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Summary. A multiscale computational framework is presented for developing a coupled self-
consistent system of equations involving molecular mechanics at the small scale and quasi-
continuum mechanics at the very large scale. The finite element method developed on the 
multiscale variational framework furnishes a two level statement of the problem. It provides 
the multiple-scale analysis capability by concurrently feeding the information at the 
molecular scale, formulated in terms of the nano-scale material moduli, into the quasi-
continuum equations. Interatomic interactions are incorporated into the model through a set 
of analytical equations with internal variables that are a function of the local state of 
deformation [1]. Multi-body potentials of the Tersoff-Brenner type are employed to model 
point defects that affect atomic structure locally, and therefore generate localized 
displacements with localized force fields. The nano-scale material moduli are integrated into 
a modified form of the Geometrically Exact Shell Model [2] to model nanotubes. 
Representative numerical examples are shown to validate the model and demonstrate its 
range of applicability.  

 
 

 
1 INTRODUCTION 

      A mathematically consistent multiscale computational framework is presented for 
bridging the scales between molecular mechanics and nanoscale based quasi-continuum 
mechanics. Instead of employing the commonly practiced “computational” nesting of 
information from smaller scales into the larger ones, we propose a novel mathematical nesting 
of scales that yield the proposed multi-scale method. We employ two concurrent domains: a 
nanoscale continuum domain for the defect free nanotube, and an atomic scale domain that 
models the localized defects in graphene sheets and nanotubes.  The stick-slip model of Gao 
and co-workers [1] is employed to yield nanoscale material moduli that are a function of 
internal variables which are in turn based on the changes in the bond lengths and bond angles 
that occur because of the local state of deformation.  Multi-body interatomic potentials of the 
Tersoff-Brenner type are employed to generate localized force fields around point defects in 
the graphene sheets and nanotubes.  
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2   A MULTISCALE COMPUTATIONAL FRAMEWORK 

This section illustrates the multiscale method and presents the key ideas underlying the 
proposed method. Let L  be the differential operator of the partial differential equation that 
governs the deformation of the nano-structure.  

=L u f      in   Ω                (1) 
The corresponding variational form obtained via standard procedure can be expressed as: 

),()( fwu = , Lw               (2) 
We assume an additive decomposition of the total solution into coarse scales u~  (i.e., meso-to-
micro scales) and fine scales u′  (i.e., micro-to nano scales). 

uuu ′+=~                (3) 
We assume a similar decomposition of the weighting function 

www ′+= ~                (4) 
wherew~ are the weighting functions for the coarse scales and w′ are the weighting functions 
for the fine scales.  In addition, we assume an additive decomposition of the forcing function 
into coarse scales f~  (meso-to-micro) and fine scales f ′  (micro-to-nano) components.  

fff ′+=
~                (5) 

Substituting wu, and f  in (2) we get 
)~,~())~(~( ffwwuu ′+′+=′+′+  ,Lww             (6) 

The proposed additive decomposition of the forcing function gives rise to a further 
decomposition of the coarse and fine scale solutions such that 
 ff uuu ′+= ~~~

~                (7) 

ff uuu ′′+′=′ ~                (8) 

Wherein fu~
~ and fu ~′ are the coarse and fine scale components of the solution that arise because 

of microscale force terms f~ . Similarly, fu ′
~  and fu ′′  are the coarse and fine scale components 

of the solution that arise because of f ′ .  Substituting (7) and (8) in (6) we get 
( )( ) ( )ffwwuuuuww ffff

′+′+=′+′++′+ ′′
~,~)()~~(~

~~   ,L                          (9) 

Employing bi-linearity in (9), and assuming f~  and f ′  to be linearly independent we obtain a 
split of the problem that leads to the following two sub-problems. 
Meso-Micro Scale Problem:  ( ) ( )fwwuuww ff

~,~)~(~
~~ ′+=′+′+  ,L          (10) 

Micro-Nano Scale Problem:  ( ) ( )fwwuuww ff ′′+=′+′+ ′′ ,~)~(~  ,L             (11) 
It is important to note that if we sum (10) and (11), we recover equation (9). In (11) the 

components  fu ′
~  and fu ′′  are associated with the meso-to-micro and the micro-to-nano 

displacement fields, respectively, that arise because of f ′ . In this framework fu ′
~  and  fu ~′  are 

the displacement components that transfer information between scales, and thus act as the 
bridging scales. Consequently, this framework provides a neat merger of the two 
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displacement fields arising because of the nano forcing function f ′  that is obtained from the 
MD model and the micro forcing function f~ that arises because of the loading environment.  

3 NUMERICAL RESULTS 

The multiscale method is employed for studying the mechanical properties of defect-free and 
defective carbon nanotubes. Various types of nanotube, e.g., zigzag tubes, armchair tubes, and 
nanotubes with arbitrary chirality are investigated. Figures 1 presents the Poisson’s ratio and 
Young’s modulus for the nanotubes, wherein the multi-body interatomic potentials are 
incorporated into the nano-structural model via a set of analytical equations [1]. These 
equations yield nanoscale material moduli (for the defect-free carbon nanotube) that are a 
function of internal variables and are based on the changes in the bond lengths and bond 
angles occurring because of the local state of deformation. The nano-scale based material 
moduli are embebed in a modified form of the geometrically exact shell model by Simo and 
co-workers [2]. Figure 2 presents the bending collapse of a carbon nanotube, modeled via the 
multiscale method, while Figure 3 presents stretch loading, elastic stretching, and elastic 
“localization” in the carbon nanotube.  

 

 

     

Figure 1. Nano-tube:  Young’s modulus and Poisson ratio 
 

  
 

Fig. 2. The bending collapse of a carbon nanotube, modeled via the multiscale method. 
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Fig. 3. Stretch loading and elastic stretching of the nanotube.  
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