∥∥
kd

+
tr

(
τ d′

)

3
tan θ − c + (tan ϕ− tan θ) K tr (ε− εp) (6)
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where τ d′ is the generic dissipative force associated to the plastic strain. Figures 2a,b
illustrate two configurations of the set E associated to f . Observe that the last term in
(6) introduces a translation of E along the trace axis depending on the instantaneous
value of state variables. If θ = ϕ (associated case), then this translation is zero.

Figure 2: (a) The traditional elastic domain F and the set E(ε,εp) for a generic value of the state variables
(ε,εp) ∈ int(H). (b) The traditional elastic domain F and the set E(ε,εp) when tr(ε−εp)

3 = c
tan ϕ .

2.1 Normality conditions, traditional elastic domain and flow rules

The loading function defined in the previous section is different from the one usually
adopted in the definition of elastic domain of the Drucker-Prager model. The relationships
between them are investigated herafter. The normality rule applied on φ1 reads:

τ d ∈ ∂φ1 (ε̇p; ε, εp) = ∂φ2 (ε̇p; ε, εp) + ∂ID (ε̇p; ε, εp) (7)

where ε̇p is the actual plastic strain flow and τ d = −τ nd−τ ndr is the associated dissipative
thermodynamic force. One can prove that (7) is equivalent to

1
3
tr

(
τ d

)
= c

tan ϕ
− γ

dev
(
τ d

)
= kd

[
γ tan θ + (tan ϕ− tan θ)

(
c

tan ϕ
−K tr (ε− εp)

)]
k

γ fD (ε̇p) = 0, γ ≥ 0, fD (ε̇p) ≤ 0

(8)

where k ∈ ∂ ‖dev (ε̇p)‖, i.e. ‖k‖ ≤ 1 and k = dev (ε̇p) / ‖dev (ε̇p)‖ when dev (ε̇p) 6= 0.
These relationships hold at the present state (note that τ d and ε̇p are used instead of τ d′

and ε̇p′). Hence, knowing that τ d = −τ nd − τ ndr holds by definition, Eqs. (8)1−2 can be
simplified. First, one can prove that for both cases (ε, εp) ∈ int (H) and (ε, εp) ∈ ∂H,

one has tr
(
σndr

)
= tr

(
τ ndr

)
= 0. Then, using (3) in Eqs. (8)1−2, one obtains

1
3
tr

(
τ d

)
= −1

3
tr

(
τ nd

)
= K tr (ε− εp) = c

tan ϕ
− γ

dev
(
τ d

)
= −dev

(
τ nd

)
= γkd tan ϕk

(9)
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with γ = h (ε, εp) ≥ 0. Observe that these relationships define a circle in the τ d′−space,
such that all its points τ have the same trace, equal to (3c/ tan ϕ − 3γ), and the maximum
norm of the deviatoric part is equal to γkd tan ϕ (see also Figure 2). The parameter γ
define both position and size of these sets. The union of all the circles, i.e. all γ ≥ 0,
is a cone F in the τ d′−space, having an apex angle equal to ϕ. This set corresponds
to the ”traditional” elastic domain of the Drucker-Prager model4. Comparing this cone
with E(ε,εp), associated to the loading function f of Eq. (6), one can observe that (i)
the plastic flow is orthogonal to E(ε,εp); (ii) F is fixed in the τ d′−space and (iii) given γ,
the intersection of the two sets is the circumference delimiting the circle associated to the
same γ value. The flow rules are normality conditions dual to the ones of Eq. (7):

ε̇p ∈ ∂φ∗1
(
τ d; ε, εp

)
= ∂IE(ε,εp)

(
τ d

)
(10)

Equivalently, tr (ε̇p) = λ̇ tan θ, dev (ε̇p) = λ̇ 1
kd

m

λ̇f
(
τ d; ε, εp

)
= 0, λ̇ ≥ 0, f

(
τ d; ε, εp

)
≤ 0

(11)

where m ∈ ∂
∥∥∥dev

(
τ d

)∥∥∥. On the regular part of the loading surface, one has m =
dev(τ d)
‖dev(τ d)‖

and the consistency condition can be applied to compute λ̇, accounting for the dependence
of f on the state variables ε and εp. Conversely, at the apex it holds ε̇p = ε̇, provided
that fD (ε̇) ≤ 0. Eqs. (11) are the flow rules of a non-associated Drucker-Prager model.

3 CONCLUSIONS

An associative description of the non-associated Drucker-Prager model has been pro-
vided, by means of a loading function f having an additional dependence on state vari-
ables. The relationships between f and the ”traditional” elastic domain have been dis-
cussed. Work is in progress to analyze the common points of this approach with the
bipotential formulation5.
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