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1 INTRODUCTION 

The needs of modeling orthotropic materials have been recently revived with great 
interest, having enormous applications in various structural systems like aerospace and 
automobile industries. The main advantages of using these materials can be attributed to 
their high stiffness and low ratio of weight to strength in comparison to other materials. 

Some analytical investigations have been reported on the fracture behaviour of such 
materials such as the pioneering one by Muskelishvili1 and Sih et al.2. 

Many numerical methods have been utilized for solving mechanical problems such as 
the finite difference method, the finite element method and the boundary element method. 
However, the finite element method is more convenient and applicable because of its 
ability in modeling complex boundary conditions, loadings, materials and geometries. In 
order to further improve FEM modeling of discontinuities, Belytschko et al.3 combined 
FEM with the concepts of partition of unity developing the eXtended Finite Element 
Method (XFEM). In the XFEM, the finite element approximation around a crack is 
enriched with functions derived from fracture analysis of the crack-tip. The main 
advantage of the XFEM is that the mesh is prepared independent of the existence of any 
discontinuities. Moёs et al4 have reported successful simulations for 2D isotropic media. 

In this study, the method is further extended for modeling one branch of orthotropic 
materials. The enriching functions are based on the work reported by Viola et al5. To 
verify the robustness of the proposed method, stress intensity factors (SIFs) for a cracked 
plate are obtained and compared with other numerical or (semi-) analytical methods.  

2 MECHANICS OF ORTHOTROPIC MATERIALS 

It is assumed that an infinite orthotropic plate consisting of a traction free line crack is 
subjected to uniform biaxial (T and kT) and shear (S) loads at infinity. Fig. 1 shows the 
crack geometry, loading and the Cartesian and polar co-ordinates utilized in this study. 
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Figure 1: Crack geometry, loading,  global and local co-ordinates 

 
In order to derive expressions for an static case from the originally developed 

formulae for elastodynamic problems by Viola et al.5, the velocity of the crack 
propagation is assumed to be zero. The displacement field in X (u) and Y (v) directions 
can then be written as (Viola et al.5): 
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where pj (j=1-4), kj (j=1-6), A1, B1, B2 and D1 are constant loadings and material property 
coefficients and 
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where Cij (i,j=1,2 and 3) are constitutive coefficients. 
The displacements are limited to the case that 1γ  and 2γ  have real values (Viola et 

al.5). 

3 EXTENDED FINITE ELEMENT METHOD 

In XFEM the procedure of preparing the numerical analysis model is divided into two 
parts. In the first part, the finite element model is created without any considerations 
about cracks, holes or other discontinuities and then the approximation of displacement is 
enriched by utilizing asymptotic near-tip functions and the generalized Heaviside 
function through the framework of partition of unity. 

For a point x of a domain, in XFEM, the displacement approximation for modeling an 
arbitrary crack can be written as (Moёs et al4) 
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where N is the set of all nodes in the domain, 1K and 2K are the sets of nodes that crack 
tips 1 and 2 are in their support domain, respectively, gN is a set of nodes that the crack is 
in their support domain except for 1K and 2K , Jb and kc  are the set of additional degrees 
of freedom related to the discontinuities,  Iφ is the finite element shape function and 

)(xH is the generalized Heaviside function defined by 
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where x* is the nearest point on the crack to x and ne is the unit vector normal to the crack 
alignment. 

In Eq. 7, )(F1 xl and )(F2 xl are near-tip enrichment functions; noting that these functions 
must span the displacement fields in Eqs. (1) and (2); therefore one can write: 

 

{ }






== )(

2
sin,)(

2
sin,)(

2
cos,)(

2
cos),( 2

2
1

1
2

2
1

14
1 θ

θ
θ

θ
θ

θ
θ

θ
θ grgrgrgrrF ll  (10) 

4 EXAMPLE 
In this example the proposed method is applied to a slanted crack of length 2a located 

in a finite two-dimensional orthotropic plate under constant applied tension (Fig. 2) 
where 222 =a . 

Stress intensity factors are evaluated by the method reported by Kim and Paulino6 and 
compared with results reported by Sih et al2, Alturi et al7, Wang et al8 and Kim and 
Paulino13. According to Table 1, the results are different 2.6% for KI and 3.6% for KII in 
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comparison to Sih et al2. 
 

 
Figure 2 : Geometry of a  plate with a slanted crack under remote tension 

 
Method KI KII 

Sih et al2  1.0539 1.0539 
Atluri et al.7  1.0195 1.0795 
Wang et al.8  1.023 1.049 

MCC 1.067 1.044 
Kim and Paulino6 

DCT 1.077 1.035 
Proposed method  1.081 1.092 

Table 1: SIFs in an orthotropic plate with a slanted crack under uniform remote tension loading 

5 CONCLUSIONS 
In this paper, an extended finite element method is proposed for analyzing cracked 

orthotropic materials. A set of partition of unity based enriching functions are added to 
the finite element approximation so the crack geometry can be taken into account without 
any special meshing. Analytical displacement field around a crack-tip in orthotropic 
media is used to extract near-tip enrichment functions. The robustness of suggested 
method was tested with evaluating stress intensity; all in good agreement with other 
numerical and semi-analytical methods. 
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