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Summary. Dispersion analyses are carried out for a fluid–saturated, one–dimensional

continuum. A dispersive wave is obtained, but the associated internal length scale vanishes

in the short wave–length limit. Accordingly, upon the introduction of softening, localisation

in a zero width will occur and no regularisation is present. This conclusion is corroborated

by numerical analyses of wave propagation in a finite one–dimensional bar.

1 INTRODUCTION

The introduction of strain softening in the constitutive relation for a standard, rate–
independent solid normally causes a loss of well-posedness of the initial value problem,
cf. [1]. The absence of a physical internal length scale causes a numerical length scale to
be introduced in the computations, typically the distance between two neighbouring grid
points, and the solution becomes mesh-dependent.

Physically based internal length scales have been derived for a single–phase media
equipped with a rate–dependent [2] or with a gradient–dependent constitutive model [3].
By investigating the possible dispersive properties of wave propagation in strain–softening
media, either a cut-off wave number was identified at which loading waves are no longer
able to propagate (gradient–dependent case), or, for the rate–dependent case, the damping
factor was derived as a function of stiffness, viscosity and mass density for the limiting
case of waves with a vanishing wave length (the short wave-length limit).

2 GOVERNING EQUATIONS

For a fluid–saturated, one–dimensional continuum, the balances of momentum and
mass read in an incremental format, e.g. [4] for a complete derivation:
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They are supplemented by the kinematic relation and the incremental stress–strain rela-
tion, which, after combination, read:

σ̇s = Etan ∂u̇s

∂x
(3)

with Etan the tangential stiffness modulus of the solid.

3 DISPERSION ANALYSIS

To analyse the characteristics of wave propagation in the two–phase medium defined
in the preceding section, a damped, harmonic wave is considered:

(

δu̇s

δu̇f

)

=

(

As

Af

)

exp (λrt + i(kx − ωt)) (4)

with λr representing the damping and ω the angular frequency. Substitution of this
identity into eqs (1)–(2), using eq. (3), requiring that a non-trivial solution can be found
for the resulting set of homogeneous equations and decomposing into real and imaginary
parts leads to:

8λ3
r + 8ak2λ2

r + 2(a2k2 + b)k2λr + (ab − c)k4 = 0 (5)

and
ω2 = 3λ2

r + 2ak2λr + bk2 (6)

with

a =
KQ(ρs + (nf − α)ρ′

f )

ρs + ρf

, b =
Etan + αQ

ρs + ρf

, c =
KQEtan

ρs + ρf

(7)

Evidently, wave propagation is dispersive, since eq. (6) is such that the phase velocity
cf = ω/k is dependent on the wave number k, cf. [5, 6]. Taking the long wave–length
limit in eq. (5), i.e. k → 0, yields λr → 0. According to eq. (6) and after substitution of
eq. (7b), we obtain an explicit expression for the phase velocity:

cf =
ω

k
=

√

√

√

√

Etan + αQ

ρs + ρf

(8)

Using Cardano’s formulas, eq. (5) can be solved explicitly. For the short wave-length
limit, i.e. when k → ∞, we obtain that the discriminant D → 0, which identifies the
existence of three real roots for λr in this limiting case, two of them being equal. For
the single root we obtain that λr → 0. This implies that this solution has no damping
properties and, therefore, gives no regularisation. For the double root we find that λr ∼

−k2. From eq. (6) the expression for the phase velocity then becomes proportional to the
wave number, cf ∼ k (please note that for strain softening cf will normally be imaginary).
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In view of eq. (4) and in analogy with a single–phase rate–dependent medium [2], an
internal length scale can be defined as:

` = lim
k→∞

(

−

cf

λr

)

∼ lim
k→∞

k−1 = 0 (9)

which indicates that the internal length scale ` vanishes in the short wave–length limit.

4 NUMERICAL EXAMPLES

To verify and elucidate the theoretical results of the preceding section, a finite differ-
ence analysis has been carried out. The spatial derivatives in eqs (1) and (2) have been
approximated with a second–order accurate finite difference scheme. Explicit forward
finite differences have been used to approximate the temporal derivatives, which is first-
order accurate. The choice for a fully explicit time integration scheme was motivated by
the analysis of Benallal and Comi [6], in which they showed that in this case no numerical
length scale was introduced in the analysis, apart from the grid spacing. As implied in
eqs (1) and (2) the velocities vs and vf of the solid skeleton and the fluid have been taken
as fundamental unknowns and the displacements have been obtained by integration.
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Figure 1: Applied stress as function of time (left) and local stress–strain diagram (right)

.

All calculations have been carried out for a bar with a length L = 100 m. For the solid
material, a Young’s modulus E = 20 GPa and an absolute mass density ρ′

s = 2000 kg/m3

have been assumed. For the fluid, an absolute mass density ρ′
f = 1000 kg/m3 was adopted

and a compressibility modulus Q = 5 GPa was assumed. As regards the porosity, a value
nf = 0.3 was adopted and in the reference calculations α = 0.6 and the permeability
K = 10−10 m3/Ns. In all cases, the external compressive stress was applied according
to the scheme shown in Figure 1, with a rise time t0 = 0.05 s to reach the peak level
σ0 = 1.5 MPa. A time step ∆t = 0.5 ·10−3 s was adopted, which is about half the critical
time step for this explicit scheme.

Upon reflection at the right boundary, the stress intensity doubles and the stress in the
solid exceeds the yield strength σy = 2.5 MPa and enters a linear descending branch with
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Figure 2: Strain profiles along the bar for 101 (left) and 126 (right) grid points and time step ∆t =
0.5 · 10−3

s

.

an ultimate strain εu = 1.125 · 10−3, see Figure 1. Figure 2 (left) shows that a Dirac–like
strain distribution develops immediately upon wave reflection. This is logical, since a
standard two–phase medium does not have regularising properties. To further strengthen
this observation the analysis was repeated with a slightly refined mesh (126 grid points),
which resulted in a marked increase of the localised strain (Figure 2 – right), which has
been plotted on the same scale as the results of the original discretisation in Figure 2.
In [4] it has been shown that also the time step strongly influences the results, cf. [6].
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in a gradient-dependent medium. Int. J. Sol. Struct., 30: 1153–1171, 1993.

[4] M.-A. Abellan and R. de Borst. Wave propagation and localisation in a softening
two–phase medium. Comp. Meth. Appl. Mech. Eng., accepted for publication.

[5] H.W. Zhang, L. Sanavia and B.A. Schrefler. An internal length scale in dynamic
strain localization of multiphase porous media. Mech. Coh.-frict. Mat., 4: 445–460,
1999.

[6] A. Benallal and C. Comi. On numerical analyses in the presence of unstable saturated
porous materials. Int. Journal Num. Meth. Eng., 56: 883–910, 2003.

4


