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Summary. In the last 10–15 years a number of very powerful methods for general convex
programming have been developed. Commonly labeled interior–point (IP) methods, these
algorithms make it possible to solve a wide variety of practical, large-scale problems with
moderate computational effort. One such class of problems is classical small-displacement,
rate-independent elastoplasticity. In this paper we investigate the prospects of applying the
IP methodology to this class of problems. In addition to applying standard IP otimizers,
we also develop a slightly modified IP method which in term of generality, efficiency, and
robustness appears to be fully competitive with conventional methods.

1 MATHEMATICAL PROGRAMMING FORMULATION

Following the variational framework developed by Simo et al. [1] and applying a stan-
dard mixed stress–displacement finite element discretization, the problem of incremental
linear elastic–perfectly plastic analysis can be written as

min
un+1

max
σn+1

: −1
2
(σn+1 − σn)TS(σn+1 − σn) + σn+1B(un+1 − un) − pT(un+1 − un)

subject to : f(σj
n+1) ≤ 0 , j = 0, . . . , NY

(1)
where σ are the stresses, u are the displacements, NY is the number of yield points
(typically the Gauss points) and subscripts n and n+1 refer to the known and new states
respectively. Furthermore, the matrices S and B and the vector p are given by

S =

∫
Ω

NT

σE
−1Nσ dΩ , B =

∫
Ω

NT

σ∇Nu dΩ , p =

∫
Ω

NT

ub dΩ +

∫
Γσ

NTt̂ dΓ (2)

where Nσ and Nu are the stress and displacement shape functions respectively and E is
the elastic constitutive matrix.
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The min–max problem (1) can be transformed into a max problem by first solving with
respect to the displacements. The resulting mathematical program is

maximize −1
2
(σn+1 − σn)TS(σn+1 − σn)

subejct to BT
σn+1 = p

f(σj
n+1) ≤ 0

(3)

where all yield inequalities have been collected in f(σ).

2 SOLUTION ALGORITHM

The basis of the solution algorithm applied to (3) is the so–called primal–dual interior
point method, see e.g. [2] and references therein, which is the prototype of most modern
convex programming algorithms. The fundamental approach is as follows. First convert
the yield inequalities into equalities by addition of positively restricted slack variables
z. Then add a penalty term in form of the so–called logarithmic barrier function to the
objective function. This avoids making explicit reference to the positivity requirements on
the slack variables and has, in addition, a number of more profound consequences which,
however, shall not be discussed here. The resulting problem then reads

maximize −1
2
(σn+1 − σn)TS(σn+1 − σn) +

∑NY

j=1 µ log zj

subejct to BT
σn+1 = p

f(σn+1) + zn+1 = 0

(4)

where µ is an arbitrarily small, positive constant.
The Karush–Kuhn–Tucker conditions associated with (4) are

rss = B(un+1 − un) − S(σn+1 − σn) −∇fn+1λn+1 = 0

req = BT
σn+1 − p = 0

ryc = fn+1 + zn+1 = 0

rcs = Zn+1λn+1 − µe = 0

(5)

where λn+1 and (un+1 − un) are the Lagrange multipliers. These conditions are immedi-
ately seen to be the discrete governing equations for the problem considered.
The basic idea is now to solve these equations using Newton’s method with a reduced
step length to ensure that all positively restricted variables remain positive throughout
the iterations.
Generally speaking, the difficulty in solving the optimality conditions associated with
general mathematical programs is that usually no, or very little, knowledge of the final
solution is available. It is well-known that Newton’s method guarantees convergence only
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if the initial point lies in the proximity of the solution, i.e. within the ’convergence ra-
dius’. For general optimization problems such a point is impossible to identify and the
interior point methods attempt to address this fact by the addition of a barrier function
to the objective and by using reduced step sizes. This usually results in a steady, but not
particularly rapid, convergence. In order to improve the convergence characteristics and
take advantage of the fact that for problems of elastoplastic analysis a reasonable estimate
of the solution is available, an alternative, and very simple, strategy has been developed.
The basic features of the interior point methodology are maintained, but instead of using
a damped step size a full Newton step size is always used in conjunction with a very ag-
gressive barrier reduction strategy. In this way some of the variables which are restricted
to be positive, for example the plastic multipliers, may become negative. Therefore, after
each update of the variables, infeasible points are projected back onto the boundary of
the feasible solution space. Although very simple to implement this strategy has proved
to be extremely powerful as is illustrated in the next Section.

3 REPRESENTATIVE RESULTS

We consider the perforated square plate shown in Figure 1. The material parameters
are the following: Young’s modulus: E = 1000, Poisson’s ratio: ν = 0.3, and uniaxial yield
strength: σY = 1. The state of deformation is plane and yielding is governed by the von
Mises criterion. The plate is discretized by 2304 quadratic displacement elements (9506
displacement degrees of freedom). Ten equally sized displacement increments of magni-
tude ∆u = 0.001 are applied as indicated in Figure 1. The resulting load–displacement
curve is shown in Figure 2.
In Table 1 the solution statistics are shown. It is noted that the rate of convergence
becomes quadratic as the solution is approached. Furthermore, as expected, the most
iterations are used in the steps that bring about the greatest changes in the structural
response, i.e. steps 4, 5, and 6. In these steps the norm of the residual can be observed to
oscillate somewhat before converging. This indicates that a line search procedure would be
a useful supplement although it does not seem to be strictly necessary. Finally, it should
be mentioned that these oscillations disappear when the magnitude of the load step is
decreased. The cost of each iteration is the same as with most conventional methods and
a direct comparison can therefore be made in terms of the total number of iterations. All
in all, the behaviour is quite satisfactory and the same trend has been observed for a large
number of other problems with constitutive laws similar to the one used in this example.
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∆u = 0.001
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Figure 1: Perforated square plate, 2304 linear strain triangles, 9506 displacement degrees of freedom.
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Figure 2: Load–displacement curve.

Iter/React 1.0021 2.0042 2.9923 3.9427 4.5876 4.5985 4.6052 4.6099 4.6134 4.6161

1 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00

2 1.7e+02 2.0e+01 4.6e+02 4.1e+02 9.7e+02 4.0e+01 1.7e+01 1.1e+01 7.9e+00 6.6e+00

3 1.2e+03 2.2e–02 6.6e+01 8.9e+01 1.3e+02 1.0e+01 1.6e+00 1.1e+00 7.9e–01 3.8e–01

4 6.2e–07 1.1e–05 1.4e+01 7.0e+00 4.9e+01 3.6e+01 1.1e+00 1.6e–01 1.4e–01 1.0e–02

5 2.9e–12 9.1e–13 4.6e–02 1.7e–01 3.2e+01 1.0e+01 2.5e–04 2.5e–05 1.4e–03 1.3e–03

6 1.3e–05 1.3e+00 5.9e+01 2.6e+00 4.1e–06 5.8e–12 6.9e–06 4.1e–06

7 3.1e–06 6.7e–02 2.4e+01 2.9e–01 1.4e–12 2.1e–12 1.4e–12

8 9.6e–13 4.6e–01 4.4e+00 8.7e–03

9 4.4e–04 1.3e+00 3.5e–07

10 7.9e–02 3.2e–02 1.4e–12

11 7.6e–05 7.6e–07

12 1.2e–12 1.3e–12

Table 1: Norms of total residual (5) as function of iteration number and load level.
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