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Summary. A new set of numerical methods for predictive modeling of crack propagation

on aircraft structures based on discontinuous interpolation is introduced. These meth-

ods solve many shortcomings and limitations of classical FEMs, in particular in terms of

accuracy and stability of the numerical approximation. The combination of these meth-

ods with appropriate adaptive local re-meshing can circumvent the unreliability and high

mesh-dependency of classical approaches, and can effectively model fracture onset and

propagation. Some results are presented on the simulation of fracture of ductile and brit-

tle materials.

1 INTRODUCTION

The main focus of this paper is the development of an accurate and appropriate numer-
ical method for the treatment of crack initiation and propagation. Classical approaches
have been shown to render unreliable approximations to the crack propagation path, a
fact due to insufficient approximation of the stress field near the crack tip and a crude and
inappropriate treatment of the crack growth. When it comes to creating or propagating
a fracture, most commercial and customized codes resort to the elimination or removal
of the affected elements, which results in a high-mesh dependency of the solution and
a completely unphysical behaviour in most cases since the crack ends up following lines
given by the mesh in use. Some workarounds have been proposed over the past years and
others are still under research2, but unfortunately most of them rely on classical FEMs,
which present many numerical problems and limitations.
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Figure 1: Elastodynamics model problem.

2 DGFEM, the new approach

The alternative proposed makes use of Discontinuous Galerkin Methods1 (DGM or
DGFEM), a wide family of state-of-the-art numerical methods for the solution of PDEs
based on discontinuous interpolation and numerical fluxes. These methods lie in between
classical Finite Element Methods (FEMs) and Finite Volume Methods (FVMs), and solve
many shortcomings and limitations of both methods in the field of computational me-
chanics.

2.1 DGFEM weak formulation

In order to introduce the ideas employed in these methods, we start by considering a
simple elastodynamics problem for a linearly elastic material. It is well known that the
elastic response of a domain Ω subjected to both traction and displacement conditions
(see Figure 1) is given by the following IVP

ρui,tt −
∂σij

∂xj

(u) = bi, in Ω × I, ∀i = 1, . . . , n

u = uD on ΓD × I,

σij(u)nN
j = gi on ΓN × I, ∀i = 1, . . . , n,

u = u0 and ut = v0 on Ω × {0}.



























(1)

Proceeding in an analogous manner to the one used in classical methods, the weak
formulation of this problem can be obtained by multiplying by a test function, integrating
by parts element-wise and collecting internal boundary integrals in terms of averages and
jumps, thus arriving at the following linear and bilinear forms3

L(v) ≡

∫

Ω

f · v dx +

∫

ΓN

g · v ds +
∑

ea∈∂ED

h

∫

ea

σij(v)na
j (uD)i ds +

∑

ea∈∂ED

h

δar
2

|ea|β

∫

ea

uD · v ds.

(2)

2



A. Arranz, N. Petrinic and E. Süli

and

aNS(w,v) ≡
∑

E∈Eh

∫

E

σij(w)εij(v) dx +
∑

ea∈∂EI

h

∫

ea

{σij(v)na
j}[wi] − {σij(w)na

j}[vi] ds

−
∑

ea∈∂ED

h

∫

ea

σij(w)na
jvi ds +

∑

ea∈∂ED

h

∫

ea

σij(v)na
jwi ds + J

δ,β
0 (u,v)

defined on broken Sobolev spaces. The term

J
δ,β
0 (v,w) =

∑

ea∈∂EI

h

δar
2

|ea|β

∫

ea

[v] · [w] ds +
∑

ea∈∂ED

h

δar
2

|ea|β

∫

ea

v · w ds, (3)

is the penalty term that controls the level of continuity achieved in the solution.

2.2 DGFEM vs. cracks

Bearing in mind the inherent discontinuous nature across element boundaries of the
solutions obtained by this method, the increased stability of the approximations and
the flexibility and suitability of their use in combination with adaptivity, this type of
methods are a good choice for numerical modeling crack initiation and propagation. In
this formulation elements are naturally independent from one another, only connected
through some integral terms that ensure their proximity. Appropriate use of these terms
can relax the degree of mutual bonding of two elements, allowing them to separate, as it
is the case in fracture propagation.

3 Numerical results

Two different approaches have been taken in order to simulate fracture with DGFEM.
The first consists in calculating the interelemental face with maximum stress and turning
it into part of the Neumann boundary. This results in a fast opening crack, appropriate
for brittle materials. See Figure 2 for a 2D V-notched specimen clamped on its left end
and being pulled on the right. It can be shown that the general crack path is insensitive
to mesh changes and topology. In Figure 3 we can see an example of the extension to 3D.
A prismatic bar with a pre-existing slit is loaded in an analogous way.

The second approach takes advantage of the fact that the penalization parameter can
be modified locally, thus being able to control the speed at which the discontinuity, i.e.
the crack, grows. This technique, combined with hp-adaptivity and plastic models will
enable us to obtain good approximations for fracture surfaces in ductile materials.

4 CONCLUSIONS

DGFEM represents a brand-new and promising approach for the treatment of fracture
problems. Its increased stability and accuracy offers a numerical approximation more reli-
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Figure 2: Fracture onset and propagation in a 2D V-notched specimen with quadratic triangles using
NIPG and backward Euler time-stepping on a mesh with 404 elements.

Figure 3: Fracture onset and propagation in a 3D V-notched specimen with quadratic tetrahedra using
NIPG and backward Euler time-stepping on a mesh with 648 elements.

able than classical methods. Their inherent discontinuous approximation offers a natural
and easy to handle framework for the treatment of fracture problems.
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