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1 INTRODUCTION

The distribution and the arrangement of crystal orientations is an important mi-
crostructural feature which affects the overall properties of polycrystalline metals. The
simplest statistical description of such microstructures is based on the crystallite orienta-
tion distribution function (codf). There exist different approaches to the representation of
the codf. The classical representation is based on generalized harmonic functions [e.g. 1].
Guidi et al. [3] introduced a tensorial representation of the codf. Although equivalent, the
tensorial representation is coordinate-free. Therefore, the tensorial texture coefficients or
moment tensors can be used as micro-mechanically defined and experimentally observable
internal variables in continuum mechanics.

Compared to higher-order correlation functions, the codf is of primarily importance
for homogenization schemes, which aim to predict the mechanical behavior on the macro-
scopic scale based on the constitutive behavior on the mesoscale and some microstructural
information. In this context the elastic-(visco)plastic Taylor model is the prototype model.
Taylor type models give a reasonable qualitative approximation of the crystallographic
texture evolution in single-phase materials with high stacking-fault energy under pro-
portional loadings. From a numerical point of view the Taylor model has an inherent
disadvantage: at the integration points of the finite elements a large amount of inter-
nal variables has to be taken into account. If small numbers of crystals are used at
the integration points, the mechanical anisotropy is drastically overestimated. This fact
considerably limits the number of degrees of freedom that can be handled by standard
finite element codes, if Taylor type models are used to simulate metal forming operations.
Therefore, there is a need for homogenization strategies which allow to condense the num-
ber of degrees of freedom and nevertheless accurately describe the crystallite orientation
distribution function.

In the present work an extension of the widely used Mises-Hill anisotropic plasticity
model is suggested and discussed. In a first step the Mises-Hill anisotropy tensor - which
specifies the quadratic flow potential - is expressed in terms of the the 4th-order moment
tensor of the codf. It is well known that specific anisotropies of polycrystalline metals gen-
erally cannot be modeled by quadratic flow potentials. Motivated by this fact the concept
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of anisotropic equivalent stress measures is generalized by incorporating the higher-order
moment tensors in a second step. The time-evolution of the moment tensors is mod-
eled based on a rigid-viscoplastic Taylor type model. Other homogenization schemes, for
example a rigid-viscoplastic self-consistent one, could also be used for that purpose. In
this abstract it is sketched how the Mises-Hill anisotropy tensors can be related to the
4th-order moment tensor of the codf.

2 TENSORIAL FOURIER EXPANSION OF THE CODF

For the subsequent considerations it is assumed that the codf f(Q) is square integrable.
This property implies the existence of a tensorial Fourier expansion. For aggregates of
cubic crystals the Fourier expansion has the following form [2, 3]

f(Q) = 1 +
∞

∑

i=1

fαi
(Q), (1)

where fαi
= V

′
〈αi〉

· F′
〈αi〉

(Q), F
′
〈αi〉

(Q) = Q ? T
′
〈αi〉

and {αi} = {4, 6, 8, 9, 10, 121, 122, . . .}.
The V

′
〈αi〉

are called tensorial Fourier coefficients or texture coefficients. The tensors T
′
〈αi〉

are called reference tensors, which are normalized without loss of generality ‖T′
〈αi〉

‖ = 1.
The ? denotes the rotation of a tensor. The crucial point here is that the quantities V

′
〈αi〉

and T
′
〈αi〉

are completely symmetric and traceless tensors. E.g., the following relations
hold for V

′
〈4〉

V ′
ijkl = V ′

jikl = V ′
klij = V ′

kjil = . . . , V ′
iikl = 0. (2)

Completely symmetric and traceless tensors are called irreducible. An irreducible tensor
V

′
〈αi〉

has dim(V′
〈αi〉

) = 2αi + 1 independent components. In the case of a cubic crystal
symmetry the independent components of T〈4〉 are given by

T 4
1 = T ′

1111 = 2a, T 4
2 = T ′

1112 = 0, T 4
3 = T ′

1113 = 0,
T 4

4 = T ′
1122 = −a, T 4

5 = T ′
1123 = 0, T 4

6 = T ′
1222 = 0,

T 4
7 = T ′

1223 = 0, T 4
8 = T ′

2222 = 2a, T 4
9 = T ′

2223 = 0,
(3)

with a = 1/
√

30. For a set of N discrete crystal orientations and corresponding volume
fractions {Qβ, νβ} (β = 1, . . . , N) the texture coefficients can be approximated by

V
′
〈αi〉

= (2αi + 1)
N

∑

β=1

νβQβ ? T
′
〈αi〉

. (4)

3 TEXTURE RELATED FLOW POTENTIALS

The introduction of a quadratic yield function dates back to Mises [5] who introduced
a general 4th-order tensor of plastic moduli that establishes a quadratic yield condition
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in terms of stresses. Viscoplastic large strain material models can be based on a flow
potential in terms of an equivalent stress σe

Φ =
σ0ε̇0

m + 1

(

σe

σ0

)m+1

. (5)

If the equivalent stress is identified with σe =
√

3
2
‖τ ′‖ where τ ′ is the Kirchhoff stress

tensor, the potential is an isotropic function of stress and its gradient is coaxial and
proportional to τ ′. If the equivalent stress is more generally defined by

σe =

√

3

2
‖τ ′‖

(

1 +
η4

2
V

′
〈4〉 · (N ′

τ ⊗ N ′
τ ) +

η6

3
V

′
〈6〉 · (N ′

τ ⊗ N ′
τ ⊗ N ′

τ ) + . . .
)

, (6)

where N ′
τ denotes the direction of τ ′, then an anisotropic material behavior can be

modeled. For a nontextured aggregate, i.e. V
′
〈αi〉

= O, the classical isotropic v. Mises
yield condition is obtained. If the texture is known the V

′
〈αi〉

can be computed. The ηi

are the phenomenological parameters of the ansatz, which are restricted by the fact that
σe is a norm of the stress tensor τ ′. If only the 4th-order moment tensor is taken into
account then one the scalar parameter η4 has to be identified. This can be done by only
one experimental yield stress. For fixed plastic moduli anisotropic quadratic forms are
common in plasticity, the novelty here is the link to the codf using moment tensors and
the inclusion of higher-order structural or moment tensors.

Figure 1: Experimental pole (200) figure Al 2008-
T4 automotive sheet sample.

Figure 2: Experimental and simulated earing pro-
file (α: angle from rolling direction).

4 Numerical Example

Lege et al. [4] documented the initial texture and initial yield loci in an Al 2008-T4
automotive sheet sample. The initial texture (Fig. 1 shows the (200) pole figure) can
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be approximated by 4 texture components and corresponding volume fractions. The
Euler angles specifying the texture components and the volume fractions are given in
Table 1. In order to ensure an orthorhombic sample symmetry, each texture component
is represented by 4 discrete crystal orientations. The texture evolution is taken into
account by using a rigid-viscoplastic Taylor model to compute the orientation change of
the texture components in each time increment. In the mesoscale model elastic strains
can be neglected since only the orientational information is transfered from the grain
scale to the macroscale. In this example only the moment tensor V

′
〈4〉 is considered. Since

V
′
〈4〉 is known from the texture, only η4 has to be determined. This is done by using the

measured yield stress in the sheet plane giving η4 ≈ 0.06. The finite viscoplasticity model
has been implemented in ABAQUS using the user routine UMAT. For the finite element
simulation of the deep drawing process the elements C3D8H and C3D6H have been used.

i νi ϕi
1 Φi ϕi

2

1 0.248 1.5532 1.5532 6.2656
2 0.298 0.2564 1.4347 5.7036
3 0.153 0.4664 1.5334 6.0412
4 0.038 1.5549 1.5523 5.9513

Table 1: Parameters specifying the initial texture

5 CONCLUSIONS

It has been discussed that the identification of anisotropy tensors of macroscopic ma-
terial models with tensorial texture coefficients yields a versatile class of models which is
able to describe anisotropy phenomena specific to polycrystalline metals.
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