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Summary. The objective of this study is to develop an identification strategy of model
parameters in the case of test with corrupted measurements. The method was first applied
in the case of elasticity where it appears to be very robust [1]. Its extension to the non-
linear case is presented here in the case of viscoplasticity. It implies the development of
dedicated numerical tools and a first algorithm is proposed. On the first examples, the
robustness of the method is confirmed.

1 INTRODUCTION

This paper is devoted to identification in dynamics in case of very scattered data.
It aims at extending a method previously defined in elasticity to the case of non linear
constitutive law. Many methods in order to take perturbed measurements into account
are proposed in the literature e.g. the Tikhonov regularization methods [2] or the Kalman
filter techniques [3]. Nevertheless, the lack of a priori knowledge in our context of level
of perturbation prevent from using these methods accurately. Therefore, we studied a
specific method based on the concept of Modified Error in Constitutive Relation [4]. This
concept has been proven to be effective in the case of model updating in vibrations [5]
and has been applied in transient dynamics to the identification of the Young’s modulus
of an elastic bar [1]. It is shown very robust with respect to the corrupted measurements
with a perturbation level up to 40%. This method is extended here to the non-linear case.

In the first section, the framework and the proposed strategy are described. The
method leads to a minimization under non-linear constraints and needs dedicated solving
strategy. Here a method based on the Large Time INcrement (LATIN) method [6] is
proposed and applied on a first example.
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2 THE PROPOSED IDENTIFICATION STRATEGY

2.1 Description of the inverse problem

The problem we consider here consists in the identification of the parameters kv and nv

of the evolution law of a viscoplastic material define below, from the measurements on the
whole time interval [0, T ] at both ends of a 1D bar: measured displacements ũ0(t), ũL(t)
and measured forces F̃0(t), F̃L(t). In order to test the robustness of the method, a pertur-
bation in terms of both displacements and forces can be added to the boundary conditions.

2.2 Formulation

The proposed method relies on the guiding principles of the modified error in constitu-
tive relation [4], mainly developed for model updating in vibration [5]. The experimental
and theoretical quantities are divided into two groups: the reliable quantities and less
reliable quantities. In the proposed method, the verification of the properties which are
considered to be reliable is enforced throughout the identification process, whereas the
uncertain quantities are taken into account by minimizing a modified constitutive relation
error. Considering the case described in 2.1, let us divide the quantities into two groups
as shown in Table 1:

Reliable Less reliable

Equilibrium: ρ.ü − divσ = 0 Boundary conditions: ũd and f̃d

State law: σ = E.(ε − εp) Evolution law: ε̇p = kv < |σ| − R − R0 >nv
+ . σ

|σ|

R = h.p −ṗ = kv < |σ| − R − R0 >nv
+ .(−1)

Initial conditions: u(x, 0) = u0

u̇(x, 0) = u̇0

Table 1: The reliable and unreliable quantities in the case of 1D viscoplasticity

In the first step of the identification strategy, the experimental data and the model
are confronted for fixed parameters kv, nv. It defines the basic problem which is the
minimization of the sum of a modeling error term and an experimental error term:

Find the fields u, σ,R, εp, p, ud, fd minimizing:

J(u, σ,R, εp, p, ud, fd) =

∫ T

0

[

∫

Ω

dm(σ,R, ε̇p, ṗ).dx +

∫

∂Ωf

df (fd, f̃d) +

∫

∂Ωu

du(ud, ũd)
]

dt

under the constraints:
u KA on ud, σ DA on fd, u(0, x) = u0, u̇(0, x) = u̇0, (1)

ρ.ü − divσ = 0, σ = E.(ε − εp), R = h.p

The model distance dm is chosen, among other possibilities, as the quadratic distance
between the quantities (εp, p) which verify the state law and (εe

p, pe) which verify the
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evolution law. As it will be shown, this choice allows to base the solving of the basic
problem on the method used in the case of elasticity.

Then, the cost function needed in the identification step of the strategy uses the same
functional as in the basic problem, evaluated at the solution fields of the basic problem.
Therefore, the identification problem becomes:

kv, nv = Arg min g(kv, nv) with: g(kv, nv) = J(u, σ,R, εp, p, ud, fd, kv, nv) (2)

with: u, σ,R, εp, p, ud, fd are the solutions of the basic problem (1).

2.3 Resolution of the basic problem

The basic problem here is a minimization under non-linear constraints in transient
dynamic and is therefore global in time. An incremental scheme hence can not be used
directly. Since several solving strategies have been studied in the case of linear behavior,
one has proposed an iterative scheme that allows to recover the same problem structure.
It is based on the LATIN method [6], which is global in time. Its idea is to separate
the equations we have to solve into two groups: the local in space variable equation,
possibly non-linear, and the linear ones, possibly global in space variable. Then, an
iterative procedure is solving at each iteration the first group of equations and the second
ones successively. In our case, the two stages of each iteration, where H+ and H− are
algorithm parameters, are:

The local stage:
[

˙̂εe
p

− ˙̂pe

]

= B(

[

σ̂

R̂

]

) and

[

˙̂εe
p − ε̇e

pn

−( ˙̂pe − ṗe
n)

]

= H+.

[

σ̂ − σn

−(R̂ − Rn)

]

The global stage:

Find the fields u, σ,R, εp, p, ε
e
p, p

e, ud, fd minimizing:

J =

∫ T

0

[1

2

∫ L

0

(

εp − εe
p

)2
+ (p − pe)2 +

A

2

∣

∣

∣
(ud − ũd)

2
∣

∣

∣

L

0
+

B

2

∣

∣

∣
(fd − f̃d)

2
∣

∣

∣

L

0

]

dt

under the constraints:
u KA on ud, σ DA on fd, u(0, x) = u0, u̇(0, x) = u̇0,

ρ.ü − divσ = 0, σ = E.(ε − εp), R = h.p
[

ε̇e
p −

˙̂εe
p

−(ṗe − ˙̂pe)

]

= H−.

[

σ − σ̂

−(R − R̂)

]

One can note that the global stage consists in a minimization under constraint, which
is not the case when the LATIN method is applied to direct problem. It is solved as in
the case of elastic bar [1]. Furthermore, the search direction H− has to be tangent in
order to solve (1).
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3 Illustration of the proposed method

The first example deals with the identification of the parameters kv and nv in the case
of a viscoplastic mass spring. The identification curves are plotted below (Figure 1). One
can see that moderate perturbations have little effect on the identification curves, in other
words, the proposed method appears to be robust with respect to perturbations on the
measurements.
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Figure 1: Identification curves at various perturbation levels in the case 0D viscoplasticity
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