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Summary. This paper deals with the identification of material parameters in PDE models
for piezoelectricity. In case of large excitations, a nonlinear behaviour has to be taken into
account. For this purpose, on one hand, we consider a functional dependence of the elastic
stiffness coefficients, the dielectric coefficients and the piezoelectric coupling coefficients
on the electric field (and/or the mechanical strain). On the other hand, hysteresis is
included into the model by means of a Preisach operator within the governing PDEs. To
identify the nonlinear coefficient curves as well as the hysteresis operator, we use inverse
methods of iterative type. The proposed approaches in nonlinearity identification can also
be applied to different models in mechanics and electromagnetism.

1 INTRODUCTION

The piezoelectric effect is made use of in a large variety of electromechanical trans-
ducers, ranging from ultrasound generation in medical applications to injection valves in
cars. The finite element simulation of piezoelectric sensors and actuators is based on a
system of partial differential equations

ρ∂2 ~d
∂t2

− BT
(
cEB~d + eT gradφ

)
= 0 in Ω

−div
(
eB~d− εSgradφ

)
= 0 in Ω .

(1)

where B is the transposed of the divergence DIV of a dyadic, ρ is the mass density, ~d
is the vector of mechanical displacements, and φ is the electric potential (cf., e.g., [2],
[3]). For this purpose, precise knowledge of the material tensors is essential, namely those
of the elastic stiffness coefficients cE ∈ IR6

6, the dielectric coefficients εS ∈ IR3
3, and the

piezoelectric coupling coefficients e ∈ IR6
3.

Our task is the identification of these material tensors as coefficients in the piezoelectric
system of PDEs, from given measurements of the electric current and/or the mechanical
displacement at an electrode attached to the piezoelectric probe.

Here, we especially focus on nonlinearity appearing in the situation of large electric
fields and/or mechanical strains, as typical for actuator applications.
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2 Nonlinear material parameter curves

In case of large excitations, the material tensors cE, e, and εS will depend on the
amplitude of the electric field intensity ~E = −gradφ and/or the strain ~S = B~d. We will
here concentrate on electric field dependence and note that strain dependence can be
treated analogously.

Since the space dimension can be reduced to one by using appropriately shaped test
samples (see [3]), we restrict ourselves to the spatially 1D case of (1),

ρd,tt −
(
cE(φ,x)d,x + e(φ,x)φ,x

)
,x

= 0

−
(
e(φ,x)d,x − εSφ,x

)
,x

= 0 ,
(2)

where x ∈ (0, L), t ∈ [0, T ]. Appropriate boundary conditions for an experimental setup
with stress free surface, as well as a grounded and an either voltage or charge loaded
electrode are

(cEd,x + eφ,x)(0, t) = 0
(cEd,x + eφ,x)(L, t) = 0
φ(0, t) = 0

and


(i) (ed,x − εSφ,x)(L, t) = − qL(t)

A
(charge excitation)

or
(ii) φ(L, t) = φL(t) (voltage excitation),

(3)
where A is the surface area covered by the loaded electrode.

As overdetermined data for identifying the curves we use the complementation of the
electric Cauchy data at the right hand boundary — obtainable from voltage-current mea-
surements — i.e.,

y(t) =

{
φ(L, t) in case (i)
(ed,x − εSφ,x)(L, t) in case (ii)

(4)

Suitably to the experimental characteristics, we perefer to formulate the problem in fre-
quency space rather than in time domain. However, due to the nonlinearity of the coef-
ficients, solutions ~d, φ of (2) will contain higher harmonics, even when excited at a fixed
frequency. To take this into account, we make a multiharmonic ansatz for both field
quantities

d(x, t) ≈
N∑

k=−N

ekωtd̂k(x) , φ(x, t) ≈
N∑

k=−N

ekωtφ̂k(x) .

We insert this ansatz into (2) and integrate with respect to time versus the orthogonal
system of time harmonic functions t 7→ ω

2π
e−lωtχ[0, 2π

ω
] . Therewith, we obtain a system of

4N + 2 differential equations, for the space dependent functions d̂k, φ̂k, k = −N, . . . N .
In general, this system still contains time integration, which we wish to avoid. This can
be done by making a polynomial ansatz for each of the searched for curves cE, e, εS

cE(E) =
Pc∑

p=0

ac
pE

p, e(E) =
Pe∑

p=0

ae
pE

p, εS(E) =
Pε∑

p=0

aε
pE

p.
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By means of the multinomial theorem, we can factor out the time harmonic exponen-
tial terms and make use of orthogonality to obtain the nonlinear system of differential
equations

−ρω2l2d̂l −
N∑

k=−N

 Pc∑
p=0

ac
pc̄

p
l−kd̂k,x +

Pe∑
p=0

ae
pc̄

p
l−kφ̂k,x


,x

= 0

−
N∑

k=−N

 Pe∑
p=0

ae
pc̄

p
l−kd̂k,x −

Pe∑
p=0

aε
pc̄

p
l−kφ̂k,x


,x

= 0


for l = −N, . . . N

for the space dependent functions d̂k, φ̂k, k = −N, . . . N , with boundary conditions cor-
responding to (3). Here, the coefficients c̄p

∆ are given by

c̄p
∆ =

∑
p∈I(p,∆)

(
p

p

)
N∏

m=−N

φ̂pm
m,x

with
(

p
p

)
= p!

p−N !···pN !
, and I(p, ∆) = {p ∈ IN2N+1

0 |∑N
k=−N pk = p ∧∑N

k=−N kpk = ∆}.
The given measurements can be incorporated by matching boundary values of solutions

of (2) to the multiharmonic coefficients ŷ−N . . . ŷN of y = ymeas in y(t) ≈ ∑N
k=−N ekωtŷk

with y according to (4).
Our problem is now reduced to identification of the coefficients ac

0, . . . , a
c
Pc

,ae
0, . . . , a

e
Pe

,
aε

0, . . . , a
ε
Pε

in (2) from these given measurements. We define the forward operator G,
that maps the vector of coefficients a = (ac

0, . . . , a
c
Pc

, ae
0, . . . , a

e
Pe

, aε
0, . . . , a

ε
Pε

) to the vector
of computed measurements ŷ−N . . . ŷN according to (4). Therewith, we can write the
identification problem as a — possibly overdetermined — nonlinear system of equations

G(a) = ŷ ,

that we solve by a Gauss-Newton iteration, see [4] for details.

3 Hysteresis

An additional nonlinear phenomenon that is typical for the large-signal behaviour of
piezoelectric transducers is hysteresis, (see, e.g., [1], and Fig. 1, left). For simplicity of
exposition, we here consider preliminary a static model of electric polarization, neglecting
the mechanical coupling:

div ~D = 0 , ~D = ε0
~E + ~P ,

where ~D denotes the electric flux density, ~E = −gradφ the electric field and ~P the polar-
ization vector that depends on the electric field in a hysteretic way. Further simplifying
the situation to the one-dimensional case, we arrive at the boundary value problem

− (ε0φ,x − P [−φx]),x = 0 , φ(0, t) = 0 , φ(L, t) = φL(t) . (5)
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Rate independent memory effects can be modeled in a very general and flexible way by a
Preisach operator that is determined by a bivariate weight function w in

p(t) = P [e](t) =
∫∫

−1≤β≤α≤1

w(α, β)Rα,β[e](t) dαdβ (6)

where {Rα,β}−1≤β≤α≤1 is a family of elementary switching operators, see Fig. 1, (right).

This can be applied in (5) by inserting E(x,·)
Esat

, P (x,·)
Psat

in place of the normed quantities
|p| ≤ 1, |e| ≤ 1, respectively, for each space point x. For identifying the Preisach operator
(more precisely a discrete version wh of the weight function) from additional boundary
measurements y(t) = P (L, t) we propose two iterative schemes. The first one is based
on alternating iterations for solving the Dirichlet boundary value problem with data φL

for φ, and the Neumann boundary value problem with data y for wh. The second one is
based on a Newton type approach for simultaneously resolving both the Dirichlet and the
Neumann problem for φ and wh.

Figure 1: Hysteresis curve of polarization (left) composed of elementary switching operators Rαβ (right)
in the Preisach model (6).
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