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Summary. In this paper, an application of the Reproducing Kernel Particle Method is 
presented in numerical simulation of powder forming processes using a cap plasticity model. 
A double-surface cap plasticity is developed within the framework of large deformation 
analysis in order to predict the non-uniform relative density distribution during powder die 
pressing. The RKPM technique is employed in the analysis of 2D compaction simulation. 
Numerical examples are presented to illustrate the applicability of the algorithm in modelling 
of powder forming processes. 

 
 

 
1 INTRODUCTION 

As yielding of powder material is pressure-sensitive, the yield criterion needs to capture 
the influence of hydrostatic pressure. Development of constitutive stress-strain models that 
can provide adequate physical representation of observed mechanical behaviour in such 
materials is a challenging problem. The most practical yield functions, employed for powders 
are the critical state, cam–clay and cap models. A double-surface plasticity model based on a 
combination of a distortion surface, i.e. a Mohr–Coulomb criterion, and hardening cap was 
employed by Gu et al. [1] and Lewis and Khoei [2] to describe the behavior of powder 
material in cold compaction processes. 

Modelling of solid mechanics problems has been performed using appropriate methods in 
computational mechanics. During last two decades, considerable effort has been devoted to 
the development of meshfree or gridfree methods [3]. In these methods, the interpolation 
functions are established by enforcing certain continuity requirements around a set of points. 
In addition, if the interpolation methods, such as finite element and finite difference methods, 
require a mesh or a grid, the distorted mesh can terminate the calculation due to mesh 
entanglement problems. 

In the present paper, an application of a two invariant cap model for granular material is 
presented. The meshfree algorithms based on the reproducing kernel particle method is 
employed to the analysis of two-dimensional problems involving powder material. Several 
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numerical examples are solved to demonstrate the applicability of the RKPM algorithm in 
modelling of metal forming processes. 

2 REPRODUCING KERNEL PARTICLE METHOD 
One of the original approaches in meshfree methods is the SPH technique. A rationale for 

this method is provided by invoking the notion of a kernel approximation for )(xf  on domain 
Ω  by the following equation: 

∫
Ω

−= dssfsxxf a
R )()()( ϕ  (1)

where )(xf R  is the approximation, Ω  is the domain of interest, and )( sxa −ϕ  is a kernel 
function. )(xf R  depends only on the values of f  at nodes which are in the subdomain for 
which )( sxa −ϕ  is nonzero. The domain over which )( sxa −ϕ  is nonzero has been called the 
support of the kernel function and a  is the dilation parameter that determines its size. The 
discretization of the kernel estimate in SPH assures neither zeroth nor first order consistency 
in a finite domain, unless the lumped volume is carefully selected, which is a very difficult 
task with irregular boundaries and arbitrary particle distributions. 

The basic idea of the RKPM is to formulate the discrete consistency that is lacking in SPH. 
It modifies the kernel by introducing a correction function )(C  to enhance its accuracy near, 
or on the boundary of the problem domain. Due to this correction function, the RKPM kernel 
function obtains the consistency conditions throughout the domain of the problem [4]. The 
reproduced kernel estimate of a function )(xf  can be written as: 

∫
Ω

−−= dssfsxsxxCxf a
R )()(),()( ϕ  (2)

3 CAP PLASTICITY MODEL 
A two-invariant cap model developed by Hofstetter et. al.[5] formulated within a 

framework of associative multi-surface plasticity theory is employed as the constitutive 
model. This cap constitutive model that serves as an example for nonsmooth cap plasticity, is 
defined by a convex yield surface consisting of a failure envelop, an elliptical cap which 
closes the open space between the failure surface and the hydrostatic axis and can expand in 
the stress space according to a specified hardening rule, and a tension cutoff surface; as shown 
in Figure 1. The functional forms for the three sufaces are as follows: 
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where 1J  and DJ 2  are the first invariant of stress and second invariant of deviatoric stress, 
respectively. α , β , γ  and θ  are the parameters of fixed yield surface 1f . 

 
Figure 1: The cap plasticity model 

4 NUMERICAL RESULTS 

In order to illustrate the efficiency and accuracy of the material model and numerical 
schemes, the compaction process of a rotational flanged component is simulated, as presented 
in Figure 2. The model parameters for iron powder are listed in Table 1. The FEM and RKPM 
models and associated boundary conditions for this component are shown in Figure 3. The 
compaction is employed by means of the action of top and bottom punches. The relative 
density contours at the half and final stages of compaction are presented in Figure 4.  
 

Moving cap surface Fixed yield surface Tension cutoff 
75.1=R  MPa0.255=α  

1005.0 −= MPaD  1002.0 −= MPaβ  
34.0=W  MPa0.200=γ  
MPaZ 0.1=  008.0=θ  

MPaT 3.0−=  

Table 1 : Material model parameters for iron powder 
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   Figure 2: Rotational flanged component 
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The results show that the proposed method with linear basis functions provided higher 
solution accuracy than the classical bilinear finite element method. Although good accuracy 
was obtained here, the high computational cost and the use of integration cells for Gauss 
integration presented the major bottlenecks in applying the meshfree method. 

(FEM)(RKPM)
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11.7mm
Powder

20.2mm

Displacement

d2

4.6mm

Displacement

25.4mm

 
Figure 3: Rotational flanged component; Geometry, boundary conditions and 

 the FEM and RKPM models 

Density
0.5115
0.5107
0.5100
0.5092
0.5085
0.5077
0.5070
0.5063
0.5055
0.5048
0.5040
0.5033

 

Density
0.7100
0.7073
0.7045
0.7018
0.6991
0.6964
0.6936
0.6909
0.6882
0.6855
0.6827
0.6800

 
a) mmdmmd 0.3,4.2 21 ==  b) mmdmmd 0.6,8.4 21 ==  

Figure 4: Relative density contours at the half and final stages of powder compaction 
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