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Summary. A novel numerical technique, FEM-β, with the potential of massive scale

simulations of failure of bulk bodies is presented. FEM-β obtains numerical solution

for a variational problem equivalent to the BVP of a deformable continuum, using non-

overlapping characteristic functions.

1 INTRODUCTION

Being a numerical method for solving boundary value problems (BVPs), FEM is exten-
sively used for various classes of problems in solid mechanics. However, in failure studies,
FEM needs complicated treatments when the configuration changes due to crack progres-
sion. This complication is due to the overlapping set of characteristic functions used to
discretize the displacement field. Joint element method, mesh-less method are some of
such computationally expensive techniques. Rigid-body-spring modeling (RBSM) is an-
other numerical method used for analysis of deformable bodies. Being a particle physics
type method, RBSM models deformable body as an assembly of rigid bodies connected
through springs, which can be viewed as discretization of displacement field using non-
overlapping characteristic functions. Due to the inherent discontinuous nature, RBSM
can easily model failure by sequential breakage of springs, which is computationally very
efficient. However, RBSM is lacking of rigorous method to determine spring properties
and the equivalence between the RBSM simulations and the physical phenomenon under
consideration is not guaranteed since this is not a numerical method for BVPs.

The new method introduced in this paper, FEM-β1, can be considered as a numerical
technique with the merits of both FEM and RBSM. We introduce non-overlapping set
of shape functions, which is the key for easy treatment of failure in RBSM, to FEM
framework and obtain a numerical technique for solving BVPs of deformable bodies with
RBSM type easy treatment of failure. These non-overlapping shape functions introduce
displacement discontinuities to the model, almost everywhere. Some of these can be
used to represent cracks. Crack or damage can be naturally represented by appropriately
changing stiffness matrix components. Unlike FEM, FEM-β does not require special
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treatments to deal with failure since it is inherited with a discontinuous nature of the
displacement field. Therefore, compared with FEM, this method is computationally very
efficient in failure studies. The formulation of FEM-β and treatment of failure are briefly
presented in the rest of this paper.

2 FORMULATION

As the simplest case, we consider the deformation of homogeneous linear elastic body
Ω assuming quasi-static and infinitesimally small deformation. The equivalent BVP for
this physical problem is posed as

{

cijkluk,li = 0 in Ω
ui = ūi on ∂Ω

(1)

, where cijkl is elastic tensor and ūi is prescribed boundary displacements. This BVP is
transformed to an equivalent variational problem using following functional for displace-
ment and stress.

I(u,σ) =

∫

Ω

σijεij − uibi −
1

2
c−1
ijklσijσklds (2)

Here, c−1
ijlk is the inverse of cijlk and bi is body force.

The discretization scheme used in FEM-β is called particle discretization; field variables
are discretized using a set of non-overlapping characteristic functions. Obviously, these
discontinuous characteristic functions are not admissible for solving BVP. To address this,
FEM-β uses conjugate geometries for discretizing field variables and its derivatives. First
a set of points {xα}(α = 1, 2, . . . , N) are distributed and Ω is decomposed into Φα’s based
on Voronoi diagrams for {xα}(see Fig 1). Then ui and body force, bi are decomposed
using φα. φα is the characteristic function on Φα defined as φα(x) = 1 for x ∈ Φαand =
0 for x /∈ Φα. Denoting the displacements and body force in Φα as uα

i and bαi respectively,
ui and bi can be decomposed as ui(x) =

∑

α u
α
i φ

α(x), and bi(x) =
∑

α b
α
i φ

α.
For calculation of derivatives, we cannot use the above discretized form of ui since the

derivative of φα becomes a delta function along the boundary of Φα. However, we can
calculate average of derivatives by taking the average over a domain that includes ∂Φα.
Delaunay tessellation,

{

Ψβ
}

, which is the conjugate geometry of Voronoi tessellation is
used for this purpose. Based on this conjugate discretization σij can be discretized as

σij(x) =
∑

α

σβ
ijψ

β(x) (3)

, where
{

ψβ
}

are a non-overlapping set of characteristic functions for Ψβ’s (see Fig. 1).

By substituting above discretized forms in to I and setting ∂I/∂σβ
ij = 0 an expression

for σβ
ij can be obtained as σβ

ij =
∑

α cijklB
βα
k uα

l . This provides an expression for average
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Figure 1: a) Conjugate geometries, Voronoi and Delanay tessellations are used for discretizing displace-
ments and derivatives . b) Displacement discontinuities at Voronoi blocks boundaries

strain as ε̄βij =
∑

α B
βα
i uα

j =
uj

Ψβ

∫

Ψβ φ
α
,i(x)ds. This integral can be explicitly computed by

transforming into a line integral using the Gauss theorem. Note that, unlike the usual
FEM, FEM-β obtains an expression for strain by minimizing I. Now, setting ∂I/∂uα

i = 0
the following governing matrix equation of FEM-β can be obtained.

∑

α′

kαα′

ij uα′

j − bαi = 0

, where the stiffness matrix kαα′

ij =
∑

β ΨβcijklB
βα
k Bβα′

l . When Delaunay triangles are
regarded as elements, the stiffness matrix of FEM-β coincides with that of FEM. Conse-
quently, nodal displacements calculated by FEM-β is as accurate as that by FEM when
triangular/tetrahedral elements are used in 2D/3D.

In addition to the translations, rotational degree of freedom (DOF) also is introduced
to improve the accuracy of FEM-β. Even though rotational DOF has less effect under
usual condition, it improves the accuracy in the presence of rapidly varying displacement
field like crack tip displacement filed.

3 SPRING PROPERTIES AND EASY TREATMENT OF FAILURE

The discretized displacement field using non-overlapping shape functions over Voronoi
blocks can be viewed as an assembly of rigid bodies connected with springs. The properties
of these springs are given by the components of stiffness matrix. As an example, the
springs properties connecting Voronoi blocks Ωα and Ωα′

are given by the components of
kαα′

ij . As it was shown in the previous section, unlike in RBSM, these spring properties or

components of kαα′

ij are rigorously determined using the elastic tensor, cijkl.
The non-overlapping shape functions, φα’s, introduce displacement discontinuities along

Voronoi block boundaries (see Fig. 1 b). These discontinuities can be regarded as poten-
tial paths for cracks to propagate. Using a suitable failure criteria, crack growth can be
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Figure 2: a) Failure modeling by breaking springs. b) Variation of J-integral for a mode-I crack in
semi-infinite domain w.r.t. number of discretizations

easily modelled by simply breaking the springs between Voronoi blocks or appropriately
changing stiffness matrix components. This numerically efficient treatment of failure is
the major advantage of FEM-β.

As an example, if the springs across PO between segments Φα1 and Φα2 are to be
broken under some failure criterion, the components of kα1α2

ij should be appropriately
reduced. This is equivalent to reduction of strain energy in segment AOC. The resulting
crack tip stress field is always underestimated since we consider an average value for
stress (see Eq. 3) in Delaunay triangle ABC . To examine this approximate treatment,
we consider a mode-I crack in a semi-infinite homogeneous body subjected to far field
stress and calculated J-integral using both FEM and FEM-β. From Fig. 2a, it is clear
that FEM-β underestimates strain energy and has upper bound while FEM overestimates
and has a lower bound. The higher accuracy of FEM-β solution is due to the presence of
rotational degree of freedom.

4 CONCLUSIONS

A new method for simulating failure of deformable bodies is proposed. FEM-β is
numerical method for solving BVP which provides RBSM type easy treatment of fail-
ure. This numerically efficient failure treatment makes FEM-β a prominent candidate for
analysing large scale BVPs involving failure (e.g. fault propagation in earth crust).
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