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Summary. In this work, a strong embedded discontinuity approach is used to model fracture
in quasi-brittle materials. In this approach, a true discontinuous displacement field is adopted.
The discontinuities, arbitrarily located inside the finite element, are embedded in a pure dis-
crete way, which is similar to the use of interface elements. Within each parent element, the
additional displacements induced by the jumps correspond to rigid body motions. As a conse-
quence, opposite to the extended finite element method (XFEM), it is not necessary to perform
a numerical integration on each part of the parent element.

1 INTRODUCTION

The kinematics of thestrong discontinuity approachentails the description of a discontinu-
ous displacement field across an internal boundaryΓd; however, in previous strong discontinuity
formulations, the displacement jumps are smeared over the entire parent element1. As a result,
these models should not be considered within the framework of a discrete crack approach2.

In the extended finite element method(XFEM)3, a true discontinuous displacement field is
adopted; however, the concept of embedded discontinuities is no longer addressed since the
enriched nodes do not lie at the discontinuity.

Here, a pure discrete crack concept is followed such that the implementation of the strong
discontinuity formulation is much similar to the implementation of a discrete crack model using
interface elements. The most significant features may be summarized as follows: i) the internal
boundaryΓd is embeddedin the parent element; ii) the jumps are obtained atadditional nodes
which arelocated atΓd; iii) these additional nodes can be considered either aslocal or global;
iv) a consistent variational formulationis adopted, which issymmetricif the constitutive ma-
trices are symmetric; v) anon-homogeneous displacement jump fieldis adopted within each
parent element; vi) the approximated displacement field isdiscontinuousand vii) within each
parent element, the additional displacements induced by the jumps correspond torigid body
motions. These two last properties are characteristic of all the discrete formulations adopting
interface elements. Moreover, due to vii), theorthogonality conditionbetween the admissible

1



J. Alfaiate and Lambert J. Sluys

stress and enhanced strain spaces is fulfilledexactly4. From the numerical point of view, the
consideration of rigid body motions also presents an advantage when compared to the extended
finite element method , since it is not necessary to perform a numerical integration on each part
of the parent element; in fact, in the present model, the energy evaluated in the continuum part
of the element is solely due to the elastic strain energy, whereas the energy dissipated due to
cracking is exclusively derived from the discontinuityΓd.

2 KINEMATICS OF A DISCONTINUITY

Consider a domainΩ, with boundary∂Ω, where a discontinuity surfaceΓd is supposed to
exist The total displacement field is considered as the sum of a regular partû on Ω and a
discontinuous part corresponding to the displacement jump[[u]], localized at the discontinuity
surfaceΓd:

u(x) =
{

û(x)+ ũ+(x) if x ∈Ω+

û(x)+ ũ−(x) if x ∈Ω−.
(1)

In equation (1),̃u is the additional displacement field due to the discontinuity jump[[u]], such
that:

[[u]] = ũ+− ũ− at Γd. (2)

The total strain in the body is given by:

εεε = ∇∇∇su = ∇∇∇sû+ ε̃εε in Ω\Γd, (3)

where(·)s refers to the symmetric part of(·), the regular strain field is obtained from the con-
tinuous part of the displacement field and the enhanced strain is

ε̃εε =
{

∇∇∇sũ+(x) if x ∈Ω+

∇∇∇sũ−(x) if x ∈Ω−.
(4)

3 FINITE ELEMENT APPROXIMATION

Consider a finite element discretisation of the 2D domainΩ. Assume that one element is
crossed by a straight discontinuityΓd, which dividesΩ in two sub-domainsΩ+ andΩ−. A
local frame (s,n) is introduced such thats(x) is aligned withΓd and n is the normal to the
discontinuity (fig. 1). Recall equations (1) and (2). For the sake of simplicity, assume that the
jump [[u]], ũ+|Γd andũ−|Γd are linear functions ofs, where

[[u]] = [[u(s(x))]] = (ũ+− ũ−)|Γd. (5)

In (fig.1), whereû is neglected for clarity, the total displacement field is depicted in two different
situations: in (fig.1a) the discontinuity opens in the normal direction only, whereas in (fig.1b)
the discontinuity represents a shear band undergoing sliding displacements.
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Figure 1: Displacement jump in a four node element crossed by a discontinuity

In the example above, the additional four nodes (i+, i− and j+, j−, each pair of nodesi and j
initially coincide) are located at the intersection ofΓd with the edges of the element. In matrix
form, for each finite elemente with n nodes, the following approximation of the displacement
field is adopted:

ûe = Ne(x)âe in Ωe\Γe
d

[[u]]e = Ne
w [s(x)] (we+−we−) at Γe

d

(6)

whereNe contains the usual element shape functions,âe are the nodal degrees of freedom
associated witĥue, Ne

w are the shape functions used to approximate the jumps[[u]]e andwe+ and
we− are the degrees of freedom associated withũe+|Γe

d
andũe−|Γe

d
, measured at nodesi+, j+

andi−, j−, respectively.
Simo and Rifai4 assumed thatSh andζ̃h areL2 orthogonal, whereSh andζ̃h are the admis-

sible stress space and the admissible enhanced strain space, respectively. As a result, the work
done by the stresses on the enhanced strains in an element is null. Applying this orthogonality
condition toΩe+ andΩe−, givesZ

Ωe+
(∇∇∇sũe+)T : σσσedΩ =

Z
Ωe−

(∇∇∇sũe−)T : σσσedΩ = 0. (7)

In the present formulation, equation (7) is enforced, by imposing that the displacementsũe+

andũe− induce a null enhanced strain field:

ε̃εεe+ = ∇∇∇sũe+ = 0 in Ωe+, ε̃εεe− = ∇∇∇sũe− = 0 in Ωe− (8)

Consequently, the additional displacement fieldsũe+ andũe−: i) must be evaluated separately
in subdomainsΩe+ andΩe−, respectively, and ii) correspond to rigid body motions.

By means of the field approximations given in equations (6) the principle of virtual work
leads to5

Ke
aadâe = dfe

ext, Ke
ddwe+ = dfe+

w,ext, Ke
ddwe− = dfe−

w,ext (9)

The additional nodes can be taken as local, such as in previous embedded formulations, or
global; using the latter option, continuity of the jumps at the discontinuities across the element
boundaries is automatically enforced6.
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4 CONCLUSIONS

In this work, a strong embedded discontinuity approach is presented, which fits in the frame-
work of a discrete crack approach. Similar to the discrete-interface approach, the element
crossed by a discontinuity is divided into two subdomains,Ωe+ andΩe−; however, this sep-
aration involves no remeshing since these two subdomains are not considered as new elements.
The additional degrees of freedom can be adopted as local, as done in previous embedded for-
mulations, or global. In the latter case, continuity of the jumps across element boundaries is
automatically fulfilled. The additional displacements due to the displacement jump at the local-
ized discontinuity are transmitted to the regular nodes as rigid body motions; due to this fact,
the enhanced strains are null and the orthogonality condition is fulfilled exactly onΩe\Γe

d: the
admissible stress space and the admissible enhanced strain space areL2 orthogonal in each par-
ent element. As a result, the work done by the stresses on the enhanced strains is null. Finally,
a consistent variational formulation is used, which is symmetric if the constitutive matrixes are
symmetric.

REFERENCES

[1] J. Oliver, Modelling strong discontinuities in solid mechanics via strain softening consti-
tutive equations. Part 1: Fundamentals,International Journal for Numerical Methods in
Engineering, 39(21), 3575–3600, 1996.

[2] R. de Borst, G. N. Wells, L. J. Sluys, Some observations on embedded discontinuity mod-
els,Engineering Computations, 18(1–2), 241–254, 2001.
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