MATERIAL BIFURCATION ANALYSIS

Eduardo W. V. Chaves

E.T.S. de Ingeniero de Caminos, Canales y Puertos Universidad de Castilla-La Mancha Av. Camilo José Cela s/n, 13071 Ciudad Real, Spain e-mail: Eduardo.Vieira@uclm.es, web page: http://www.uclm.es/cr/caminos/

Key words: Bifurcation analysis, Hardening/Softening critical, Localization direction.

Summary. The main aim of this document is to obtain general explicit expressions for the critical failure direction and the critical hardening modulus corresponding to the best-known classical continuum constitutive models (namely, continuum damage and plasticity models). To reach this aim, the ellipticity condition of the constitutive tangent operator will play a determinant role.

1 INTRODUCTION

Consider the Tangent Acoustic Tensor $(\mathbf{Q}(\mathbf{N}))$ defined as $\mathbf{Q}(\mathbf{N}) = (\mathbf{N} \cdot \mathbf{C}^{in} \cdot \mathbf{N})$, where \mathbf{C}^{in} is the tangent operator and \mathbf{N} is a vector normal to the localized band. The lost of ellipticity will take place ([1]) when the following condition is reached:

$$\det[\mathbf{Q}(\mathbf{N})] = 0 \tag{1}$$

This condition is the point of departure to obtain the critical values.

2 MATERIAL BIFURCATION CONDITIONS

Let us consider a material which behavior is described by a constitutive model characterized by a constitutive tensor, \mathbb{C}^{in} (or tangent material operator), which expression reads:

$$\mathbb{C}^{in} = \xi \mathbb{C}^e - \mathcal{K} \Big(\mathbb{C}^e : \mathbf{m} \otimes \mathbf{n} : \mathbb{C}^e \Big)$$
⁽²⁾

with $\xi = \frac{q}{r} = (1-d)$, $\mathcal{K} = \frac{q(r) - \mathcal{H}^d r}{r^3}$ for damage models and $\mathcal{K} = \frac{1}{\mathcal{H}^p + \mathbf{n} : \mathbb{C}^e : \mathbf{m}}$ $\xi = 1$, for

plasticity models. **n** is the flow plastic, **m** is the flow of the plastic potential, q is the stresslike hardening/softening variable, d is a damage variable whose value ranges from 0 to 1, r is the internal variable, see [2] for more details.

Applying the definition of the standard fourth-order isotropic elastic modulus tensor in function of Lamé's parameters (λ, μ) , *i.e.*: $\mathbb{C}^e = 2\mu \mathbb{I} + \lambda(\mathbf{1} \otimes \mathbf{1})$, and some considerations (see [3], [4], [5]), equation (1) can be reduced to the following one:

$$\frac{\xi}{\mathcal{K}(\mathcal{H})} = Z(\mathbf{N}) \tag{3}$$

with
$$Z(\mathbf{N}) = \lambda^2 \operatorname{Tr}(\mathbf{m}) \operatorname{Tr}(\mathbf{n})(a+b) + 2\lambda\mu \operatorname{Tr}(\mathbf{n}) (\mathbf{N} \cdot \mathbf{m} \cdot \mathbf{N})(a+b) + 2\lambda\mu \operatorname{Tr}(\mathbf{m}) (\mathbf{N} \cdot \mathbf{n} \cdot \mathbf{N})(a+b) + 4\mu^2 a (\mathbf{N} \cdot \mathbf{n} \cdot \mathbf{N} \cdot \mathbf{m}) + 4\mu^2 b (\mathbf{N} \cdot \mathbf{m} \cdot \mathbf{N}) (\mathbf{N} \cdot \mathbf{n} \cdot \mathbf{N})$$

$$(4)$$

where $a = \frac{1}{\mu}$, $b = -\frac{(\lambda + \mu)}{(\lambda + 2\mu)}\frac{1}{\mu}$.

The problem to be solved here is to find the critical normal vector \mathbf{N}_{crit} , which can be done by maximizing function (4). Once we have obtained the critical values \mathbf{N}_{crit} , we can obtain \mathcal{H}_{crit} by substituting \mathbf{N}_{crit} in equation (3).

3 CRITICAL VALUES

3.1 Case of colinearity between **n** and **m**

For the coaxial non-associated case the principal directions for **n** coincide with the principal directions of **m** but $n \neq m$.

We can explicitly express the corresponding angles as:

$$\tan^{2} \theta_{crit} = \frac{\left[(m_{3} - m_{1})n_{2} + (n_{3} - n_{1})m_{2} \right]\nu + (2n_{3} - n_{1})m_{3} - m_{1}n_{3}}{\left[(m_{1} - m_{3})n_{2} + (n_{1} - n_{3})m_{2} \right]\nu + (2n_{1} - n_{3})m_{1} - n_{1}m_{3}}$$
(5)

where v is the Poisson's ratio. It is interesting to observe that the critical angle does not depend on the Young's modulus E.

3.2 The critical Hardening/Softening parameter (\mathcal{H}_{crit})

Damage Models

For the isotropic damage case \mathcal{H}_{crit}^{d} is given by:

$$\mathcal{H}_{crit}^{d} = \xi \left(1 - \frac{r^2}{Z_{\max}(\mathbf{N})} \right)$$
(6)

where $Z_{\text{max}}(\mathbf{N})$ is the maximum value from (4).

Plasticity Models

$$\mathcal{H}_{crit}^{p} = \frac{E}{4(1-\nu^{2})} \left\{ \frac{\left[(\mathbf{m}_{1-3})(\nu \mathbf{n}_{2}+\mathbf{n}_{1}) + (\mathbf{n}_{1-3})(\nu \mathbf{m}_{2}+\mathbf{m}_{1}) \right]^{2}}{(\mathbf{m}_{1-3})(\mathbf{n}_{1-3})} - 4 \left[\nu (\mathbf{m}_{2}\mathbf{n}_{1}+\mathbf{m}_{1}\mathbf{n}_{2}) + (\mathbf{m}_{2}\mathbf{n}_{2}+\mathbf{m}_{1}\mathbf{n}_{1}) \right] \right\}$$
(7)

where $m_{1-3} \equiv m_1 - m_3$; $n_{1-3} \equiv n_1 - n_3$.

4 CRITICAL VALUES FOR SOME CONSTITUTIVE MODELS

Several classic models of plasticity and damage are employed

4.1 One parameter models

	Criteria		
	Rankine	von Mises	Tresca
critical angle	$\tan^2 \theta_{crit} = 0 \Longrightarrow \begin{cases} \theta_1 = 0 \\ \theta_2 = 0 \end{cases}$	$\tan^2 \Theta_{crit} = -\frac{\mathbf{S}_3 + \mathbf{v}\mathbf{S}_2}{\mathbf{S}_1 + \mathbf{v}\mathbf{S}_2}$	$\tan^2 \theta_{crit} = 1 \Longrightarrow \begin{cases} \theta_1 = +45^{\circ} \\ \theta_2 = -45^{\circ} \end{cases}$
critical herdening modulus	$\mathcal{H}_{crit}^{p}=0$	$\mathcal{H}_{crit}^{p} = -\frac{3E\mathbf{s}_{2}^{2}}{2(\mathbf{s}_{1}^{2} + \mathbf{s}_{2}^{2} + \mathbf{s}_{3}^{2})}$	$\mathcal{H}_{crit}^{p} = 0$

where \mathbf{s}_i are the principal values of the deviatoric stress tensor \mathbf{s} .

4.2 Two parameter models

CRITICAL VALUES FOR THE MOHR-COULOMB CRITERION		
critical angle	$\tan^2 \theta_{crit} = -\frac{2\sin\psi\sin\phi + \sin\phi + \sin\psi}{2\sin\psi\sin\phi - \sin\phi - \sin\psi}$	
critical hardening modulus	$\mathcal{H}_{crit}^{p} = \frac{E}{8(1-v^{2})} \left[\frac{(\sin\psi - \sin\phi)^{2}}{\sqrt{(1+\sin^{2}\psi)(1+\sin^{2}\phi)}} \right]$	

where ϕ is the angle of internal friction and ψ is the dilatancy angle.

CRITICAL VALUES FOR THE MOHR CRITERION (ASSOCIATED CASE)		
critical angle	$\tan^2 \theta_{crit} = \frac{2 - \sin \phi - \sin \psi}{2 + \sin \phi + \sin \psi}$	
critical hardening modulus	$\mathcal{H}_{crit}^{p} = \frac{E}{4(1-v^{2})} \frac{(N'-M')^{2}}{(1+M')(1+N')}$	

where $N' = \frac{1 - \sin \phi}{1 + \sin \phi}$; $M' = \frac{1 - \sin \psi}{1 + \sin \psi}$ with $N' \ge 0$, $M' \ge 0$

CRITICAL VALUES FOR THE DRUCKER-PRAGER CRITERION (ASSOCIATED CASE)		
critical angle	$\tan^2 \theta_{crit} = \frac{-(1+\nu)(\alpha_1\alpha_4 + \alpha_2\alpha_3) - 2(\mathbf{s}_3 + \nu \mathbf{s}_2)\alpha_1\alpha_2}{(1+\nu)(\alpha_1\alpha_4 + \alpha_2\alpha_3) + 2(\mathbf{s}_1 + \nu \mathbf{s}_2)\alpha_1\alpha_2}$	
critical hardening modulus	$\mathcal{H}_{crit}^{p} = \frac{E}{(1-v^2)} \left[A_1 + A_2 + A_3 \right]$	

For the Drucker-Prager criterion it was considered $\mathbf{n} = \alpha_1 \mathbf{s} + \alpha_3 \mathbf{1}$ and $\mathbf{m} = \alpha_2 \mathbf{s} + \alpha_4 \mathbf{1}$.

$$\begin{split} A_{1} &= \frac{\left[(1-2\nu) \mathbf{s}_{3} \alpha_{2} + (1+\nu) \alpha_{4} \right] \left[(1-2\nu) \mathbf{s}_{3} \alpha_{1} + (1+\nu) \alpha_{3} \right]}{(1-2\nu)}, \\ A_{2} &= \frac{\left[2(\nu \mathbf{s}_{2} + \mathbf{s}_{1}) \alpha_{1} \alpha_{2} + (1+\nu) (\alpha_{1} \alpha_{4} + \alpha_{2} \alpha_{3}) \right]^{2}}{4\alpha_{1} \alpha_{2}}, A_{3} = -3(1-\nu) \frac{(1-2\nu) \tau_{oct}^{2} \alpha_{1} \alpha_{2} + (1+\nu) (\alpha_{3} \alpha_{4})}{(1-2\nu)}, \\ \text{with } \tau_{oct}^{2} &= \frac{1}{9} \left[(\sigma_{1} - \sigma_{2})^{2} + (\sigma_{2} - \sigma_{3})^{2} + (\sigma_{3} - \sigma_{1})^{2} \right]. \end{split}$$

4.3 Isotropic Damage Model

ISOTROPIC DAMAGE MODEL		
critical angle	$\tan^2 \Theta_{crit} = -\frac{\varepsilon_3 + v\varepsilon_2}{\varepsilon_1 + v\varepsilon_2}$	
critical hardening modulus	$\mathcal{H}_{crit}^{d} = (1-d) \left[1 - \frac{(\lambda+\mu)r^{2}}{\left\{ \lambda^{2} \left(Tr(\boldsymbol{\varepsilon}) \right)^{2} + \left[(\varepsilon_{1} - \varepsilon_{3})^{2} + 2Tr(\boldsymbol{\varepsilon})(\varepsilon_{1} + \varepsilon_{3}) \right] \lambda \mu + 2\mu^{2} \left(\varepsilon_{1}^{2} + \varepsilon_{3}^{2} \right) \right\}} \right]$	

5 CONCLUSIONS

Starting from the Tangent Acoustic Tensor we obtained explicit formulae for the critical hardening modulus and the normal to the critical plane at localization.

REFERENCES

- [1] J.W. Rudnicki and J.R. Rice "Condition for the localization of the deformation in pressuresensitive dilatant material". J. Mech. Phys. Solids, 23, 371-394, (1975).
- [2] J. Oliver, M. Cervera, S. Oller and J. Lubliner. Isotropic damage models and smeared crack analysis of concrete. In N. Bićanić *et al.* (ed) Proc.. SCI-C Computer Aided Analysis and Design of Concrete Structures, pp. 945-957. (1990).
- [3] D. Bigoni and D. Zaccaria, "On strain localization analysis of elastoplastic materials at finite strains". *Int. J. Plasticity*, 9 N° 1, pp. 21-33, (1993).
- [4] D. Bigoni and T. Hueckel. "Uniqueness and localization I. Associative and non-associative elastoplasticity". *Int. J. Solids Struct.*, 28(2), pp. 197-213, (1991).
- [5] E.W.V. Chaves. A three dimensional setting for strong discontinuities modelling in failure mechanics. PhD Thesis, Technical University of Catalonia, Barcelona, Spain, (2002).