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Summary. A numerical model for modelling crack formation during the powder compaction stage of powder 
metallurgy manufacturing processes is presented. A numerical model, previously developed by the authors, to 
predict the densification of the powder material during the compaction, is extended to detect the cracks onset 
during the pressing stage. The main ingredients of the new model are: a) using a Drucker-Prager failure surface 
together with a parabolic plastic potential function (non-associated flow), b) inclusion of  a softening law which 
reflects the loss of material cohesion associated with the crack formation, c) a fractional step type algorithm to 
solve the return mapping problem and d) an implicit-explicit integration scheme which improves robustness of 
the numerical model. Such a general approach is assessed via the numerical simulation of the compaction 
process of an L-shaped industrial part. 

 
1 INTRODUCTION 

Compaction processes play a fundamental role in powder metallurgy and structural 
ceramic manufacturing. Besides, numerical simulation of die compaction is a keystone for 
reducing the time and cost associated with the designing process of new components. Most of 
the phenomenological models developed so far for this purpose are characterised by a double-
surface yield criterion, consisting of a hardening cap surface and a failure envelope. We focus 
our attention on the last one, since it is involved in the formation of cracks. As our aim is to 
describe cracking as a process of strain localization, the evolution of the failure surface 
parameters are ruled by a softening law, which allows representing the loss of strength 
associated with cracking. As for the yield surface, the standard associated Drucker-Praguer 
model poses many computational difficulties, as the elasto-plastic tangent operator at the 
vertex is singular. In order to overcome this difficulty, we propose a modified Drucker-Prager 
yield-criterion, whose parameters depend on an internal variable, and a non-associated plastic 
flow determined by a parabolic (in the p-q plane) plastic potential function. The 
thermodynamic constraints are fulfilled by imposing the evolution of the internal softening 
variables, and by the definition of the fracture energy as a property of the material. 
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2 CONSTITUTIVE MODEL 

The model is formulated in terms of the large plastic deformations and it is based on the 
results presented in [2]. The hardening cap surface is a centred ellipse in the p-q plane, 
defined by two parameters governed by density. The novel failure surface could be written as 

,  where q is the norm of the deviatoric part of the Kirchhoff stresses, p is 
the mean stress and c and 

( )a
F q c pφ α= + − ac

( )cα  are the cohesion-like strength parameter and internal friction-
like parameter, respectively. For , 1a = 0Fφ =  is a straight line in the p-q plane. We focus our 
attention in this case. Note that if 0( )cα α= , a standard Drucker-Praguer yield surface is 
recovered. An evolution for ( )cα  should be assigned in such a way that the elastic domain 
defined by 0Fφ =

/cr

 decreases its volume as  decreases and, also,  the maximum mean stress c
p cα=  tends to zero as c . For this purpose, it suffices to take an homogeneous 

function of c with a positive degree of homogeneity 
0→

1hs < . For , we have 0.5hs =

( )0.5
0 0/c cα α= , where 0  and 0c α  are the values of the cohesion-like and internal friction-like 

parameters for the undamaged material.  
The direction of plastic flow is determined by a plastic potential function, which can be 

defined in the same terms as the yield function, that is: . Setting  b( )b
F q p Kϕ β= + + c 2=  

(parabolic surface), the plastic flow at the vertex is no longer singular. The positive 
dissipation constraint obliges to consider β  a function of c , ( ) ( ),  c c c 0 8β γ α γ= ≤ < , where 
the parameter γ controls plastic dilatancy [5].   

Next constraint is that the total plastic energy dissipated in the failure zone (fracture 
energy) does not depend on the stress path (material property). Therefore, we fix the evolution 
of the strain-like internal variable ξ  in order to fulfill this constraint:  
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where λF is the corresponding consistency parameter and dp is the plastic deformation rate [5].  

3 INTEGRATION ALGORITHM 

The use of non-associated flow rules and softening laws leads, generally, to problems of lack 
of robustness and computational efficiency, due to the non-symmetrical and non-positive 
definite character of the corresponding elasto-plastic tangent operators. In order to avoid this 
drawback, an explicit-implicit integration scheme is proposed [1]. First, the internal forces at 
time tn+1 are computed using explicit stresses . Then, the internal 
variables and plastic strains updates are performed, as usually, solving a return mapping 
algorithm, which constitutes the implicit phase. Note that we deal with softening plasticity 
and, consequently, the well-established hardening uniqueness theorems [3] cannot be applied. 
Therefore, an iterative procedure, which converges conditionally to the solution for an a 
priori-known range of the softening modulus values H, has been developed. It is a recurrent 

1 1( , ,trial
n n n cλ+ += ∆τ τ τ )n
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two-step algorithm based on the fractional step methods. In a first step, we freeze the 
cohesion-like variable and solve a perfect plasticity problem, whose solution is unique (since 

and F Fφ ϕ  are convex functions of ) and is obtained in a close form. In a second step, the 
cohesion-like variable is updated.  

τ

4  NUMERICAL RESULTS 
This section presents some numerical simulations of die compaction carried out with the 

finite element code POWCOM, using the previously described yield surface model. In order 
to investigate the effects of the press kinematics on the occurrence of cracks during the 
compaction, the axisymmetric L-shaped part, shown in figure 2, is pressed using two different 
kinematics: the first one with simultaneous movements of the upper and lower punches, and a 
second one with a delay in the onset of movement of the lower outer punch. The displayed 
results correspond to 85% of the compaction level for each case. Parameters c0 and α0 are 
taken c0 = 50 Mpa and α0 = 2.71. Mesh size dependence of the smeared approach to 
localization is avoided by regularizing the softening modulus via a characteristic element 
length, le, as , where G2

0 0 /eH l c G= f f  is the fracture energy (Gf  = 0.9 N/mm). For the 
dilatancy coefficient a value of γ = 0.2 is used. As can be seen in figure 1, a non-balanced 
punch kinematics leads to non-homogenous density distributions. This non-homogeneity can 
be also displayed via a mechanical variable as the cohesion-like parameter (figure 2). Loss of 
cohesion is concentrated at the inner corner, in a characteristic “comma” shape region. A 
radial cut through the bottom of the component body shows a discontinuity in the vertical 
displacement field at the region corner (figure 2), which is a clear sign of a crack. 

 

 
 
 
 
 
 
 
 
 

figure 1. Density distribution in the wrong-pressed (left) and the well-pressed (right) components at the  
85 % of level compaction (initial density ρ0 = 3.34 g/cm3). In the well-pressed case, the upper and 

lower punches move simultaneously.  
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figure 2. Contour lines of the vertical displacement field showing the discontinuity at the corner (left) 

and the cohesion-like variable distribution in the wrong-pressed part (right). 
 
 

 
The main achievement of the proposed methodology is the possibility of translating the non-
homogeneities in the density field, arising from  wrong-designed compaction processes, into a 
loss of cohesion and a subsequent detection of a crack. The locus of the region affected with 
this loss of cohesion is similar to the crack location observed experimentally [4], and, 
therefore, the results obtained are, at least qualitatively, satisfactory. 
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