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Summary. The contribution of the martensitic transformation to the overall stress-

strain response of a multiphase steel assisted by a transformation-induced plasticity effect

is analyzed in detail. A recently-developed multiscale transformation model is combined

with a plasticity model to simulate the response of a three-dimensional grain of retained

austenite embedded in a ferrite-based matrix. Results show that the effective hardening

behavior of the material depends strongly on the grain orientation and, to a lesser extent,

on the grain size.

1 INTRODUCTION

Among the class of new high-strength high-ductility steels being developed, special
attention has been devoted to TRIP steels, whose mechanical behavior is enhanced by a
transformation-induced plasticity effect. The improved performance of this class of steels
has been attributed to the effect of islands of retained austenite in the initial microstruc-
ture. The thermomechanical response of retained austenite depends on sub-grain scale
phenomena, particularly its transformation into systems of twinned martensite with dif-
ferent orientations with respect to the original austenite lattice. The sub-grain structures
and the corresponding length scales are schematized in Fig. 1.

The effect of the sub-grain structures is accounted for using a recently developed mul-
tiscale model for martensitic transformations1,2,3. The microstructural information for
the phase transformation model is based on the crystallographic theory of martensitic
transformations and further includes the anisotropic stiffness of each system of twinned
martensite. In addition, the model contains a surface energy term associated to regions
close to the habit planes, as shown at the microscale in Fig. 1. The surface energy is
indirectly related to the grain size via a length scale parameter. Using these features of
the model, it is possible to study the effect of (i) grain orientation and (ii) grain size on
the overall response of a TRIP steel.
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Figure 1: Sub-grain structures and length scales.

2 TRANSFORMATION MODEL

Cubic to tetragonal transformations in multiphase carbon steels (face centered cubic
FCC to body centered tetragonal BCT) are characterized by the formation of up toN = 24
possible active transformations systems. Each transformation system, denoted with a
superscript α, is composed of two (out of three possible) variants of BCT martensite.
The transformation systems are described in terms of a shape strain vector b(α) and the
normal to the habit plane m(α) (i.e., a vector normal to the austenite-twinned martensite
interface). For a stress-assisted transformation, the deformation gradient F in a material
point x in a grain of retained austenite Ωgr may be decomposed as F = FeFtr, where Fe is
the elastic deformation gradient and Ftr is the transformation deformation gradient. The
transformation deformation gradient is Ftr = I+

∑N

α=1 ξ
(α)γ(α), where γ(α) = b(α)⊗m(α)

is the transformation strain and ξ(α) is the volume fraction of system α in a reference
configuration. The relation between the second Piola-Kirchhoff stress S in a stress-free
intermediate configuration and the Green elastic strain Ee is taken as S = CEe, where
the mesoscopic effective stiffness tensor C is related to lower-scale constitutive information
as1,2,3

C =
1

Jtr

{(

1−
N
∑

α=1

ξ(α)

)

C
A + (1 + δT )

N
∑

α=1

ξ(α)
C

(α)

}

. (1)

In (1), δT = b(α) ·m(α) is the volumetric expansion due to the phase transformation
and Jtr = detFtr. The terms C

A and C
(α) refer to, respectively, the microscale stiff-

nesses of austenite and transformation system α of martensite. In turn, C
(α) can be

related to the stiffness of each variant of martensite and its orientation in the trans-
formation system1,2. The evolution of the transformation from austenite to system α
of martensite is taken to be governed by the following kinetic relation between the
transformation driving force f (α) and the rate of change ξ̇(α) of the volume fraction:

ξ̇(α) = ξ̇
(α)
max tanh

(

〈f (α) − f
(α)
cr 〉/(ν(α)f

(α)
cr )
)

, where ξ̇
(α)
max, ν(α) and f

(α)
cr are material pa-
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rameters and 〈a〉 = (|a|+ a)/2 . The driving force for the transformation is1

f (α) = JtrF
T
e FeSF

−T
tr · γ(α) +

1

2

(

C
A − (1 + δT )C

(α)
)

Ee ·Ee −
χ

l0

(

1− 2ξ(α)
)

+ f
(α)
th

for α = 1, . . . , N, where f
(α)
th is a thermal term (constant for isothermal processes), χ is

the surface energy per unit area and l0 is a length scale parameter. The parameter l0 can
be related to the average size d0 of a grain of retained austenite and the average thickness
to width ratio c of plates of twinned martensite as2 l0 ∼ (c/2)d0.

In a material point x inside the ferrite-based matrix Ωmat the deformation gradient
is decomposed as F = FeFp where Fp is the plastic deformation gradient. The plas-
tic deformations in the ferrite-based matrix are modelled by a large-strain, J2-plasticity
formulation with isotropic hardening.

3 SIMULATIONS

Several quasi-static uniaxial loading simulations were conducted on a grain of retained
austenite embedded in a ferrite-based matrix. The computational domain and boundary
conditions are shown in Fig. 2a. The grain of retained austenite occupies 16% of the
total volume, which is a typical average value for multiphase steels. The domain was
discretized using 1771 linear tetrahedrons. The transformation model was implemented
using a fully-implicit backward Euler discretization scheme for the stress update within
the framework of finite deformations3. A robust search algorithm was used in the return
mapping algorithm for detecting the transformation systems activated during loading
and a sub-stepping algorithm was implemented to accurately satisfy the completion of
the transformation process. The computation of the consistent tangent operator was
performed through a numerical differentiation method.

The evolution of the transformation, measured in terms of the volume fraction of
retained austenite ξ̄A, is shown in Fig. 2b as a function of the logarithmic strain ē11

averaged over the entire domain. The distinct cases correspond to two crystal orientations
([100]A and [111]A, see Fig. 2a), each for three selected values of the length scale parameter
l0. Increasing values of l0 can be correlated with larger grain sizes for fixed aspect ratios
of martensitic plates. It can be observed from the figure that, at 10% strain, the grains
oriented in the [100]A direction have almost fully transformed into martensite. In contrast,
the grains oriented in the [111]A direction have not fully transformed, in particular the
smallest grain that is related to l0 = 0.0125µm. The axial Cauchy stress T̄ gr11 is shown
in Fig. 2c as a function of the axial logarithmic strain ēgr11, averaged over the grain of
retained austenite. As shown in the figure, the onset of the phase transformation occurs
at higher local stress levels for decreasing grain sizes, in accordance with experimental
results. When averaged over the entire domain, this effect is less noticeable as shown in
Fig. 2d. In contrast, the crystal orientation plays a more significant role compared to the
effect due to the grain size. From Figs. 2c,d, it can be observed that the orientation [111]A
provides the highest increase in effective hardening behavior.
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Figure 2: (a): Grain of retained austenite Ωgr in a ferrite-based matrix Ωmat. The inset indicates the
different grain orientations. (b): Average volume fraction of austenite ξ̄A as a function of the axial
logarithmic strain ē11 averaged over entire domain for two grain orientations and several values of the
length scale parameter l0. (c): Axial Cauchy stress T̄

gr
11

vs. axial logarithmic strain ē
gr
11

averaged over
grain of retained austenite. (d): Axial Cauchy stress T̄11 vs. axial logarithmic strain ē11 averaged over
entire domain.
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