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Summary. This paper develops a 3-node, 18-dof triangular layered plate element for the 
geometric and material nonlinear analysis of RC slabs at service loads. It combines a 9-dof 
triangular membrane element with drilling degrees of freedom and a refined, non-conforming 
9-dof triangular plate bending element to account for membrane and flexural coupling. Two 
numerical examples illustrats the efficacy of this robust element.  

 
 

 
1 INTRODUCTION 

In the FE analysis of RC engineering structures, recourse is usually made to either a 
modified stiffness approach or to a layered formulation. The latter is more popular, and forms 
the basis for the element derived herein. A large number of layered triangular and 
quadrilateral elements have been reported for the nonlinear analysis of plate/shell structures, 
including RC slabs, each with their own merits and drawbacks. However, it appears that an 
18-dof triangular element for the nonlinear analysis of RC slabs has not been reported, and 
this paper presents the derivation of such an element that combines the 3-node, 9-dof 
membrane element of Allman1 that includes drilling freedoms, and the RT9 non-conforming 
3-node, 9-dof plate bending element of Cheung and Chen2. The proposed element is simple in 
its formulation and it provides robust performance in numerical analysis. Its scope and 
accuracy is illustrated by modelling flat RC slabs tested elsewhere. 

2 BASIC EQUATIONS 

The RC slab is discretised into c concrete layers and s smeared steel layers, with perfect 
bond between each layer, so that variations of stresses throughout the depth z ∈ [0,h] are 
approximated as being piecewise constant, with the Gauss points at the layer mid-thicknesses. 
Using Kirchhoff’s thin-plate theory, the displacements of an arbitrary P(x,y,z) within the 
element are   
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where ∆u, ∆v, ∆w = translational displacement increments. The Green finite strain increments 
sing von Karman’s large deformation assumption are u 
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w hich leads to 

ηeχeε ∆+∆=∆+∆=∆ ˆˆ z ,     (3) 
 
where ∆e = membrane strain increments, ∆η = bending strain increments, and the second 

iola-Kirchhoff stress increment ∆σ can be found from the constitutive law D( ) by P 
( )χeσ ˆˆ ∆+∆=∆ zD .      (4) 

 

3 MATERIAL MODELLING 

The onset of concrete cracking in tension is defined as being when the maximum principal 
stress (direction 1

r
) reaches the concrete tensile strength ft which defines a crack perpendicular 

to , and a second crack forms perpendicular to the minimum principal stress direction 1
r

2
r

 
when this stress reaches ft. At the first instant the material property matrix  = diag[0, EcD′ c, 
Gc12]; in the second instant the property matrix becomes cD′  = diag[0, Ec, ½Gc12], where Ec = 
Young’s modulus and Gc12 = shear modulus that accounts for aggregate interlock and dowel 
action. These take prescriptive formulations3, as does the effect of tension stiffening4. 

4 UPDATED LAGRANGIAN FORMULATION 
The linearised formulation of the principle of virtual work is represented by  
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for times t and then ∆t. The first term in (5) is , the second term is 

, and the final term leads to the internal force vector , where K

eee qKq ′∆′′∆δ
T

ee
σ

e qKq ′∆′′∆δ
T ee Rq ′′∆δ tT e = 

element stiffness matrix,  = element geometric stiffness matrix and We
σK t+∆t = external force 

vector. 

5 18-DOF 3-NODED TRIANGLUAR ELEMENT 
Using the representation of Allman1, the displacement function at any point is  
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where Nm = the appropriate interpolation functions matrix, while the non-conforming bending 

eformations are2 d 
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which leads to the refined strain matrix for the non-conforming bending element as  = B*

bB b + 
B c – B0, for which 

( )*
cccc BBBB −′λ+′= ,       (8) 

 
where the RT9 formulation adopts a value of λ = 0.25 for the adjustable parameter λ.  

T he global statement of (5) becomes 

( ) RPqKK σ
ttt −=∆+ ∆+ ,       (9) 

 
with t+∆tP and tR being the external equivalent nodal load vector at time t + ∆t and the internal 
load vector at time t respectively. 

An incremental-iterative full Newton-Raphson method, in which the tangent stiffness 
matrix is updated in each iteration for each load increment, is employed to produce a rapidly 
convergent solution. The effect of cracking is treated by changing the material properties of 
the cracked element. In the solution procedure, as the stresses may redistributed during an 
iteration, some cracks may close, which may lead to numerical instability. To overcome this 
problem, closure and re-opening of the cracks are allowed in the present analysis and the 
material property matrix is updated according to the appropriate material states. The loading 
is divided into a series of load increments, and in the present investigation, load increments 
are generated automatically to model the nonlinear behaviour more efficiently. Among the 
various approaches suggested to obtain changing load increments, the increment load factor is 
is set to  
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where 1−∆ nλ = load increment factor of the last increment,  = number of iterations in the 
last load increment step, = desired number of iterations 

1−nN

dN )53( −≈dN , and nλ∆  = load 
increment factor of the current increment. Using this approach, the load increment can be 
prescribed as being larger at the initial linear stage and smaller when the response starts to 
become more nonlinear.   

 

6 NUMERICAL EXAMPLES 
Two numerical examples are chosen to validate the solution and to demonstrate the 
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efficiency of the element, these being the slabs tested by McNeice5 and Duddeck6. Figure 1 
shows the results of the present method compared with the tests of Ref. 6, as well as the 
numerical solutions of other investigators. Additionally, accurate solutions were predicted for 
the slab of Ref. 5. 
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Figure 1: Slab tested by Duddeck6 

12 CONCLUSIONS 
- The paper presents a combining of efficient 9-dof 3-node membrane and 9-dof 3-

node non-conforming plate bending elements to produce an 18-dof triangular element 
for the nonlinear analysis of RC slabs. 

- The formulation uses a layered approach, and includes concrete cracking and biaxial 
stress states. Tension stiffening and aggregate interlock effects are included. 

- The solutions compare favourably with tests, and the element performance is good. 
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