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Figure 1 : Welding phase of FSWP 
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Summary. An Arbitrary Lagrangian Eulerian approach is used to simulate the Friction Stir 
Process. This formulation, which has been implemented into the Forge3® FE software, uses a 
splitting method: 1) calculation of the material velocity/pressure fields, 2) calculation of the 
mesh velocity, and 3) treatment of advection terms. This latter stage consists in remapping the 
variables necessary to the next computation step. Transport of nodal variables is carried out 
relatively simply by using an upwind technique. However, remapping variables stored at 
integration points, as the stress field, require more complex operations. Different techniques, 
based on patch recovery approach, have been investigated. 

1 INTRODUCTION 
The stationary welding phase of the 

Friction Stir Welding Process (FSWP), is 
described on fig. 1. The simulation of the 
plunging phase, and the formation of 
eventual defects (voids) during the 
welding phase, require taking into account 
the free surfaces’ movements whereas 
high deformations are involved under the 
tool. And the only approach, which proved 
to be suitable for removing this problem, 
is the Arbitrary Lagrangian Eulerian one 1. So, an ALE formulation has been implemented, 
into the FORGE3® FE software, using a splitting method: a Lagrangian phase is followed by a 
convection (transport) phase. Treatment of convective terms has always been one of the main 
difficulties of this method 2. Transport of variables, which can be discontinuous (P0) per 
element, has to be sufficiently accurate and consistent. Furthermore, remapping the stress 
tensor (necessary in elasto-viscoplastic computation) should verify mechanical equilibrium. 
This work reports on investigations concerning different transport techniques. 

2 LAGRANGIAN PHASE 

Forge3® is extensively used to simulate hot, warm and cold forging of 3D geometry parts, 
using a pure Lagrangian formulation. At each time step, this formulation is used to solve the 
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thermal and mechanical equilibrium equations. This is the first step of the implemented ALE 
method. 

2.1 Mechanical Formulation 
The finite element discretization of the part is based on an enhanced (P1+/P1) 4-node 

tetrahedron element. A mixed velocity-pressure formulation is used. The weak form of the 
momentum equation and weak form of incompressibility of the plastic deformation are solved 
by using a Newton-Raphson algoritm with a preconditioned gradient solver. 
Viscoplastic, Elasto-plastic and elasto-viscoplastic constitutive models are available to 
simulate both elastic and plastic deformation, with elastic spring back and residual stress 
calculations. 
Contact and friction conditions at the interface between part and tools are modeled by Tresca, 
Coulomb or Norton friction laws. Furthermore, different laws are available to describe some 
rheological and tribological parameters as functions of the temperature. 

2.2 Thermal Coupling 
The thermal computation is coupled to the mechanical computation. So the discretized form 
of the heat equation is solved at each time step. Heat generated by material deformation and 
by friction with the tool, thermal exchanges by conduction, convection and radiation, are all 
taken into account. 

3 ALE FORMULATION: CONVECTIVE PHASE 

3.1 Mesh velocity 

The second step of the ALE method consists in computing the mesh velocity mshv . This 
velocity can be different of the material one. Respecting a consistency condition at boundaries 
(see equ. 1), mshv  is computed to optimize element shapes independently from the material 
deformation. The relationship between the material time derivate and the grid time derivate of 
a variable φ is given by equ. 2. The convective terms account for the transport of material 
trough the grid and are treated in this method by a remapping step described above. 
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3.2 Transport Techniques 
A first order linearization of equation 2, which leads to 

equation 3, provides a quick and simple method to transport 
nodal variables. The gradient has to be computed on the 
upwind element which is determined as shown on fig. 2. 

c = vmat - wmsh  
Figure 2: Upwind element 
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However, this method can not be applied to transport the variables stored at integration 
points: the stress field σ  or the equivalent strain ε  are often discontinuous per elements. 

The first and simplest idea is to apply a P0 transport: value at the ALE integration point is 
approximated by the value of the nearest updated Lagrangian integration point. But higher are 
the gradients in regard to the elements’ size, higher is the resulting error. Therefore, defining a 
local continuous solution is preferred. 

Simple least square method, or more elaborated Superconvergent Patch Recovery method 3 
(equ. (4), (5) or (7) introduced above), can be used to firstly compute a continuous solution at 
Lagrangian nodes from their topological neighbor (see fig. 4). Then, this solution is 
interpolated at ALE integration points. 

A recovered continuous solution k
hσ~  can be also directly constructed at each integration 

points. Equ. (4) gives the second order polynomial expression of k
hσ~ . Coefficients ak, which 

represent the variable gradient, are determined on the Lagrangian configuration by 
minimizing the least square expression (5) on the integration point centered patch (fig. 3). 
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At the Lagrangian center of recovery (xh, yh, zh): k
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Value of the variable at any integration point of the ALE configuration is next extrapolated 
from the nearest updated Lagrangian integration point using expression (4). 

In case of an Elasto-viscoplastic computation, a different expression can be minimized to 
better satisfy mechanical equilibrium. The recovered solution should satisfy equation (6) on 
the patch domain for any virtual velocity *

hu . So the least square expression (5) can be 
replaced by equ. (7). Its minimization provides an “equilibrated remap”. 
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Figure 3: Patch centred on an element in 2D Figure 4: Patch centred on a node in 2D 
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3.3 Test and first results 
To evaluate the efficiency of the different transport techniques, error estimation is 

performed. Two norms are used to compute the error η  induced by remapping: the first one is 
a classical L2 norm (8) and the second one is an “equilibrium norm” (9), traducing the 
disequilibrium at the beginning of the new increment. ALE

hσ~  is the stress remapped on mesh 
after an arbitrary distortion and LAG

hσ  is the Lagrangian value, which would have been 
directly computed on this distorted mesh with the same boundary conditions. 
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Another more classical test to visualize the conservativity of the method consists in 
remapping variables without any mechanical or thermal computation: a constant velocity is 
imposed to material, which moves across an Eulerian mesh. Fig. 5 shows the difference 
observed between a stress spot remapped using a two different techniques. 

4 CONCLUSIONS 
A new ALE formulation has been implemented in the FORGE3® FE software to simulate all 

steps of the FSWP. To correctly remap the variables stored at integration points, such as stress 
components, different transport techniques have been implemented. 

These techniques have been enhanced to better satisfy mechanical equilibrium after stress 
remapping. Benchmark tests have been developed to evaluate the conservativity of the 
transport algorithm. Error estimation has been computed in order to compare the efficiency of 
each technique in function of the value of the convective velocity. 
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Figure 5: Transport of a stress spot across a fixed mesh, using :  
i) a nodal smoothing technique at the top, ii) a SPR technique centered on elements at the bottom. 


