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Summary. The lecture identifies the need for several fundamental improvements in relia-
bility concepts guarding against quasibrittle failures of structures made of concrete or other
quasibrittle materials (fiber composites, ice, rock, etc.) and argues that such improvements
should be much more profitable than improvements of accuracy of deterministic aspects of
structural analysis.

1 INTRODUCTION

During the last two decades, researches on quasibrittle failure have led to major ad-
vances in the understanding and modeling of the energetic and statistical size effects in
the mean statistical sense1,2. Computational approaches and simple design code formulas
giving better mean predictions have been developed. It now appears, however, that the
existing design codes3,4 and standard practice for concrete and other quasibrittle struc-
tures also necessitate major revisions with regard to the effect of structure size and, more
generally, degree of brittleness, which depend not only on the size of the structure but
also on its structure geometry.

2 PROBABILITY DISTRIBUTIONS OF STRUCTURAL STRENGTH

This study deals with type 1 size effect which occurs for structures failing at macro-
fracture initiation from a smooth surface5. For this type, material randomness affects
both the mean and the scatter of the nominal strength, σN . While ductile failure occurs
simultaneously along the failure surface and is characterized by Gaussian distribution of
structural strength with no size effect, quasibrittle failures propagates, exhibits a strong
size effect and, at large sizes, follows extreme value statistics of the weakest-link chain
model, which leads to Weibull distribution of structural strength (provided that failure
occurs at macro-crack initiation) (Fig. 1a). Based on small- and large-size asymptotic
properties recently deduced from the cohesive crack model and nonlocal Weibull theory,
the transition of structural strength pdf from small to large sizes is modeled by a chain of
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fiber bundles, in which each fiber has a Weibull distributed strength and simulates micro-
bonds in brittle lower-scale microstructure of a representative volume element (RVE) of
the material. To describe structural strength distribution based on the chain-of-bundles
model, a composite pdf with a Weibull tail grafted on a Gaussian core is proposed and
calibrated (Fig. 1b). For a small structure, the pdf is Gaussian except the far-out left
tail, and for the large-size limit totally Weibull. In between, the grafting point moves
rightward and the Gaussian core shrinks with increasing structure size.

3 EXTREME VALUES RELIABILITY METHOD (EVRM)

The transition from Gaussian to Weibull pdf causes that the distance from the mean
to a point of tolerable failure probability (such as 10−7) nearly doubles (Fig. 1c) as the
size of a quasibrittle structure increases. Consequently, the understrength factor, which is
prescribed by design codes and cannot be ignored in computer simulation, must be made
size dependent, and so must the Cornell and Hasofer-Lind reliability indices for FORM.
To relate the reliability index to its value for purely ductile behavior with Gaussian
distribution of resistance, the Cornell reliability index, βC (Eq. 1) may be generalized by
introducing the tail offset ratio as follows:

βC =
µL − µR

√

θ2(D)s2
R + s2

L

(1)

where µL, µR, sL, sR are the means and the coefficients of variation of the load and resis-
tance of the structure. Ratio θ(D) as a function of structure size D can be calculated
from the grafted Weibull-Gaussian distributions, the mean size effect law and the chain-
of-bundles model as a function of sR (which is a function of size D), sL, and the ratio
µR/µL (Fig. 1d).

The Hasofer-Lind reliability index, βHL (Eq. 2) must be revised similarly by modifying
the standardized normal variables Y ′

i :

βHL = min

(

n
∑

i=1

y′2
i

)1/2

, Y ′
i =

Yi − µYi

θisYi

(2)

where Yi = structure load and resistance parameters; µYi
, sYi

= means and standard
deviations; θi(D) = 1 for Gaussian variables(load); θi(D) ≥ 1 for resistance variables.

4 COVERT UNDERSTRENGTH FACTORS

Inseparable from these effects are further problems due to ’covert’ understrength factors
for material randomness and error of the theory underlying structural analysis (e.g., by
finite elements), which are currently implied in brittle failure provisions of concrete design
codes, as well as an irrational hidden size effect implied by excessive load factor prescribed
for self weight acting alone.
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Applications in stochastic finite element analysis based on stratified sampling of random
material strength and known type of pdf tail are outlined, and analysis of some past a
structural disasters are reviewed.

5 NOVEL RANDOM LATTICE MODEL

A recently developed realistic lattice model for a concrete, having a three-dimensional
random microstructure6,7, is extended for modeling the statistical size effect of concrete by
randomizing the material strength and fracture energy. Furthermore, autocorrelation is
introduced by assigning the random material strength not directly to the lattice elements,
but to the large aggregate pieces in the random microstructure. Each lattice element,
which connects two aggregate pieces, is assigned the strength and fracture energy of the
aggregate in the largest diameter range (Fig. 1e). Thus, the spatial distributions of the
strength and the fracture energy are linked to the microstructure.

This extended lattice model is used to simulate four-point-bending tests of small con-
crete beams with varying bending span, see Fig. 1f. The results are compared to the
original version without random material properties (MP), and to the experiments re-
ported by Koide et al.8 (Fig. 1g).

The randomized material properties improve the capabilities of the lattice model to
simulate the statistical size effect. Nevertheless, a better agreement with the experimental
results might be achieved by using for the material properties a random field for which
the autocorrelation length is adjusted independently of the size of the aggregates.

6 CONCLUSIONS

• A hybrid pdf with Weibull tail grafted on Gaussian core is used to describe the
dependence of pdf of structural strength on structure size, or degree of brittleness.

• A tail offset ratio is introduced to relate the reliability index for quasibrittle structure
to its value for ductile structure with Gaussian pdf.

• The lattice model with randomized material properties is capable to simulate the
statistical size effect.
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[5] Bažant, Z.P., and Pang, S.D. (2005). ” Revision of reliability concepts for quasibrittle
structures and size effect on probability distribution of structural strength” Proc., 9th Int.

Conf. on Structural Safety and Reliability (ICOSSAR), Rome, Italy.
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Figure 1: (a) The mean size effect curve for structures failing at macroscopic fracture initiation, and probability
distributions of σ̄N . (b) pdf and cdf for a Gaussian distribution with Weibull graft at the left tail (plotted
accurately for µ/σ0 = 0.945, s/σ0 = 0.205, m = 6). (c) Comparison of tail offset ratio θ for Weibull and
Gaussian distributions. (d) Ratios θ calculated for given failure probability. (e) Schematic illustration of the
link between microstructure and random material properties. (f) The geometry and loading setup of the
four-point-bending test with bending span lengths ls of 50, 70 and 90 mm. (g) Comparison of the means of
the simulations and of the means of Koide’s experimental datas for the three spans used, Series A.
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