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Summary. This paper addresses the question of accurate and at the same time eÆcient
conditions for the micro-macro-transition within multiscale models for the mechanical and
numerical modeling of materials with microstructure in the nonlinear range. One intended
application is the simluation of �ber reinforced concrete (cement), a material which allows
to design very thin structures. The post critical behaviour is driven by the accumulation of
the failure mechanisms on the microscale. Those failure mechanisms like matrix cracking,
debonding between the �bers in a �lament, or between �ber and matrix are incorporated in
the macroscopic formulation using a strongly coupled multiscale method introduced as the
variational multiscale method (VMM) by Hughes et al.5. A central point of the presented
scheme for an eÆcient solution of the discrete problem is the locality constraint for the
small scale part of the solution, leading to decoupled problems on the micro scale.

1 OVERVIEW

According to Fish4, the VMM can be regarded as a "superposition based method".
Those methods are based on a decomposition of the solution function u = �u+u0 into global
�u (large scale) and local uctuating displacements u0 (small scale). For our applications
u0 is induced by local sti�ness variations due to microcracks in the composite. The
underlying strategy is very close to domain decomposition methods, e.g. the multiscale
method presented by Ladeveze7 and multigrid methods as shown by Bayreuther1. Those
methods provide iterative strategies for an eÆcient solution of large problems and may be
classi�ed as "solution methods". In contrast "local enrichment methods", a classi�cation
introduced by Fish et al.4 including the VMM, assume locality of the small scale part
of the solution u0; this locality constraint is motivated by the underlying physics of the
problem and reects the decaying behaviour of the inuence of microcracks on the solution
u. This assumption provides an improvement in the eÆciency compared to solution
methods: While domain decomposition methods iteratively search for the true coupling
terms between substructures in the system matrix, the coupling terms are assumed based
on the underlying physics in the presented scheme.
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2 LOCALITY CONSTRAINTS

As already mentioned, the assumption of compactly supported small scale displace-
ments within substructures, for our case within the Finite Elements of the large scale
displacement discretization, is important for the eÆciency. Several assumptions con-
cerning the boundary-conditions for the small scale displacements are investigated in the
presentation regarding accuracy, e�ort and application area. Displacement boundary con-
ditions are the easiest and most eÆcient possibility, imposed by assuming the small scale
displacements to vanish on the large scale element's edges �B: u0 = 0 on �B. These
boundary conditions lead to accurate results for local failure and adequate proportions
between the failure zone and the large scale discretization. For expanding failure these
displacement constraints cause responses, which are too sti�, as can be seen in the exam-
ple below, Figure 2. More accurate results for applications with expanding failure can be
achieved by indroducing additional constraints through Lagrange-multipliers in a weak
sense. The Lagrange-multiplier can be interpreted as the boundary tractions, which leads
to the name "stress boundary conditions". Marcovic8 introduced stress BC's by the weak
constraint, that the mean value of u0 over the large scale element edges should vanish:R
�B � � u0 dA = 0, introducing Lagrange-multipliers as local variables, see3. The enforce-
ment of the small scale displacements continuity on the large scale elements edges in a
weak sense:

R
�B � � [u0] dA = 0, as shown by Farhat2 can (depending on the discretization

of �) lead to very accurate results but on the cost of additional global degrees of freedom
�.

3 FORMULATION AND EXAMPLE

Figure 1: L-Shape: Deformed structures and damage distribution

Starting point is the boundary value problem including equilibrium of a 2-dim. struc-
ture, small strain kinematics and constitutive equations

Æ�u =
Z


Æ" : � dV �

Z


Æu � b̂ dV �

Z
�t
Æu � t̂ dA = 0: (1)

The solution function and the test functions are decomposed into large and small scale
part:
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Figure 2: L-Shape: Solution time and load-displacement curves

u = �u+ u0 Æu = Æ�u + Æu0: (2)

For a micro-material formulation with interfaces �IF between �bers and matrix and gra-
dient enhanced damage model for the concrete we get the following set of equations:

� large scale problem:

Æ��u =
Z


Æ�" : �(";D(~"v)) dV �

Z


Æ�u � b̂ dV �

Z
�t
Æ�u � t̂ dA = 0 (3)

� small scale problem:

Æ�u0 =
Z

l

Æ"0 : �(";D(~"v)) dV +
Z
�IF
l

Æ[u0] � t dA�

Z

l

Æu0 � b̂ dV �

Z
�t
l

Æu0 � t̂ dA = 0 (4)

� nonlocal strains:

Æ�~"v =
Z

GE
l

c Ær~"v � r~"v dV +
Z

GE
l

Æ~"v ~"v dV �

Z

GE
l

Æ~"v "v(") dV = 0: (5)

The small scale displacements u0 are assumed to be locally supported within every large
scale element 
l, leading to decoupling of the small scale problem and of the equation of
nonlocal strains. Additional constraint conditions introduce assumptions concering the
behaviour of the small scale displacements u0 on the large scale elements edges �B

l
. For

example the assumption of vanishing mean value of u0 over �B

l
, 8, is expressed by

� locality constraint:

Æ�� =
Z
�B
l

Æ�B � u0 dA = 0: (6)
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� can be identi�ed as the (local) traction vector on the large scale element's edges. We
are using FE-discretization for both the large and the small scale displacements, leading
to a coupled set of nonlinear equations, iteratively solved by a Newton-Raphson scheme.

As a �rst example, the damage evolution of an L-Shape with gradient enhanced damage
is investigated. The results of a DNS calculation, i.e. a calculation with "microresolution"
used as reference solution are compared to calculations with the VMM using 300 large
scale elements and displacement boundary conditions on the one hand and stress bound-
ary conditions on the other hand, see Figures 1 and 2. As the failure zone expands over
the large scale elements boundaries, the kinematic restrictions of the displacement bound-
ary conditions lead to a too sti� load-displacement behaviour while the stress boundary
conditions tend to be too weak but closer to the reference solution. The solving time is
reduced to 1/5.5 and 1/3.75 respectively trough the multicale model for this example.
Further examples will be given in the presentation.
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