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Summary. This contribution presents a new time-stepping algorithm for dynamic finite
strain plasticity that exhibits the same exact non-negative energy dissipation and momen-
tum conservation of the underlying physical system. In particular, it shows exact energy
conservation for elastic steps. These properties rely on a new return mapping algorithm
for the integration of the plastic evolution equations. The final scheme is second order
accurate in time. General multiplicative models of the F eF p type are considered. The new
algorithm shows a significantly improved numerical stability when compared with standard
schemes like the Newmark trapezoidal rule.

1 MULTIPLICATIVE FINITE STRAIN PLASTICITY

The deformation ϕ : B × [0, T ] → R
3 of a solid B satisfies the equation of motion∫

B
ρoϕ̈ · δϕ dV +

∫
B

S : F T
Grad (δϕ) dV = Gext(ϕ, δϕ) (1)

for all admissible variations δϕ, with a reference density ρo, acceleration ϕ̈ and external
loading Gext. Of interest here is a finite strain elastoplastic solid characterized by the
multiplicative decomposition F = F eF p of the deformation gradient F = Gradϕ and
by the second Piola-Kirchhoff stress tensor S given by the hyperelastic relation

S̄ = 2 ∂�eW e with S̄ = F pSF pT

and Ce = F eT

F e (2)

for an elastic potential W e(Ce). The elastic and plastic parts are given by the evolution
equations

Dp = γ Nφ , W p = γ M̂W , α̇ = γ nq ,

φ(S̄, q; Ce) ≤ 0 , γ ≥ 0 , γφ = 0 , γφ̇ = 0

}
(3)

with q = −∂αW h for the hardening potential W h(α), and the plastic rates

Dp := symm (CeLp) , W p := skew (CeLp) for Lp = Ḟ pF p−1

. (4)

1



F. Armero

A typical choice for the flow vectors in (3) is given by the associated case defined by
Nφ = ∂�̄φ, nq = ∂qφ and vanishing plastic spin M̂W = 0.

A crucial property of the equations summarized above is the energy relation

d

dt

[ ∫
B

[
1

2
ρo‖ϕ̇‖2 + W e + W h

]
dV︸ ︷︷ ︸

Total energy H

]
= −

∫
B

γ
[
S̄ : Nφ + qnq

]
dV︸ ︷︷ ︸

Plastic dissipation D≥0

≤ 0 (5)

(assuming no external loading for brevity) with the last inequality obtained by the proper
choice of the flow vectors Nφ and nq. Similarly, the linear and angular momenta (l =∫
B ρoϕ̇ dV and j =

∫
B ρoϕ× ϕ̇ dV , respectively) are conserved along the solutions for no

external loading.

2 A NEW ENERGY-DISSIPATIVE MOMENTUM-CONSERVING (EDMC)
SCHEME

For a given time increment [tn, tn+1], we consider the discrete equations

ϕn+1 − ϕn = ∆t vn+ 1
2

(6)∫
B

ρo
vn+1 − vn

∆t
· δϕ dV +

∫
B

S∗ : F T
n+ 1

2
Grad (δϕ) dV = Gext(ϕn+ 1

2
, δϕ) (7)

for the mid-point values (·)n+ 1
2

= [(·)n+(·)n+1]/2. A calculation [1] shows that the conser-
vation laws of linear and angular momenta are preserved by the temporal discretization
(6)-(7), the latter holding for a symmetric stress approximation S∗.

The main goal is the development of a numerical approximation of the plastic evolution
equations (3) that preserves the energy evolution equation (5). This is accomplished by

1
2

[
F p−T

n+ 1
2

∆CF p−1

n+ 1
2

− ∆Ce
]

= ∆γ Nφ(S̄∗, q∗; C
e
n+ 1

2

)

skew
(
Ce

n+ 1
2

∆F pF p−1

n+ 1
2

)
= ∆γ M̂W (S̄∗, q∗; C

e
n+ 1

2

)

αn+1 − αn = ∆γ nq(S̄∗, q∗; C
e
n+ 1

2

)

φ(S̄∗, q∗; C
e
n+ 1

2

) = 0




(8)

for

S̄∗ = S̄(Ce
n+ 1

2
) + 2

W e
n+1 − W e

n − S̄(Ce
n+ 1

2

) : 1
2
∆Ce

‖Ce
n+1 − Ce

n‖2
∆Ce and q∗ = −W h

n+1 − W h
n

αn+1 − αn
(9)

recovering S∗ = F p−1

n+ 1
2

S̄∗F
p−T

n+ 1
2

. Here we have denoted ∆(·) = (·)n+1 − (·)n and we note

again the common case with M̂W = 0. The left-hand-side of (8)1 defines, in particular, a
second order approximation of the plastic strain rate Dp.
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As shown in [1], equations (8)-(9) lead to the discrete energy evolution equation

Hn+1 − Hn = −
∫
B

∆γ
[
S̄∗ : Nφ + q∗nq

]
dV ≤ 0 (10)

recovering exactly the a-priori estimate (5). In particular, we obtain a full energy con-
servation for elastic steps ∆γ = 0. We note the crucial aspect of the new algorithm
that the stresses appearing in the governing equation (7) satisfy also plastic consistency.
Extensions with an additional high-frequency numerical dissipation can be found [1].

Equations (8)-(9) are solved for the plastic variables F p
n+1 and αn+1 (obtaining the

stress variables S̄∗ and q∗ in the process) with a scheme common to typical return map-
ping algorithms, that is, an elastic trial state followed by a plastic corrector. The latter
consists of two nested Newton loops to enforce the consistency condition and flow rule,
respectively. The final scheme leads to an algorithmic consistent tangent in closed-form
for the linearization of the global equations (6)-(7). Details can be found in [1].

3 REPRESENTATIVE NUMERICAL SIMULATION

We consider the three-dimensional solid depicted in Figure 1. The solid’s constitutive
response is given by a finite strain model of J2-flow theory, based on Mises yield surface
and a logarithmic hyperelastic model (Hencky’s law) for the elastic response. A more
flexible set of parameters is assumed for the arms compared with the central core. The
solid is given an initial velocity, leading to the free-flight depicted in Figure 1 in its initial
stages. The spatial distribution of the equivalent plastic strain α is also depicted, showing
the plasticity developing in the arms for the observed large finite strains.

Figure 2 includes the evolution of the total energy obtained with the new EDMC
scheme presented above for different time steps ∆t. Plots of the linear and angular mo-
menta (not shown) confirm their conservation for the new EDMC scheme. The dissipa-
tion/conservation properties of this scheme are clear: full energy conservation is observed
for elastic steps and a strictly positive energy dissipation for plastic steps. These prop-
erties hold unconditionally of the time step. This situation is to be contrasted with the
solutions obtained by the standard Newmark trapezoidal rule in combination with a now
standard exponential return mapping algorithm, as also shown in Figure 2. The lack of
energy dissipation/conservation is clear in this case, leading to a blow up of the energy
at some stage of the computation resulting in its termination. The improved numerical
stability of the new EDMC scheme becomes apparent.
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Figure 1: Elastoplastic solid in free flight. Sequence of deformed configurations in the early stages of the
motion showing the spatial distribution of the equivalent plastic strain α. Solution obtained with the
new EDMC scheme (∆t = 0.5).
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Figure 2: Elastoplastic solid in free flight. Temporal evolutions of the total energy obtained by the
Newmark trapezoidal rule (left) and the new EDMC scheme (right) for different time steps.

4


