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1 INTRODUCTION 
 

An advantage of a plate made of a functionally graded material (FGM) over a laminated 
plate is that material properties vary continuously in a FGM but are discontinuous across 
adjoining layers in a laminated plate. Here we analyse a FG plate with material properties 
varying only in the thickness direction. In this paper we use the asymmetric collocation 
method with multiquadrics basis functions and a higher-order (HSDT) shear deformation 
theory to find static deformations and natural frequencies of square FG plates of various 
aspect ratios. This method was also used by Ferreira et al.1 to study static deformations of FG 
plates. An advantage of this method over the finite element method (FEM) is that being a 
truly meshless method, the discretization of the domain is simple, both in 2D and 3D 
domains. 

 
2 THE FINITE POINT MULTIQUADRIC METHOD 

 

Consider the following linear elliptic boundary-value problem defined on a smooth 
domain Ω: 

 

 ( ) ( ), ; ( ) ( ),Lu x s x x Bu x f x x= ∈Ω = ∈∂Ω  (1) 
 

where ∂Ω  is the boundary of Ω, L and B are linear differential operators, and s and f are 
smooth functions defined on Ω and ∂Ω  respectively. We select BN  points 
( ( ) , 1, ,j

Bj N=x … ) on ∂Ω  and ( BN N− ) points ( ( ) , 1, 2 ,j
B Bj N N N= + +x … ) in the interior 
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be an approximate solution of the boundary-value problem where 1 2, , , Na a a…  are constants 

to be determined, ( )jx x−  is the Euclidean distance between points x  and ( )jx , c is a 

constant, and g is a function of ( )jx x−  and c. Substitution from (2) into (1) and evaluating 

the resulting form of equations (1)2 at the BN  points ( ) , 1, ,j
Bj N=x …  and of equations (1)1 

at ( BN N− ), points ( ) , 1, 2 ,j
B Bj N N N= + +x …  gives the following N algebraic equations 

for the determination of 1 2, , , Na a a…  
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 (3) 

 

Depending upon the value of the parameter c and the form of function g, the set of 
equations (3) that determines 1 2, , , Na a a…  may become ill-conditioned. Also, the 
computational effort involved in solving (3) for 1 2, , , Na a a…  varies with the choice of the 
function g. Once equations (3) have been solved for ja , then the approximate solution of the 
problem is given by (2). 

 
3 THIRD-ORDER SHEAR DEFORMATION PLATE THEORY 

 

The displacement field in the TSDT is given by 
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where ( )2
1 4 / 3c h=  , h is the plate thickness, z  is the coordinate in the thickness direction, 

and the xy plane of the rectangular Cartesian coordinate system is located in the midplane of 
the plate. Functions xφ  and yφ  describe rotations about the x- and the y-axes of a line that is 
along the normal to the midsurface of the plate, 0 0,u v  and 0w  give displacements of a point 
on the midsurface of the plate along the x-, y- and z-axes respectively. Equations for the plate 
theory are derived by using the dynamic version of the principle of virtual work. That is, 
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where q is the external distributed load and with 
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where α, β take the symbols x,y. The resultants ( , ,xx yy xyN N N ) denote the in-plane force 
resultants, , ,xx yy xyM M M  the moment resultants, ,x yQ Q  the shear resultants and , ,xx yy xyP P P  
and ,x yR R  denote the higher-order stress resultants, 
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4 RESULTS 

 

We compute results for a simply supported FG plate comprised of aluminum and zirconia 
mainly because analytical results for a plate made of these materials is available for 
comparison2. Material properties of the aluminum (Al) and zirconia (ZrO2) are: 

3 3
2Al: 70 , 0.3, 2702 / ZrO : 200 , 0.3, 5700 /m m m m m mE GPa kg m E GPa kg mν ρ ν ρ= = = = = =

We assume that the volume fraction of the ceramic phase is given by 
( )( )1/ 2 / p

c c c cV V V V z h− + += + − +  where cV +  and cV −  are, respectively, the volume fractions of 
the ceramic phase on the top and the bottom surfaces of the plate, and the parameter p 
dictates the volume fraction profile through the thickness. The estimation of the effective 
elastic constants follows the Mori-Tanaka technique3 which was also used for the analytical 
solutions of Vel and Batra2, and the meshless solutions of Qian et al.4 and Ferreira et al.1. We 
consider multiquadric functions of the form r c+  where r is the Euclidian distance between 
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two nodes and c is a positive constante, taken here as 6d being d the distance between two 
consecutive nodes. In this paper we used regular grids, with equally spaced nodes. 
 

p h/a=0.05 h/a=0.10 h/a=0.20 
 
1 
2 
3 
5  

Present Ref. [4] Exact 
0.0147 0.0149 0.0153  

Present Ref. [4] Exact 
0.0592 0.0584 0.0596  

Present Ref. [4] Exact 
0.2188 0.2152 0.2192 
0.2188 0.2153 0.2197 
0.2202 0.2172 0.2211 
0.2215 0.2194 0.2225  

 

Table 1 Fundamental frequency of a simply supported square thick Al/ZrO2 FG plate, Mori-Tanaka scheme, 
third-order deformation theory, cV − =0, cV + =1 
 

ceramic p=1 metal 
N=7 N=11 Ref [4] 

0.2468 0.2457 0.2469 
0.4459 0.4483 0.4535 
0.4462 0.4484 0.4535 
0.5409 0.5395 0.5441 
0.5410 0.5395 0.5441  

N=7 N=11 Ref [4] 
0.2192 0.2188 0.2152 
0.4047 0.3990 0.4114 
0.4050 0.3992 0.4114 
0.4818 0.4779 0.4761 
0.4818 0.4779 0.4761  

N=7 N=11 Ref[4] 
0.2121 0.2111 0.2122 
0.3831 0.3852 0.3897 
0.3834 0.3853 0.3897 
0.4647 0.4636 0.4675 
0.4648 0.4636 0.4675  

 

Table 2  Five first natural frequencies of a simply supported square thick Al/ZrO2 FG plate, Mori-Tanaka 
scheme, third-order deformation theory, h/a=0.2, cV − =0, cV + =1 
 

5 CONCLUSIONS 
 

The collocation multiquadric radial basis function method was applied to the analysis of 
free vibrations of simply supported functionally graded plates. For the example tested, the 
present method shows excellent agreement with exact natural frequencies, particularly for 
thicker plates. 
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