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Summary. In this work we will combine theα-generalized explicit time integration scheme
with the Energy-Dissipating Momentum-Conserving (EDMC) implicit time-integration scheme.

1 INTRODUCTION

The optimal solution to simulate crashworthiness problems is to be able to combine an im-
plicit and an explicit time integration. Automatic criteria are used to switch automatically from
a method to another one1. A problem is to developed a method to shift, in a stable way, from
an explicit method to an implicit one. We will proceed as we have proposed2 by balanced the
last explicit steps but in this work we will combine theα-generalized explicit scheme3 with the
Energy-Dissipating Momentum-Conserving (EDMC) implicit scheme4.

2 TIME INTEGRATION

Chung and Hulbert3 have proposed an explicit scheme exhibiting numerical dissipation. It
yields:
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with M the mass matrix,~Fext the external forces and~Fint the external forces. This scheme is
characterized by a spectral radius at bifurcation pulsationρb < 1.

Armero and Romero4 have introduced velocities dissipation~Gdiss and forces dissipation
~Fdiss in Simo and Tarnow EMCA implicit scheme. Equations at nodeξ becomes:
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Expression of the internal forces and of the dissipation terms for hyper-elastic models can be
found in4 and for elasto-plastic hypo-elastic model in5. This scheme is characterized by a
spectral radius at infinite pulsationρ∞ < 1.

3 COMBINED IMPLICIT/EXPLICIT METHOD
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Figure 1: Transition scheme from an explicit scheme to an implicit one.

Details about the automatic criteria to be able to shift from a method to another one can be
found in1. Let us definer∗ the ratio between the implicit time step and the explicit one. Figure
1 illustrates the transition between the explicit algorithm and the implicit one. Let us assume
that at timetn−r∗ we will shift from an explicit algorithm to an implicit one. Using numerical
dissipation property of the generalized-α explicit scheme, numerical oscillations resulting from
the explicit scheme are first annihilated between timetn−r∗ and timetn with r∗ explicit steps
occur with a spectral radiusρb set equal to zero. The second step in the algorithm is to determine
a balanced configuration at timetn+r∗. Therefore, we act in two stages. First an explicit solution
usingr∗ explicit steps are computed. This solution results in the displacements~xn+r∗

expl . Then
proceeding as we have proposed2 we will use a predictor corrector algorithms, to reach a balance
implicit step between timetn and timetn+r∗. Initial predictions are:
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the dissipation velocities. Since relations (4) and (5) have to be always

satisfied. Therefore, one has:
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At this point we will use the explicit displacements~xn+r∗
expl to be closer from the balance solution.

First iteration of the correction algorithm is then obtained by assuming:
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that satisfy (8). The next iterations are solved using a classical Newton-Raphson scheme with
the balance equation at nodeξ between timetn andtn+r∗ .

4 BLADE OFF SIMULATION
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Figure 2: Configuration and equivalent plastic strain after one revoltion (a) Implicit method (b) Explicit method
(c) Combined method.
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Figure 3: Evolution of the clamped forces (a) on the casing, (b) on the bearing.
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Let us study a blade off simulation. Full description of this model can be found in5. At time
t = 0s, the initial configuration of the rotor is equilibrated for a rotation velocity of4775rpm
and a blade is released from the disk. Let us compare the solution obtained by (1) the EDMC
implicit scheme; (2) Theα-generalized explicit algorithm; (3) The combined method proposed.
The implicit scheme usesρ∞ = 0.8 and theα-generalized explicit scheme usesρb = 0.4.
Figures 2 illustrate the configuration obtained after one revolution of simulation. It appears
that the threes methods give a similar configuration, but the explicit method overestimates the
plastic deformations. Figure 3a and b respectively illustrates the evolution of clamped forces
on the casing and on the bearing for the three computations. The solutions obtained by the
three methods are identical. On theses figures we have reported the explicit interval of the
combined method. Finally if we study the CPU cost needed for each simulation it appears that
the combined method (10.9 days) is50% less expensive that the explicit one (22.9 days) and
30% less expensive that the implicit one (15.6 days).

5 CONCLUSIONS

When shifting from an explicit method to an implicit one, we have proposed a predictor-
corrector algorithm that gives stable initial condition for the implicit simulation. These devel-
opments leads to an accurate scheme in the non-linear range able to reduce the CPU cost.

REFERENCES

[1] L. Noels, L. Stainier, and J-P. Ponthot. Combined implicit/explicit algorithms for crash-
worthiness analysis.Intern. J. of Impact Engng., Vol. 30(8-9), 1161–1177, 2004.

[2] L. Noels, L. Stainier, and JP. Ponthot. Energy conserving balance of explicit time steps to
combine implicit and explicit algorithms in structural dynamics.Computer Meth. in Appl.
Mech. and Engng., Accepted for publication.

[3] G.M. Hulbert and J. Chung. Explicit time integration algorithms for structural dynamics
with optimal numerical dissipation.Computer Meth. in Appl. Mech. and Engng., Vol. 137,
175–188, 1996.

[4] F. Armero and I. Romero. On the formulation of high-frequency dissipative time-stepping
algorithms for non-linear dynamics. Part I: low-order methods for two model problems
and nonlinear elastodynamics.Computer Meth. in Appl. Mech. and Engng., Vol. 190,
2603–2649, 2001.

[5] L. Noels, L. Stainier, and J-P. Ponthot. Simulation of complex impact problems with
implicit time algorithm. Application to a blade-loss problem.Intern. J. of Impact Engng.
Submitted for publication.

4


