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Summary. We compare two approaches for the discretization of elastodynamic contact prob-
lems with friction. The first one we propose is an energy conserving scheme and the second one
consists in an equivalent mass matrix leading to a well-posed semi-discretized problem.

1 Hybrid formulation of the contact with friction problem

The dynamic evolution of a linearly elastic structure in contact with Coulomb friction (F ≥ 0
is the friction coefficient) on a rigid obstacle on a part ΓC of its boundary can be expressed:































Find u : [0,T ] −→V,λN : [0,T ] −→ X ′
N

and λT : [0,T ] −→ X ′
T

satisfying
< ρü,v >V ′,V +a(u,v) = l(v)+ < λN ,vN >

X ′
N ,XN

+ < λT ,vT >
X ′

T ,XT
∀ v ∈V,

λN ∈ ΛN , < µN −λN ,uN >
X ′

N
,XN

≥ 0 ∀µN ∈ ΛN ,

λT ∈ ΛT (F λN), < µT −λT , u̇T >
X ′

T
,XT

≥ 0 ∀µT ∈ ΛT (F λN),

u(0) = u0, u̇(0) = u1,

(1)

where V = {v ∈ H1(Ω; IRd) : v = 0 on ΓD},

a(u,v) =
Z

Ω
Aε(u) : ε(v)dx, l(v) =

Z

Ω
f .vdx+

Z

ΓN

g.vdΓ,

XN = {vN|ΓC
: v ∈V}, XT = {vT|ΓC

: v ∈V},
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ΛN = {µN ∈ X ′
N

:< µN ,vN >
X ′

N ,XN
≥ 0, ∀ vN ∈ XN ,vN ≤ 0},

ΛT (G) = {µT ∈ X ′
T

: − < µT ,vT >
X ′

T
,XT

+ < G, |vT | >X ′
N

,XN
≤ 0, ∀ vT ∈ XT }.

2 Hybrid finite element discretization

The finite element discretization of (1) leads to the following system (see [3, 4]):


















MÜ +KU = L+B
T

N
LN +B

T

T
LT ,

LN ∈ Λh
N

, (L̃N −LN )
T
BNU ≥ 0 ∀L̃N ∈ Λh

N
,

LT ∈ Λh
T
(F LN ) , (L̃T −LT )

T
BT U ≥ 0 ∀L̃T ∈ Λh

T
(F LN) ,

U(0) = U0,U̇(0) = U1.

(2)
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where U is the vector of displacement d.o.f., M is the mass matrix, K the stiffness matrix,
Λh

N
and Λh

T
(F LN ) are some discretizations of ΛN and ΛT (F LN ) respectively, F is the friction

coefficient and BN , BT are the matrices representing the discrete trace operators. Unfortunately,
this problem is not well-posed. It admits a infinite number of solutions corresponding to the
choice of a restitution coefficient for each contact node (see [6]).

3 Time discretization with a midpoint scheme

The midpoint scheme applied to Problem (2) with a constant loading can be written:






























Un+1 = Un +∆tV n+ 1
2 , Un+ 1

2 =
Un +Un+1

2
, V n+1 = V n +∆tAn+ 1

2 , V n+ 1
2 =

V n +V n+1

2
,

MAn+ 1
2 +KUn+ 1

2 = L+B
T

N
L

n+ 1
2

N +B
T

T
L

n+ 1
2

T ,

L
n+ 1

2
N ∈ Λh

N
, (L̃N −L

n+ 1
2

N )
T
BNUn+ 1

2 ≥ 0 ∀L̃N ∈ Λh
N

,

L
n+ 1

2
T ∈ Λh

T
(F L

n+ 1
2

N ) , (L̃T −L
n+ 1

2
T )

T
BT Un+ 1

2 ≥ 0 ∀L̃T ∈ Λh
T
(F L

n+ 1
2

N ) .

From this scheme one obtains: ∆t < MAn+1/2 +KUn+1/2−L−B
T

N
L

n+ 1
2

N −B
T

T
L

n+ 1
2

T ,V n+ 1
2 >= 0,

which directly implies that the total energy J(U,V ) =
1
2

V
T
MV +

1
2

U
T
KU −L

T
U satisfies:

J(Un+1,V n+1) = J(Un,V n)+∆t < B
T

N
L

n+ 1
2

N +B
T

T
L

n+ 1
2

T ,V n+ 1
2 > .

The term < B
T

T
L

n+ 1
2

T ,V n+ 1
2 > is non-positive and represents the frictional dissipation of energy.

But the term < B
T

N
L

n+ 1
2

N ,V n+ 1
2 > is of arbitrary sign. The numerical tests show that this scheme

is not convergent. The more ∆t is small the more the energy is growing. We propose here two
strategies to obtain a stable scheme.

4 An energy conserving scheme with a contact condition in terms of velocity

With an appropriate choice of Λh
N

and a Lagrange finite element method, the contact con-
dition can be written λ̃i

N
≤ 0, U.Ni ≤ 0, (λ̃i

N
)(U.Ni) = 0, where on each finite element node

in potential contact λ̃i
N

and U.Ni are the equivalent contact force and the normal displacement
respectively. The idea is to replace this expression of the contact condition with the following
equivalent expression in terms of normal velocity:

{

U.Ni < 0 =⇒ λ̃i
N

= 0,

U.Ni ≥ 0 =⇒ U̇ .Ni ≤ 0, λ̃i
N
≤ 0, (U̇ .Ni)(λ̃i

N
) = 0.

The proposed scheme is based on a midpoind scheme for the elastodynamic part and a central
difference scheme for the contact condition. It is strictly energy conserving. Of course a nodal
friction condition can be added, and this is stable when a central difference scheme is also used
for the friction condition. The expression for the frictionless problem is (n ≥ 1):
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U0 and V 0 given ,U1 = U0 +∆tV 0 +∆tz(∆t) with lim
∆t→0

z(∆t) = 0,

M

(

Un+1 −2Un +Un−1

∆t2

)

+K

(

Un+1 +2Un +Un−1

4

)

= L+∑
i

λ̃i,n
N

Ni,

V n = (Un+1 −Un−1)/2∆t,
Un.Ni < 0 =⇒ λ̃i,n

N
= 0,

Un.Ni ≥ 0 =⇒ V n.Ni ≤ 0, λ̃i,n
N

≤ 0, (V n.Ni)(λ̃i,n
N

) = 0.

5 Equivalent mass matrix

The major difficulty with the elastodynamic contact problems comes from the fact that nodes
on the contact boundary have their own inertia. This leads to instabilities especially for en-
ergy conserving schemes. We propose here to introduce a new distribution of the mass matrix,
conserving the total mass, the moments of inertia and the center of gravity, and so that there
is no inertia for the contact nodes. If M0 is the modified mass matrix, it is requiered that
N

T

i M0N j = 0, ∀i, j. Then it is possible to prove (see [1, 2]) that Problem (2) with M0 instead
of M is well-posed, has a Lipschitz solution and is energy conserving when there is no fric-
tion. The consequence is that any classical time integration scheme converges. For instance, a
Newmark scheme with β = γ = 1/2 seems to be a good choice.

6 Numerical tests
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Figure 1: energy and contact pressure evolution with the energy conserving scheme

The presented numerical test is a simulation in a two dimensional case of an elastic disc
under its own weight bouncing on a rigid foundation. Figures 1 and 2 give the total energy and
the contact stress at a particular contact node for the two proposed schemes. The first scheme,
although stable due to the energy conserving, is very oscillating in contact stress. The conserva-
tion of energy makes the contact nodes oscillating. Moreover there is a small interpenetration.
This method is probably more adapted to the dynamics of rigid bodies. The second approach
with an equivalent mass matrix is more satisfactory. The energy is not strictly conserved, but
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there is only small variations, and the contact stress is well approximated and there is no inter-
penetration.
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Figure 2: energy and contact pressure evolution with the equivalent mass matrix and a Newmark scheme with
β = γ = 1/2
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